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Simple Summary: Targeted dual-modal imaging agents for whole body PET/SPECT imaging and
fluorescence-guided surgery (FGS) have significant potential to improve surgical workflow. Here we
present an overview of key design considerations and fluorescent building blocks, along with
potential future directions in this exciting field.

Abstract: Molecular imaging is an emerging non-invasive method to qualitatively and quantitively
visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and
near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and
up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a
targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer,
thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of
such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS
could improve surgical workflow and patient outcomes. However, the development of targeted dual-
modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key
design considerations of targeted dual-modal imaging from a topological perspective, list targeted
dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent
probe development, and highlight future directions in this rapidly developing field.

Keywords: dual-modal imaging; fluorescence-guided surgery; PET/SPECT imaging; heptamethine

1. Introduction

Nuclear medicine is an imaging specialty that uses radiolabeled contrast agents (i.e., ra-
diotracers) to non-invasively assess biological processes. Positron emission tomography
(PET) and single-photon emission computed tomography (SPECT) are nuclear imaging
modalities that generate three-dimensional images of radiotracer distribution, and are
widely used in oncology, cardiology, and neurology to detect and monitor disease progres-
sion [1,2]. In cancer, diagnostic radiotracers typically comprise a targeting moiety, such
as a small molecule, peptide, or antibody that is preferentially taken up by tumors, and a
radionuclide that emits positrons or gamma rays for PET or SPECT imaging, respectively.
The tumor-specific contrast generated by such agents has motivated imaging applica-
tions outside of nuclear medicine whose success is growing. Most notably, fluorescently-
labeled agents now have over a decade of clinically proven utility in the emerging field of
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fluorescence-guided surgery (FGS) [3–11]. FGS is an intraoperative optical imaging modal-
ity that visually augments the surgical field to improve the identification of small tumors,
multifocal diseases, and surgical margins. The display of real-time images in the operating
room would address the limitations of existing intraoperative imaging techniques and has
the potential to enable more complete tumor resections with minimal damage to normal
structures (i.e., healthy tissue, nerves, and vasculature).

A conventional tumor-specific FGS agent combines a targeting component and a
dye that preferably emits fluorescence in the near-infrared (NIR) spectral range (wave-
lengths > 700 nm), where tissue autofluorescence is low and increased depth of detection is
possible [12]. Given the comparable detection sensitivities of optical and nuclear imaging
(i.e., high fM–pM), there have also been extensive efforts to synthesize dual-modal FGS
agents that contain both fluorescent and radioactive labels. Such agent design would
broaden the imaging utility of a single agent for preoperative and intraoperative purposes
(Figure 1a), while affording tools to overcome limitations of the individual modalities. For
instance, fluorescence imaging is inherently semi-quantitative due to the physics of the low
energy photons (~1.5 eV) involved, and thus, quantitative cross-validation of fluorescence
readouts is possible at the whole body scale via PET or SPECT imaging, and at the organ
scale by measuring drug distribution by gamma counting [13]. Houston and coworkers in-
troduced the first dual-modal NIR agent using an αvβ3-targeted peptide labeled with 111In
via the chelating agent diethylenetriaminepentaacetic acid (DTPA) for gamma scintigraphy
and the cyanine dye, IR-800CW, for optical imaging of melanoma in mice [14]. A major
finding from their work was the ability to obtain congruent nuclear and optical signals
following administration of a trace dose. This feasibility study showed for the first time
that NIR and nuclear imaging can synergize and provided a foundation for developments
focused on (i) chemical design strategies to simplify bioconjugation and (ii) integration of a
broad range of radionuclides and dyes [15–17].

