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Abstract

The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of
tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are
triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns
(PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors
(PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly
associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I
interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to
inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively.
In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
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Background
The human body has evolved various adaptive responses
that protect against cell and tissue damage caused by
physical, chemical, and biological factors. Such factors
include molecules released by damaged tissues, metabo-
lites, and/or infection (e.g., by bacteria, viruses, and para-
sites) [1–4]. Inflammation, an adaptive response to cell
injury, generates damage-associated molecular patterns
(DAMPs) and/or pathogen-associated molecular pat-
terns (PAMPs), which are then recognized by pattern
recognition receptors (PRRs) expressed mainly by innate
immune cells [5]. PRRs include Toll-like receptors
(TLRs), Nod-like receptors (NLRs), C-type lectin recep-
tors (CLRs), and RIG-I-like receptors (RLRs) that
recognize DAMPs and PAMPs to initiate immune re-
sponses. These receptors are also called innate immune
receptors [6] (Fig. 1).
Autoinflammatory diseases are strongly associated with

dysregulation of these PRR-containing interactomes, which

include inflammasomes, nuclear factor (NF)-κB-activating
signalosomes, type I interferon-inducing signalosomes, and
immuno-proteasomes; dysfunction of these interactomes
results in inflammasomopathies, relopathies, interferonopa-
thies, and proteasome-associated autoinflammatory syn-
dromes (PRAAS), respectively [7–11]. This explains the
pathogenesis of autoinflammatory diseases involving recur-
rent inflammatory flare-ups in the absence of autoantibodies
or antigen-specific T lymphocytes [12]. Knowledge of the
molecular mechanism(s) underlying the functions of these
innate immune receptors is useful for the treatment and
management of individuals with autoinflammatory diseases
(Fig. 1).

Interleukin-1β-mediated autoinflammatory
diseases (inflammasomopathies)
When NOD-like receptors harboring a PYRIN domain
(PYD) (e.g., NLRP1, NLRP2, NLRP3, NLRP6, NLRP9,
and NLRP12) and other pyrin domain-containing PRRs
(e.g., pyrin, AIM2, and IFI-16) sense DAMPs, PAMPs, or
intracellular microenvironmental changes (e.g., potas-
sium efflux), they interact with an adaptor protein
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apoptosis-associated speck-like protein containing a
caspase-recruitment domain (ASC) via PYD, and pro-
caspase-1 via a caspase-recruitment domain (CARD).
This interaction activates caspase-1, a process accom-
panied by pyroptotic cell death [13–29]. NOD-like re-
ceptors carrying a CARD domain or CARD including
proteins alternatively interact with caspase-1 via CARD
with ASC and pro-caspase-1 such as NLRP1, NLRC4,
CARD8, and caspase-11 [30–32]. The resulting com-
plexes act as a sensor of cell injury; this sensor is re-
ferred to as the inflammasome, an interleukin (IL)-1β-
and IL-18-processing platform that plays a crucial role
in the maturation and secretion of these cytokines from
cells. The process is accompanied by a type of cell death,
named pyroptosis, which is triggered by cleavage of gas-
dermin D (GSDMD) [33, 34] (Fig. 2). Below, we discuss
specific inflammasomopathies.

Cryopyrin-associated periodic syndrome
Cryopyrin is the same protein as NLRP3 which was
named by the nomenclature committee. Gain-of-
function mutations in NLRP3 lead to cryopyrin-
associated periodic syndrome (CAPS), a spectrum of dis-
eases that includes familial cold autoinflammatory

syndrome (FCAS, formerly termed familial cold urticaria
(FCU)), Muckle–Wells syndrome (MWS), and neonatal-
onset multisystem inflammatory disease (NOMID; also
called chronic infantile neurologic cutaneous and articu-
lar syndrome (CINCA)). Currently, 248 variants of the
CIAS1 gene have been reported by “INFEVERS” (https://
infevers.umai-montpellier.fr/web/search.php?n=4) [35].
The NLRP3 mutations in CAPS result in constitutive ac-
tivation of the NLRP3 inflammasome (i.e., the threshold
for stimulation is extremely low). Activation of the
inflammasome leads to excess pyroptosis of cells ex-
pressing components of the NLRP3 inflammasome;
these cells secrete excessive amounts of activated IL-1β
upon autoinflammatory attack [36–41] (Fig. 2). Corre-
sponding common diseases caused by the similar signal-
ing are shown in Table 1.

NLRP1-associated autoinflammation with arthritis and
dyskeratosis
The NLRP1 inflammasome was the first “inflamma-
some” to be identified [14]. NLRP1 interacts with ASC
through its PYD domain. ASC then interacts with pro-
caspase-1 via its CARD domain, resulting in activation
of IL-1β secretion; also, NLRP1 interacts with caspase-1

Fig. 1 Pattern-recognition receptors in innate immune cells. PRRs include Toll-like receptors (TLRs), Nod-like receptors (NLRs), and RIG-I-like receptors (RLRs) that
recognize various damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) to initiate immune responses. These
receptors are also called innate immune receptors. Gain-of-function mutations of the innate immune receptors or loss-of-function mutations of their inhibitors
are related to autoinflammatory diseases. Red characters indicate DAMPs and PAMPs. Red characters indicate classified autoinflammatory diseases
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through its CARD domain to activate IL-1β secretion
[96]. Currently, several mutations (A54T, A59P, A66V,
M77T, R726W, T755N, F787_R843del, and P1214R) in
the gene encoding NLRP1 have been identified (https://
infevers.umai-montpellier.fr/web/search.php?n=31). Pa-
tients harboring these mutations exhibit dyskeratosis,
oligo/polyarthritis, and recurrent fever, along with im-
munological dysfunction and vitamin A deficiency [97–
99]. The mutations may trigger proteasome-dependent
functional degradation of NLRP1, and degraded CARD-
FIIND-containing-NLRP1 fragments act as a scaffold like
ASC for inflammasome activation [100] (Fig. 2).

Corresponding common diseases caused by the similar
signaling are shown in Table 1.

NLRP12 autoinflammatory syndrome
NLRP12 inhibits the activation of NF-κB. Mutations in
NLRP12 are found in patients with hereditary periodic
fever syndrome, the clinical signs of which are consistent
with a diagnosis of CAPS [101]. Currently, 79 variants of
the gene encoding NLRP12 have been reported (https://
infevers.umai-montpellier.fr/web/search.php?n=9). Since
some patients with gain-of-function mutations in
NLRP12 exhibit symptoms similar to those of CAPS, the

Fig. 2 Cryopyrin-associated periodic fever syndrome (CAPS), TNF receptor-associated periodic syndrome (TRAPS), and autoinflammation and phospholipase
Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) are related to NLRP3 inflammasome. Gain-of-function mutations of NLRP3 (e.g.,
R260W) leads to prolonged activation of NLRP3 inflammasome. Autoinflammatory syndrome caused by the gain of function of NLRP1, NLRP12, or other NLRP
mutations is thought to be basically caused by the same mechanisms. Mutated TNFRSF1A (TNFR) in patients with TRAPS is misfolded and accumulated in the
endoplasmic reticulum (ER), causing ER stress and increased generation of mitochondrial reactive oxygen species (ROS) that activates the NLRP3 inflammasome.
PLCγ2 mutation in patients with APLAID (e.g., S707Y) leads to calcium influx from the ER and increased cytoplasmic Ca2+ levels promote activation of
NLRP3 inflammasome
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Table 1 The corresponding diseases caused by the similar signaling of autoinflammatory diseases

Type of autoinflammatory
diseases

Responding
proteins

Functions Corresponding diseases with the similar signaling

Inflammasomopathies

CAPS Cryopyrin/NLRP3 PRR for ROS, K+ efflux, cathepsin
B detection

Metabolic syndrome:

Gout [42]

Atherosclerosis [43]

Type 2 diabetes [44]

Neurodegenerative disease:

Alzheimer’s disease [45, 46]

Parkinson’s disease [47]

Amyotrophic lateral sclerosis [48]

Multiple sclerosis [49]

Infections and aberrant inflammatory responses:

Septic shock syndrome [50, 51]

Ischemic diseases:

Myocardial infarction [52]

Stroke [53]

NAIAD NLRP1 PRR against Anthrax toxin
detection

Infections and aberrant inflammatory responses:

Anthrax lethal toxin [54]

Neurodegenerative disease:

Alzheimer’s disease [46]

Ischemic diseases:

Stroke [53]

NLRP12-AD NLRP12 PRR for Yersinia pestis detection Infections and aberrant inflammatory responses:

Yersinia pestis [55]

Plasmodium chabaudi [56]

NF-κB inhibition Regulation of inflammation:

Salmonella typhimurium [57]

Brucella abortus [58]