Several design strategies have been used to develop dual-labeled agents for nu-
clear/NIR imaging (detailed in Section 2). Generally, imaging scientists have combined clin-
ically used radiometals (i.e., 68Ga, 111In, 89Zr) and their associated chelators, such as DTPA,
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-
1,4,7-triacetic acid (NOTA), and desferrioxamine (DFO), with commercially available NIR
dyes, such as IR-800CW, through a variety of linker technologies to biomolecules. Notably,
antibody- and peptide-based approaches have pioneered the recent translation of this
multimodal imaging approach and demonstrated safety and feasibility [18]. For example,
sequential labeling using a validated and readily available monoclonal antibody (mAb) was
implemented in the clinic with 111In-DOTA-girentuximab-IR-800CW for clear cell renal cell
carcinoma (ccRCC, Figure 1b) resection [19]. Conversely, the use of low molecular weight
agents (i.e., small molecules and peptides) typically requires more complex chemical linker
strategies to preserve binding and pharmacokinetic properties. To address this challenge,
68Ga-NOTA-BBN-IR-800CW, which targets the gastrin-releasing peptide receptor (GRPR)
using a 14 amino acid sequence peptide, was derived from a PET radiotracer and applied
for glioblastoma (Figure 1c) [20]. Both of these studies illustrate the potential utility of the
dual-modal approach to streamline the clinical workflow (pre- to intraoperative imaging)
and mediate superior outcomes (increase surgical sensitivity).

The clinical utility of tumor-specific FGS is increasingly evident and has benefited
from advances in NIR dye development. OTL38 (pafolacianine, CYTALUXTM) is a NIR-
emitting folate-receptor targeting agent that recently gained FDA approval after demon-
strating increased tumor detection in 27% of patients with ovarian cancer in a phase 3 trial
(NCT03180307). A critical step in the translation of this agent was the implementation
of the customized NIR dye S0456, which retained the brightness of commercially avail-
able cyanine dyes and avoided the prominent formation of side-products [21]. Several
recent reviews have comprehensively described developments in chelator chemistry, and
the preclinical and clinical development of dual-modal agents [18,22–29]. Here, we high-
light recent advances in the development of dual-modal imaging agents bearing NIR and



Cancers 2022, 14, 1619 3 of 19

short-wavelength infrared (SWIR)/NIR-II (absorbance maxima > 700 nm) fluorophores.
Furthermore, we focus on the fluorophore component due to extensive recent progress in
this area and the potential for these agents to drive future developments. We hope that
presenting these studies stimulates efforts to develop the next-generation of dual-modal
PET/SPECT-NIR imaging agents with superior performance for clinical use.
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Figure 1. (a) General schematic of dual-modal imaging. (b) SPECT-CT and fluorescence imaging of
ccRCC using 111In-DOTA-girentuximab-IR-800CW (girentuximab mAb targets carbonic anhydrase
IX, CA-IX) [19]. (c) CT, PET-CT, and FGS using 68Ga-NOTA-BBN-IR-800CW (BBN targets GRPR) [20].
Images used according to permissions from respective journals.

2. Design of Dual-Modal Imaging Probes

From a topological perspective, targeted bifunctional probes may be divided into
four broad categories (Figure 2). For class I, the fluorophore acts as the bifunctional com-
ponent connecting the targeting ligand and radionuclide. In class II, a chelator or metal-
binding ligand connects the other two functionalities. In class III, the targeting ligand is the
linking element. Lastly, class IV probes are connected by a trifunctional linker. To prepare
these multi-component agents, a variety of biorthogonal reactions are used in combination
with conventional amide-bond forming reactions. These methods have been reviewed
extensively elsewhere [30–32]. In this section, we include recent examples of dual-modal
probe construction.
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Figure 2. Classification of targeted-bifunctional (chelator/radionuclide and fluorophore) probes
into four generic classes based on connectivity logic: class I—bifunctional fluorophores,
class II—bifunctional chelators, class III—bifunctional ligands, and class IV—trifunctional linker
connecting chelators, fluorophores, and targeting ligands.

Class I strategies require a bifunctional fluorescent probe. One such example is the
bifunctional cyanine fluorophore, which uses clickable handles to attach a cRGD (cyclic
arginine-glycine-aspartic acid)-targeting peptide and 18F as the PET-emitting isotope via
a one-pot synthetic method (Figure 2) [33]. The 18F–19F radiolabeling is performed on a
zwitterionic organotrifluoroborate using isotope exchange (IEX) under acidic conditions.
The labeling reaction results in moderate radiochemical yields (~20–25%) following pu-
rification using a C18 cartridge [34]. Tumor-to-muscle ratios of 3 using both nuclear- and
fluorescence-based imaging in mice bearing glioma xenografts indicated the suitability
of the NIR scaffold for dual-modal probe development. While not involving a NIR flu-
orophore, work by Ting and coworkers developed a related prostate-specific membrane
antigen (PSMA) inhibitor, the ACUPA-Cy3-BF3 probe, which is currently being investigated
in clinical studies for the treatment of prostate cancer [35–37].