TRAPS TNFRSF1A TNF receptor Infections and aberrant inflammatory responses:

Tumor necrosis factor [59]

APLAID PLCγ2 Cleavage PIP to DAG Immunodeficiency:

Common variable immunodeficiency [60]

PLCγ2-associated antibody deficiency and immune dysregulation
syndrome (PLAID) [60]

Familial cold autoinflammatory syndrome 3 [60]

Neurodegenerative disease:

Alzheimer’s disease [61, 62]

Lewy body dementia [62]

Frontotemporal dementia [62]

FMF Pyrin Virulence sensor Infections and aberrant inflammatory responses:

Yersinia pestis infection [63]

PFIT WDR1 Actin assembly, leukocyte
migration

Infections and aberrant inflammatory responses:

Listeria monocytogenes dissemination [64]

PAAND Pyrin Virulence sensor Infections and aberrant inflammatory responses:

Yersinia pestis infection [63]
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Table 1 The corresponding diseases caused by the similar signaling of autoinflammatory diseases (Continued)

Type of autoinflammatory
diseases

Responding
proteins

Functions Corresponding diseases with the similar signaling

PAPA syndrome PSTPIP1/CD2BP1 Pyrin regulation Immunodeficiency:

Common variable immunodeficiency [65]

MKD MVK Lipid metabolism Metabolic syndrome:

Atherosclerosis [66]

NLRC4
inflammasomopathies

NLRC4 PRR for flagellin detection Infections and aberrant inflammatory responses:

Pseudomonas aeruginosa infection [67]

Macrophage activation syndrome (MAS) [68]

Relopathies

BS/EOS NOD2 PRR for MDP Infections and aberrant inflammatory responses:

Mycobacterium tuberculosis infection [69]

HA20 A20/TNFAIP3A Deubiquitinating for NF-κB
regulation

Infections and aberrant inflammatory responses:

Systemic lupus erythematosus (SLE) [70]

Rheumatoid arthritis [71]

IAALUCD LUBAC Ubiquitinating for NF-κB
regulation

Infections and aberrant inflammatory responses:

HOIL-1/ RBCK1 Salmonella enterica infection [72]

HOIP/RNF31 Legionella pneumophila infection [72]

SHARPIN Shigella flexneri infection [72]

ORAS OTULIN Deubiquitinating for NF-κB
regulation

Infections and aberrant inflammatory responses:

Salmonella Typhimurium infection [73]

IL-1 receptor-related autoinflammatory diseases:

DIRA IL1RN IL-1 receptor inhibitor Infections and aberrant inflammatory responses:

Inflammasomopathies [74]

Interferonopathies

AGS RNASEH2 RNase activity against viral RNA Infections and aberrant inflammatory responses:

SLE and other autoimmune diseases [75, 76]

Cervical cancer via human papilloma virus [77]

SAMHD1 dNTPase activity against viral
RNA/DNA

Epstein-Barr virus infection [78]

Human immunodeficiency virus infection [79]

ADAR1 Viral RNA processing Hepatitis B virus infection [80]

Marburg and Ebola virus [81]

MDA5/IFIH1 PRR for viral RNA detection Paramyxovirus infection [82]

Picornavirus infection [83]

SAVI STING/TMEM173 PRR for viral DNA/RNA detection Infections and aberrant inflammatory responses:

SLE and other autoimmune diseases [76]

ANCA-associated vasculitis [84]

Herpes simplex virus infection [85]

COPA syndrome αCOP Transport vesicles between Golgi
to ER

Infections and aberrant inflammatory responses:

Interstitial lung disease [86]

Capillaritis [87]

PRAAS/NNS/CANDLE PSMB3,4,8,9 Proteasome for antigen
processing

Infections and aberrant inflammatory responses:

SLE and other autoimmune disease [87, 88]

Cytomegalovirus infection [89]

Hepatitis B virus infection [90]

Influenza virus infection [91]
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disease was named FCAS2 [102] and patients with
NALP12 periodic fever syndrome respond to canakinu-
mab (an anti-human IL-1β monoclonal antibody) and/or
etanercept (a tumor necrosis factor (TNF) receptor-IgG
heavy chain chimeric protein that acts as a bivalent an-
tagonist of TNF activity) [102], the pathogenesis of
NLRP12 autoinflammatory syndrome (NLRP12-AD)
may explain the gain of function of the NLRP12 inflam-
masome by a similar mechanism of the NLRP3 inflam-
masome (Fig. 2). Corresponding common diseases
caused by the similar signaling are shown in Table 1.