Just as the fluorophore can be bifunctional, so too can the chelator element in class II
strategies (Figure 2). A notable approach in this class was reported by our group, which
was enabled by developing a DOTA-based analog (referred to as a multimodality chelator,
MMC) with a customized pendant arm for facile bioconjugation. Our chemical design strat-
egy maximizes the distance between the dye and targeting ligand (i.e., reduces steric interac-
tions between these components) while maintaining the chemical footprint of low molecular
weight radiotracers in the clinic. We utilized copper-free click chemistry to attach IR-800CW
to the MMC-conjugated somatostatin analog MMC-TOC (TOC = Tyr3-octreotide) [38]. Ra-
diolabeling with 64Cu allowed whole-body PET imaging in mice bearing somatostatin
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receptor subtype 2 (SSTR2) positive AR42J tumors. Ex vivo analysis of tumors and normal
organs using gamma counting and optical imaging illustrated consistent signal localization.
In subsequent studies, we modified a pendant arm of the MMC to enable stable chelation
of 68Ga and 67Ga, which permitted PET imaging and delayed (up to 48 h) biodistribution
analysis, respectively [39,40].

The majority of dual-modal conjugates fall into class III, where the targeting agent
serves as the bifunctional group (Figure 2). These agents include dual-labeled mAbs
such as 111In-DOTA-girentuximab-IR-800CW, as described above in Figure 1b. Using a
similar topology, a pre-targeting approach was reported for detecting prostate cancer by
appending DyLight 800 and DOTA through a dual-labeled diHSG (histamine–succinyl–
glycine) peptide (RDC018) [41]. Mice bearing trophoblast cell surface antigen 2 (TROP-
2)-expressing PC-3 prostate tumors were injected with anti-TROP-2 x anti-HSG bispecific
antibody (TF12), followed by a second injection with the 111In-labeled DOTA-DyLight
800 conjugate. Pre-targeting led to selective uptake of RDC018 in prostate tumors for
SPECT and optical imaging, with high tumor-to-background ratios (TBRs) as early as 2 h
post-injection. The conjugate showed good tumor uptake in both soft tissue and bone
metastases, but did exhibit high kidney accumulation, a typical issue with small molecule
and peptide conjugates.

Lastly, class IV utilizes careful linker design to attach the three components (Figure 2).
As described above (Figure 1c), a clinically applied class IV dual-conjugate was devel-
oped by attaching NOTA (for 68Ga labeling) and bombesin via a bifunctional linker to
IR-800CW [20]. This study illustrated the benefits of a dual-modal agent in a clinical set-
ting. Importantly, this method allowed for complete resection of these tumors from six of
the eight patients, with the major limitation being detection of deep-seated tumors. In a
separate preclinical study, ZW800-1 was linked to the chelator Dfo for 89Zr radiolabeling
and the targeting agent cRGD (αVβ3 integrin) [42]. Sibinga Mulder and coworkers showed
that the conjugate could detect tumors through PET imaging. The conjugate also showed
high signal-to-background ratios (SBRs) by optical imaging at early time points due to the
rapid renal clearance of the conjugate.

In Tables 1 and 2, we provide a systematic overview of all studies reported between
2011 and 2022 of PET/SPECT-NIR fluorophore (absorbance maxima > 700 nm) dual-
modal imaging agents. One clear trend is that mAb-targeting agents generally use class
III “double-labeling” strategies. One emerging area is the development of homogenous
protein labeling methods, which has been investigated for both pretargeting and direct
dual labeling [43–45]. Going forward, there is significant potential to apply class I, II,
and IV strategies to antibody and protein targeting agents, which may also benefit from
homogenous bioconjugation approaches.