TNF receptor-associated periodic fever syndrome
The causative gene product of TNF receptor-associated
periodic fever syndrome (TRAPS) is TNF receptor
superfamily member 1A (TNFRSF1A) [12]. So far, 180
variations of the TNFRSF1A gene have been reported
(https://infevers.umai-montpellier.fr/web/search.php?n=
2). The cysteine-to-cysteine disulfide bonds in the extra-
cellular domain of TNFRSF1A for ER stress are thought
to be important for disease pathogenesis. More than
one-third of patients with TRAPS harbor the R92Q and
P46L mutations [103]. In TRAPS, misfolding of mutated
TNFRSF1A leads to accumulation of the protein in the
endoplasmic reticulum (ER), which causes ER stress and
increased generation of mitochondrial reactive oxygen
species; this in turn activates inflammasomes [104, 105]
(Fig. 2). Corresponding common diseases caused by the
similar signaling are shown in Table 1.

Autoinflammation and phospholipase Cγ2-associated
antibody deficiency and immune dysregulation
Autoinflammation and phospholipase Cγ2 (PLCγ2)-as-
sociated antibody deficiency and immune dysregulation
(APLAID) responds to PLCγ2 which encodes for a con-
stitutively repressed phospholipase. The S707Y PLCγ2
mutation disrupts the autoinhibition of PLCγ2, thereby
increasing PLCγ2 activity and calcium influx from the

ER in the leukocytes of patients with APLAID [106,
107]. Increased cytoplasmic Ca2+ levels promote the as-
sembly of the NLRP3 inflammasome [108] (Fig. 2). Cor-
responding common diseases caused by the similar
signaling are shown in Table 1.

Familial Mediterranean fever
The causative gene of familial Mediterranean fever
(FMF), MEFV, encodes pyrin (also named marenostrin)
[109, 110]. Currently, 389 variants of MEFV have been
reported (https://infevers.umai-montpellier.fr/web/
search.php?n=1). FMF was reported to be autosomal re-
cessive; mutations in pyrin are thought to result in loss
of its ability to inhibit inflammasomes. Nowadays, pyrin
assembles with ASC and pro-caspase-1 to form the
pyrin inflammasome, as well as the NLRP3 inflamma-
some [111]. Usually, pyrin is phosphorylated by serine/
threonine-protein kinases PKN1 and PKN2, and inhib-
ited by 14-3-3 proteins. When virulence factors
expressed or secreted by bacteria and/or viruses inhibit
RhoA GTPase, the pyrin inflammasome triggers activa-
tion and secretion of IL-1β [112] (Fig. 3). Yersinia pestis-
like bacteria have a YopM protein which interacts with
pyrin to inhibit inflammatory responses for avoiding fur-
ther anti-bacterial responses [113]. In patients with
FMF, pyrin harboring mutant human B30.2 domains de-
fect such kind of ability, thereby preventing binding to
ASC; this makes prolonged inflammasome activation
and IL-1β secretion [114] (Fig. 3). Corresponding com-
mon diseases caused by the similar signaling are shown
in Table 1.

Periodic fever immunodeficiency and thrombocytopenia
The causative gene product of periodic fever immuno-
deficiency and thrombocytopenia (PFIT) is WDR1 [115,
116], which interacts with cofilin to promote cleavage
and depolymerization of F-actin [117, 118]. The L293F
mutation in WDR1 disrupts intramolecular hydrophobic

Table 1 The corresponding diseases caused by the similar signaling of autoinflammatory diseases (Continued)

Type of autoinflammatory
diseases

Responding
proteins

Functions Corresponding diseases with the similar signaling

POMP Proteasome chaperone Infections and aberrant inflammatory responses:

Psoriasis [92]

Human papilloma virus infection [93]

SMS MDA5/IFIH1 PRR for viral RNA detection Infections and aberrant inflammatory responses:

SLE and other autoimmune diseases [75, 76, 94]

Paramyxovirus infection [82]

Picornavirus infection [83]

RIG-I PRR for viral RNA detection Infections and aberrant inflammatory responses:

SLE and other autoimmune diseases [95]

Paramyxovirus infection [83]
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interactions, which are important for maintaining actin
protein structure. This disruption leads to actin accumu-
lation and aggregates with pyrin resulting in pyrin acti-
vation and release of IL-18 [119] (Fig. 4). Corresponding
common diseases caused by the similar signaling are
shown in Table 1.

Pyrin-associated autoinflammation with neutrophilic
dermatosis
The MEFV mutations in patients with pyrin-associated
autoinflammation with neutrophilic dermatosis (PAAND)
harbor S242R and E244K mutations in pyrin; these muta-
tions are located in the 14-3-3 binding motif, which inter-
feres with binding of pyrin to 14-3-3, thereby allowing
assembly of the pyrin inflammasome and excessive release

of IL-1β [120–123] (Fig. 5). Corresponding common dis-
eases caused by the similar signaling are shown in Table 1.

Pyogenic arthritis, pyoderma gangrenosum, and acne
syndrome
The causative gene product of pyogenic arthritis, pyoderma
gangrenosum, and acne (PAPA) syndrome is proline-serine-
threonine phosphatase-interacting protein 1 (PSTPIP1) (also
called CD2-binding protein 1 (CD2BP1)) [124, 125]. Cur-
rently, 66 variants of the PSTPIP1 gene have been reported
(https://infevers.umai-montpellier.fr/web/search.php?n=5). In
patients with PAPA syndrome, mutations in PSTPIP1 result
in hyperphosphorylation of PSTPIP1, which strengthens its
interaction with pyrin via the B-box domain to activate the
pyrin inflammasome. This leads to increased secretion of IL-

Fig. 3 Prolonged activation of pyrin inflammasome in patients with familial Mediterranean fever (FMF). Upon Yersinia pestis-like bacterial infection, Yersinia outer
protein (Yop)M interacts with pyrin to inhibit pyrin inflammasome to avoid further anti-bacterial responses. In patients with FMF, pyrin-harboring mutant human
B30.2 domains enable to interact with YopM, resulting in prolonged pyrin inflammasome activation and IL-1β secretion
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1β [125] (Fig. 6). Corresponding common diseases caused by
the similar signaling are shown in Table 1.

Mevalonate kinase deficiency/hyper-IgD syndrome
The causative gene product of mevalonate kinase defi-
ciency/hyper-IgD syndrome (MKD) (also known as
hyper-IgD syndrome (HIDS)) is mevalonate kinase
(MVK) [126]. Currently, 264 variants of this gene have
been reported (https://infevers.umai-montpellier.fr/web/
search.php?n=3). Geranylgeranyl pyrophosphate, the
substrate of geranylgeranylation, is a product of the
mevalonate pathway. Deficiency of MVK leads to deple-
tion of geranylgeranyl pyrophosphate, resulting in the in-
activation of RhoA [127, 128]. Since the inactivation of
RhoA activates the pyrin inflammasome, MKD leads to
an inflammasomopathy. Indeed, canakinumab, an anti-

IL-1β monoclonal antibody, is an effective treatment for
MKD, suggesting that IL-1β is a common mediator of
these diseases [129] (Fig. 7). Corresponding common
diseases caused by the similar signaling are shown in
Table 1.

NLRC4 inflammasomopathies
Gain-of-function mutations in NLRC4 result in early-
onset recurrent fever and macrophage activation syn-
drome (MAS), neonatal-onset enterocolitis with periodic
fever, fatal or near-fatal episodes of autoinflammation, or
symptoms resembling those of FCAS [68, 130, 131]. So
far, more than 31 genetic variants of NLRC4 have been
reported (https://infevers.umai-montpellier.fr/web/
search.php?n=25). The NLRC4 inflammasome activates
caspase-1 either with or without an adaptor ASC, which

Fig. 4 Activation of pyrin inflammasome is inhibited by phosphorylation by PKN1/2. Upon bacterial infection, bacterial toxin can inhibit PKN1/2 activity,
resulting in pyrin inflammasome activation. The L293F mutation in WDR1 leads to actin accumulation and aggregates with pyrin, resulting in pyrin activation
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in turn activates IL-1β and IL-18. NLRC4 inflammaso-
mopathies are linked more closely with hypersecretion
of IL-18 rather than of IL-1β; however, the precise
mechanism remains to be elucidated [132] (Fig. 8). Cor-
responding common diseases caused by the similar sig-
naling are shown in Table 1.

NF-κB-related autoinflammatory diseases
(relopathies)
Dysregulations of NF-κB signaling are closely linking to
the ubiquitination system. In addition to constitutive ac-
tivation of NF-κB, loss-of-function mutations in the
ubiquitin-mediated NF-κB regulatory system cause auto-
inflammatory diseases [10] (Fig. 9).