Table 1. Fluorophore–radionuclide small-molecule conjugates reported in 2011–2022.

Class Dye Radionuclide Chelator Targeting Group Receptor Reference

IV IR-800CW 68Ga NOTA Bombesin GRPR [20]
IV ICG Analog 111In DTPA cRGD αVβ3 [46]
III DyLight 800 111In DOTA diHSG peptide TF12 [41]

N/A Sulfo-Cyanine7 and IR-800CW 68Ga FSC N/A N/A [47]
N/A ICG 68Ga NOTA N/A N/A [48]
N/A MHI-148 64Cu DOTA N/A N/A [49]
N/A MHI-148 68Ga DOTA N/A N/A [50,51]
N/A MHI-148 99mTc HYNIC N/A N/A [52]
N/A MHI-148 64Cu DOTA N/A N/A [53]

III ZW800-1 89Zr Dfo cRGD αVβ3 [42]
II IR-800CW 64Cu MMC Octreotide Somatostatin [38]
II IR-800CW 67/68Ga MMC Octreotide Somatostatin [39,40]
IV IR-800CW and DyLight800 68Ga HBED-CC Glu-urea-Lys(Ahx) PSMA [54]
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Table 1. Cont.

Class Dye Radionuclide Chelator Targeting Group Receptor Reference

III SWIR dye 68Ga DOTA cRGD αVβ3 [55]
II Sulfo-Cyanine7 68Ga FSC cRGD, MG11 αVβ3, CCK2R [56]
IV IR-800CW 111In, 99mTc DOTA Glu-urea-Lys analogs PSMA [57]

N/A = not applicable.

Table 2. Fluorophore-radionuclide antibody conjugates reported in 2011–2022.

Class Dye Radionuclide Chelator Targeting Group Receptor Reference

IV

ZW800-1(DTPA-
Lys(ZW800)-Cys-

NHS)structure not
revealed

111In DTPA ATN-658 uPAR [58,59]

III or IV IR-800CW 89Zr Dfo 5B1 CA19.9 [43]
III IR-800CW 111In DOTA Farletuzumab FRα [60]
III IR-800CW 64Cu DOTA MAB9601 EpCam [61]
III IR-800CW 111In DTPA BIWA CD44v6 [62]
III IR-800CW 89Zr Dfo TRC105 CD105 [63]
III IR-800CW 64Cu NOTA TRC105 CD105 [64,65]
III IR-800CW 89Zr Dfo TRC105, Cetuximab CD105, EGFR [66]
III IR-800CW 89Zr Dfo Pertuzumab HER2 [67]
III IR-800CW 89Zr Dfo Cetuximab EGFR [68]
III ZW800-1 89Zr Dfo YY146 CD146 [69]
III IR-800CW 64Cu NOTA Bevacizumab VEGF [70]
III IR-800CW 111In DTPA, DOTA Girentuximab CA-IX [19,71,72]
III IR-800CW 111In DTPA Labetuzumab CEA [73]
III IR-800CW 111In DTPA D2B PSMA [74]
III IR-800CW 111In DTPA MN-14 CEA [75]

III IR-800CW 111In DTPA
MN-14,

Girentuximab,
Cetuximab

CEACAM5,
CA-IX, EGFR [76]

III IR-800CW 64Cu SarAr Analog huA33 A33 [44]
III IR-800CW 64Cu DOTA 15D3 Pgp [77]
III IR-800CW 64Cu NOTA CD105 TGF-β [78]
III XB1034 68Ga NETA Cetuximab EGFR [79]
IV IR-800CW 89Zr Dfo Trastuzumab HER2 [45]
III IR-800CW 124I N/A A2cDb PSCA [80]
I Aza-BODIPY 111In DOTA Trastuzumab HER2 [81]