Blau syndrome/early-onset sarcoidosis
The gene responsible for Blau syndrome (BS)/early-onset
sarcoidosis (EOS) is IBD1, and its causative gene product
is NOD2 [133]. Usually, NOD2 recognizes muramyl di-
peptide (MDP), leading to activation of NF-κB. Cur-
rently, 185 variants of NOD2 have been reported
(https://infevers.umai-montpellier.fr/web/search.php?n=
6). Gain-of-function mutations in NOD2 increase signal-
ing via NOD2-RIPK2-associated activation of NF-κB
[134, 135] (Fig. 10). Corresponding common diseases
caused by the similar signaling are shown in Table 1.

A20 protein haploinsufficiency
A20 (also called TNF-α-induced protein (TNFAIP) 3, is
an intracellular deubiquitinase. A20 plays a role in

Fig. 5 Activation of pyrin inflammasome in patients with pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). Pyrin
mutations in patients with PAAND (e.g., S242R and E244K) mutations are located in the 14-3-3 binding motif, which interferes with the binding of
pyrin to 14-3-3, thereby allowing activation of the pyrin inflammasome
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deubiquitination of several proteins, including NF-κB.
A20 protein haploinsufficiency (HA20) is caused by het-
erozygous mutation or deletion of A20, resulting in in-
sufficient deubiquitination of TRAF6 downstream of the
TNF-α pathway, RIPK1 downstream of the TLR path-
way, and RIPK2 downstream of the NOD1 or NOD2
pathways. Loss of A20 function leads to constitutive ac-
tivation of NF-κB signaling [136, 137]. A20 also regulates
the activity of the NLRP3 inflammasome in macrophages
[138]. So far, 55 variants of A20 have been reported
(https://infevers.umai-montpellier.fr/web/search.php?n=
26). Haplodeficient mutations severely reduce A20 func-
tion, leading to prolonged activation of NF-κB [139]
(Fig. 11). Corresponding common diseases caused by the
similar signaling are shown in Table 1.

Immunodeficiency, autoinflammation, and
amylopectinosis with inherited linear ubiquitin chain
assembly complex deficiency
Loss-of-function mutation in linear ubiquitin chain as-
sembly complex (LUBAC), a protein complex compris-
ing heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1)
(also called RBCK1), HOIL-1 interaction protein (HOIP,
also called RNF31), and SHANK-associated RH domain-
interacting protein (SHARPIN) is associated with autoin-
flammation [140–145]. The L72P mutation in the HOIP
protein affects its interaction with OTU deubiquitinase
with linear linkage specificity (OTULIN) and lysine 63
deubiquitinase (CYLD); however, the most common
disease-causing phenomenon is loss of expression of the
L72P allele of HOIP. Combined heteromutations

Fig. 6 Activation of pyrin inflammasome in patients with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. Mutations of
PSTPIP1 in patients with PAPA (e.g., A230T and E250Q) result in hyperphosphorylation of PSTPIP1, which strengthens its interaction with pyrin via
the B-box domain to activate the pyrin inflammasome
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comprise L41fsX7 and Q185X, which result in deficient
HOIL-1 expression. Lack of HOIL-1 expression by fibro-
blasts impairs phosphorylation of IKK kinase, slower
degradation of IκBα, and decreased ubiquitination of
NEMO in response to stimulation with either TNF-α or
IL-1β. LUBAC deficiency in fibroblasts downregulates
NF-κB activation in response to IL-1β or TNF-α,
whereas deficient monocytes release more IL-6 but less
IL-10 in response to IL-1β [146–148] (Fig. 12). Corre-
sponding common diseases caused by the similar signal-
ing are shown in Table 1.

OTULIN-related autoinflammatory syndrome
OTULIN is a deubiquitination enzyme that hydrolyzes
methionine-1 (M1), which links to liner ubiquitin chains
to regulate the activity of NF-κB [149]. Homozygous

loss-of-function mutations in OTULIN cause OTULIN-
related autoinflammatory syndrome (ORAS) [150]. The
L272P mutation is located in a helix of the catalytic
OTU domain, which forms part of the binding pocket
for M1-linked distal ubiquitin; this mutation disrupts the
binding of OTULIN and ubiquitin to its substrate [151,
152] (Fig. 13). Corresponding common diseases caused
by the similar signaling are shown in Table 1.