3. Recent Developments in NIR and SWIR Fluorophores

Of the two key components of these dual-modal agents, the fluorophore and radionu-
clide, the latter has been reviewed extensively, including in this volume [82–84]. Conse-
quently, here we focus on the fluorophore component. Fluorescence-based methods enable
many cellular and in vitro biomedical experiments. In the last two decades, optical methods
have been employed for in vivo applications, including in various preclinical contexts and
FGS applications. In vivo imaging puts demands on these fluorescent probes that in vitro
cellular imaging does not. There are significant advantages to extending the excitation and
emission wavelengths into the NIR region (700–950 nm) and short-wavelength IR region
(NIR-II/SWIR, 950–1700 nm) [85,86]. These advantages include enhanced penetration
due to reduced absorption and scattering by tissues and blood, and reduced background
signal due to lower tissue autofluorescence [87,88]. Additionally, these wavelengths reduce
phototoxicity, which allows higher irradiation intensities to be used [89–91]. However, the
chemistry of NIR probes is a significant challenge. In particular, the requirement of an
extended π-system introduces a highly hydrophobic element into the chemical structure.
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This component must be accommodated through the addition of polar functional groups
to improve water solubility and reduce probe aggregation.

3.1. NIR Fluorophores

Heptamethine indocyanines are privileged scaffolds for optical imaging in the NIR
region [92,93]. These molecules exhibit absorbance/emission maxima of around 800 nm,
exceptionally high extinction coefficients (ε ≈ 150,000–300,000 M−1 cm−1), and useful
quantum yields (ΦF). The potential of these probes was first realized with indocyanine
green (ICG), which was developed by Kodak Research Laboratories (Figure 3a). ICG was
FDA approved in 1959, and was originally used to test hepatic function [94]. Due to its
regulatory approval, ICG has been used in a variety of settings. In particular, the ability of
ICG to target a multitude of tumor types through passive targeting mechanisms, including
various liver cancers, has led to its broad use by groups around the world [95–99]. While
useful for certain imaging applications, ICG is not suitable for active targeting. A critical
advance in this area was the development of the “Cy-dyes” by Waggoneer and coworkers,
which involved sulfonating the parent indocyanine indolenine rings (GE-Cy7) [100,101].
Complementing these efforts, Strekowsk and coworkers discovered that readily accessible
4’-chloro ring-modified cyanines can be converted to C4’-phenol-substituted cyanines
(Figure 3a) [102]. Subsequent efforts using these modification concepts led to the broadly
used commercial probes IR-800CW and DyLight 800. In particular, IR-800CW has been
employed in numerous clinical trials [103–105]. The folate-receptor targeting OTL38, which
was recently FDA approved for identifying ovarian cancer lesions, also uses this ring
modification strategy [5,21,106–108].

Several studies have shown that persulfonated anionic probes reduce the in vivo
targeting of the parent agent [109–111]. Moreover, it has become clear that highly charged
but overall net neutral (or nearly neutral) probes offer significant benefits [109,112]. The
zwitterionic fluorophore ZW800-1 was developed by the combined efforts of Choi and
Henary, and Frangioni and coworkers [113,114]. While their efforts improved the properties
of peptide conjugates, these probes were not optimized for mAb labeling. Through iterative
efforts, our group examined a series of C4′-O-alkyl derivatives [115–118]. These efforts led
to FNIR-Tag, a sulfonated, pegylated probe that contains a quaternary amine at the C4’
position (Figure 3a). FNIR-Tag exhibits excellent photophysical properties in a range of
contexts, including on proteins, on fluorescence resonance energy transfer (FRET)-pairs, and
on virus-like particles (VLPs) [119,120]. Additionally, efforts by Smith and coworkers led to
the discovery of s775z (Figure 3a), a zwitterionic, pegylated probe, which was developed
by introducing 2,5-disubstituted aryl derivatives at the C4’ position. This probe decreases
fluorophore aggregation and improves the in vivo properties of mAb conjugates [121].

In addition to progress with actively targeted probes, there have been developments
in probes with intrinsic tumor targeting properties. The C4’-chloro-containing cyanine
named MHI-148 (Figure 3a) specifically localizes and persists for days in several preclin-
ical solid tumor models (i.e., kidney, lung, brain, breast, and prostate) [122–124]. This
targeting property has been attributed to organic anion transporting polypeptide (OATP)
transporters [125–128]. A more hydrophilic version, with a quaternary amine in the cy-
clohexyl core, was reported by Burgess and coworkers (QuatCy) [129]. This compound
maintains efficient tumor targeting in a mouse model of pancreatic cancer (NIT-91). It was
also shown to covalently interact with serum proteins—a potential mechanism for other
tumor-targeting C4’-chloro-substituted cyanines.
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3.2. SWIR/NIR-II Fluorophores

Advances in instrumentation, particularly the sensitivity of InGaAs detectors, have
made it possible to image in the SWIR region [130]. These wavelengths have significant
potential to provide improved resolution for in vivo imaging. While efforts have been
applied to generate quantum dots, carbon nanotubes, earth-doped nanoparticles, and
other nanomaterial/polymer materials, active-targeting approaches with these agents
come with significant challenges [131–134]. Early efforts to create organic fluorophores in
this wavelength range mainly focused on exploiting benzobis(thiadiazole) (BBT, donor–
acceptor–donor (DAD)) moieties [135]. However, the early versions of these probes were
prone to aggregation and fluorescence quenching. To overcome this challenge, the Dai
group introduced an alkoxy shielding unit and carefully optimized the chromophore,
which significantly improved the properties of these probes in aqueous solutions (IR-BGP6,
Figure 3b) [136,137].

Cyanines have significant potential for use in SWIR imaging. Studies by Bruns and
coworkers revealed that ICG, when excited at its λmax, exhibits an SWIR signal at a wave-
length of 1150 or 1300 nm [138]. This approach has been validated by several groups,
and even applied in clinical settings. Building on these observations, various studies
have sought to capitalize on the potential of cyanine derivatives in this setting. Lan and
coworkers employed a thiopyrylium moiety on the monomethine to extend the photophys-
ical properties into the SWIR region, which was targeted with the FDA-approved mAb
cetuximab. Other promising efforts in this area include studies that employ flavylium
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heterocycles on the heptamethine cyanine scaffold. These probes have been employed for
various untargeted applications and have the potential to be extended to targeted imag-
ing [139–141]. We recently demonstrated that dichloro-substituted nonamethine cyanine
derivatives could be modified with either catechols or through direct aryl fusion to generate
FNIR-866 and FNIR-1072, respectively (Figure 3b). These probes can be used as mAb-
targeted agents for multicolor surgical applications [142]. Overall, the rapid progress in the
field of long-wavelength probe chemistry is opening up a range of exciting possibilities.

4. Future Directions of Dual-Modal Imaging

Dual-modal imaging is an emerging field that can bridge gaps in nuclear medicine
and surgical oncology. There are a range of exciting unexplored directions in the design
and application of these dual-modal agents. Below we focus on potential research utilizing
novel fluorophore elements and methods for developing new dual-modal probes, and the
applications of dual-modal imaging agents to therapeutic development.

4.1. Probe Development

In addition to clinical applications, dual labeling also plays an important role in
characterizing the performance of FGS agents in the preclinical setting, both in vitro and
in vivo, as shown in the characterization of our dual-labeled somatostatin analog [38]. For
instance, in parallel with conventional fluorescence-based assays, such as flow cytometry
and microscopy, dual labeling with radiometals (64Cu, 67Ga, 68Ga) allowed quantitative
assessments of cell binding with traditional radioligand studies [38–40]. These experiments
included a clinically validated radiotracer (68Ga-DOTA-TOC) as a performance benchmark
and provided valuable cross-validation of fluorescence findings. Furthermore, the quan-
titative comparison of 68Ga-MMC(IR800)-TOC to 68Ga-DOTA-TOC in vivo strengthened
our understanding of off-target uptake (i.e., blood half-life) and provides a rationale for
optimization with some of the dyes discussed herein. Conversely, fluorescence imaging of
a dual-labeled tumor targeting agent has been used to identify the sub-cellular distribu-
tions of radiopharmaceuticals [143]. Dual-modal imaging can also be used in translational
studies by ex vivo staining of human tumor tissues and subsequent fluorescent imaging
and autoradiography of the tissue section, as described by Rijpkema and coworkers [144].