IL-1 receptor-related autoinflammatory diseases
IL-1 receptor-related autosomal recessive autoinflamma-
tory diseases are caused by mutations in IL1RN (inter-
leukin-1 receptor antagonist), resulting in a condition
called deficiency of interleukin-1 receptor antagonist
(DIRA) [153–155]. So far, 22 variants of this gene have
been reported (https://infevers.umai-montpellier.fr/web/

Fig. 7 Activation of pyrin inflammasome in patients with hyper-IgD syndrome (HIDS). Deficiency of MVK activity by loss-of-function mutations
leads to depletion of geranylgeranyl pyrophosphate, resulting in the inactivation of RhoA and following activation of PKN1/2. This causes
activation of pyrin inflammasome
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search.php?n=10). IL-1RA deficiency results in uncon-
trolled IL-1α, IL-1β and NF-κB signaling [156] (Fig. 9).
Corresponding common diseases caused by the similar
signaling are shown in Table 1.

Interferonopathies
Anti-viral first-line defense is dependent on innate im-
mune receptors (e.g., cGAS, MDA5, and RIG-I) that are
detecting intracellular viral, bacterial, or own nucleic
acid, linking to type I interferon signaling. Interferono-
pathies are closely linked to dysfunction of these innate

immune receptors and type I interferon signaling,
Immunoproteasome dysfunction is also linked to the
interferonopathies [157] (Fig. 14).

Aicardi–Goutières syndrome
Aicardi–Goutières syndrome (AGS) is an inherited en-
cephalopathy that affects newborn infants and usually
results in severe neuro-physical disability. AGS is caused
by loss-of-function mutations in the genes encoding the
three prime repair exonuclease 1 (TREX1), the ribo-
nuclease H2 subunit (RNASEH2)A, RNASEH2B, RNA-
SEH2C, the phosphohydrolase SAM domain and HD

Fig. 8 NLRC4 inflammasomopathies are related to gain-of-function mutations of NLRC4 inflammasome. Gain-of-function of mutations in NLRC4
in patients with NLRC4 inflammasomopathies constitutively actives for NLRC4 inflammasome. The NLRC4 inflammasome activates caspase-1
either with or without an adaptor ASC leading to hypersecretion of IL-18 and IL-1β
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domain-containing protein 1 (SAMHD1), or the dsRNA-
specific adenosine deaminases acting on RNA1 (ADAR1)
[158, 159]. In addition, gain-of-function mutations in the
dsRNA sensor MDA5 (also called IFIH1) have been
identified in AGS patients [157]. AGS pathology seems
to be caused by the accumulation of nucleic acids, which
can cause neurological and liver abnormalities that re-
semble congenital viral infection (Fig. 15). Correspond-
ing common diseases caused by the similar signaling are
shown in Table 1.

Stimulator of interferon gene-associated vasculopathy
with onset in infancy
Stimulator of interferon gene (STING)-associated vascu-
lopathy with onset in infancy (SAVI) is caused by gain-of-
function mutations in STING (also called TMEM173).
Mutation of the STING amplifies the function of STING,
which is an adaptor molecule involved in signal transduc-
tion through cGAS, leading to hyperactivation of type I
IFN pathways [160]. Corresponding common diseases
caused by the similar signaling are shown in Table 1.

Fig. 9 Autoinflammatory disease-related NF-κB activation pathway. In normal, upon recognition of DAMPs, PAMPs, or appropriate ligands, TLR,
TNFR, Nod1, and Nod2 activate NF-κB. Dysregulations of the NF-κB signaling are closely linking to autoinflammatory diseases called relopathies.
The NF-κB activation pathway is regulated by polyubiquitination chains
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Coatomer protein alpha syndromes
Coatomer protein alpha (COPA) syndrome, character-
ized by high-titer autoantibodies, interstitial lung disease,
and inflammatory arthritis, was found to be deleterious
mutations in the COPA gene (encoding coatomer sub-
unit α). Mutant COPA causes defective intracellular
transport via coat protein complex I which leads to ER
stress and the upregulation of the levels of transcripts
encoding IL-1β, IL-6, and IL-23 [161]. COPA is a critical
regulator of STING transport ER and retrieval of STING

from the Golgi. Mutant COPA retention of STING on
the Golgi resulting in STING activation leads to pro-
longed type I interferon signaling [86] (Fig. 16). Corre-
sponding common diseases caused by the similar
signaling are shown in Table 1.

Proteasome-associated autoinflammatory syndromes
Nakajo–Nishimura syndrome (NNS) and chronic atyp-
ical neutrophilic dermatosis with lipodystrophy and ele-
vated temperature syndrome (CANDLE) were the first

Fig. 10 NF-κB activation pathway in patients with Blau syndrome (BS)/early-onset sarcoidosis (EOS). NOD2 recognizes muramyl dipeptide (MDP),
a minimum component of peptidoglycan, leading to activation of NF-κB. Gain-of-function mutations in NOD2 (e.g., R334W) increase signaling via
NOD2-RIPK2-associated activation of NF-κB
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PRAAS to be described. Loss-of-function mutation in
immunoproteasome components such as proteasome
subunit beta type (PSMB)8, PSMB4, PSMA3, PSMB9, or
proteasome maturation protein (POMP) leads to in-
creased secretion of type I IFN by immune cells [162,
163] (Fig. 17). Corresponding common diseases caused
by the similar signaling are shown in Table 1.

Singleton–Merten syndrome
Singleton–Merten syndrome (SMS) is caused by gain-of-
function mutations in the RNA sensor MDA5 or RIG-I.
Typical SMS is caused by a mutation in MDA5, whereas

atypical SMS is caused by a mutation in RIG-I; both mu-
tations cause constitutive activation of IFN signaling
pathways [164, 165]. Notably, mutations in the MDA5
are also associated with AGS, so that both SMS and
AGS share a common molecular mechanism [164]
(Fig. 18). Corresponding common diseases caused by
the similar signaling are shown in Table 1.

Conclusions
Here, we describe briefly the molecular mechanisms
underlying autoinflammatory diseases caused by dysreg-
ulation of IL-1β or IL-18 processing, NF-κB activation,

Fig. 11 NF-κB activation pathway in patients with A20 protein haploinsufficiency (HA20). Loss-of-function mutations of A20 (e.g., L227X) reduce
the deubiquitination activity of A20 leading to prolonged activation of NF-κB
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Fig. 12 Loss-of-function mutation in linear ubiquitin chain assembly complex (LUBAC) is associated with autoinflammation. Loss-of-function
mutations in the HOIP (e.g., L72P) affects its interaction with OTU deubiquitinase with linear linkage specificity (OTULIN) and lysine 63
deubiquitinase (CYLD), leading to prolonged NF-κB activation
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Fig. 13 Homozygous loss-of-function mutations in OTULIN in patients with OTULIN-related autoinflammatory syndrome (ORAS). OTULIN is a
deubiquitination enzyme that hydrolyzes methionine-1 (M1), which links to liner ubiquitin chains to regulate the activity of NF-κB. The L272P
mutation of OTULIN disrupts the binding of OTULIN and ubiquitin to its substrate, leading to prolonged NF-κB activation
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Fig. 14 Type I interferon signaling in interferonopathies. Type I interferon singling is closely linked to innate immune receptors such as cGAS,
MDA5, and RIG-I that are sensing viral, bacterial, or own DNA or RNA. Interferon-stimulated genes (ISGs) are induced by interferon regulatory
factors (IRFs) downstream of cGAS, MDA5, and RIG-I. Immunoproteasome dysfunction is also linked to interferonopathies

Fig. 15 Loss-of-function mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, or ADAR1 in patients with Aicardi–Goutières syndrome
(AGS). Loss-of-function mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, or ADAR1 results in the accumulation of nucleic acids
which leads to the induction of IRF transcription
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Fig. 16 Mutations in αCOP in patients with COPA syndrome. Mutations in αCOP (e.g., K230N) impair ER-Golgi transport resulting in ER stress-
induced NF-κB activation and the mutant αCOP retention of STING on the Golgi resulting in STING activation leads to prolonged type I
interferon signaling
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Fig. 17 Loss-of-function mutations in immunoproteasome components PSMB8, PSMB4, PSMA3, PSMB9, or proteasome maturation protein
(POMP) in patients with PRAAS/NNS/CANDLE. Loss-of-function mutation in immunoproteasome components such as PSMB8, PSMB4, PSMA3,
PSMB9, or proteasome maturation protein (POMP) leads to increased secretion of type I IFN by immune cells
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and IFN secretion. Disruption of the fine balance within
these signaling pathways contributes to the pathogenesis
of autoinflammatory diseases. Increasing our knowledge
of the molecular biology underlying autoinflammatory
diseases will facilitate the development of disease-
targeting biologics. Therefore, future studies should elu-
cidate the autoinflammatory disease-specific signalosome
in detail.
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