4.2. Activatable Bifunctional Probes

Most targeted bifunctional probes utilize an “always-on” fluorophore that emits
fluorescence irrespective of binding to the target protein. These fluorophores have the
disadvantage of needing long in vivo clearance times before attaining good SBRs, a problem
that is compounded for large molecules such as antibody conjugates [145]. This issue
could be overcome by using activatable or “turn-on” fluorophores, which stay in their
respective off states, or non-fluorescent forms, until activated by the desired enzymes or
triggers [146,147]. Such activation methods can accelerate the ability to attain meaningful
image contrast [148].

One method of probe activation uses a FRET-quenched bifunctional probe targeting
MMP-14, an enzyme overexpressed in glioblastoma (Figure 4a) [149]. The probe design
consists of an MMP-14 substrate peptide and an MMP-14 binding peptide connected
through a linker. The peptides were attached to the quencher QC-1 (LiCor Bioscience®,
Lincoln, NE, USA), the fluorophore IR-800CW, and the chelator NOTA for PET labeling.
Upon enzymatic cleavage of the quencher from IR-800CW, which is achieved in the protease-
rich tumor milieu, fluorescence turn-on is observed. In vivo, the authors observed a strong
correlation between the PET and NIR signal. The fluorescence signal from the probe
exhibited a high TBR of 8–11 4 h post-injection that was in accordance with PET imaging
using 68Ga and 64Cu.
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We recently reported a non-FRET-based turn-on strategy in the NIR range. Fluorogenic
heptamethine cyanine fluorophores were generated by forming norcyanine carbamates
(CyBam) [150,151]. This strategy avoids the chemical complexity of a quencher group.
We have shown that these probes can be conjugated to antibodies and applied to the
characterization of antibody-drug conjugate linker chemistry in vivo (Figure 4b). This
approach may allow conventional mAbs to achieve high-contrast optical signals shortly
after systemic administration, though further optimization of the probe component is
required to enable dual-modal imaging.

4.3. Therapeutic Approaches

In addition to implementing new fluorophore design strategies into dual-modal agents,
therapeutic translation is another possibility. The transformation of molecular-targeted
tumor imaging strategies into therapeutic modalities is a long-standing goal. One method
that can be used to achieve this goal is phototherapy. Phototherapy consists of photo-
dynamic and photothermal approaches and seeks to eradicate tumors in an irradiated
region [152,153]. The photosensitizer Photofrin and 5-aminolevulinic acid (5-ALA), a
biosynthetic precursor of protoporphyrin IX, are two phototherapeutic agents approved by
the FDA for melanoma and glioblastoma multiforme, respectively. Several other probes
based on cyanine scaffolds and other fluorophores are in preclinical and clinical trials for
phototherapy [152,154]. Among these photosensitizers, IR700-DX, a silicon-phthalocyanine-
based dye, has shown promising therapeutic properties upon conjugation to antibod-
ies [155–158] or to PSMA-targeting ligands [159,160] and has recently advanced in a range
of clinical studies [161,162]. For dual-modal labeling, Rijpkema and coworkers developed
a multi-modal PSMA-targeting agent by labeling an anti-PSMA mAb (D2B) with IR700-DX
and 111In (Figure 4c) [155]. They performed preoperative imaging studies with SPECT/CT
and NIR imaging and showed clear tumor visualization with both modalities in the subcu-
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taneous PSMA+ xenografts, indicating applicability of the conjugate for surgical guidance.
In addition, photodynamic therapy of tumor-bearing mice after injection of the agent and
subsequent treatment with 100 J/cm2 of NIR light resulted in a significant delay in tumor
growth and longer survival rates with median survival at 73 and 16 days for the treated
group and control group, respectively [159,160]. These studies demonstrate the potential of
IR700-DX for applications in whole-body tumor delineation, FGS-based tumor resection,
and tumor ablation through phototherapy.

5. Conclusions

Here we provided an overview of the chemical design features of dual-modal PET/
SPECT-NIR agents, with specific focus on the fluorophore components. Key aspects of
these approaches include the design of the conjugation strategy (i.e., class I–IV) and se-
lection of the individual components, particularly dyes, which can affect targeting and
pharmacokinetic properties, and thus, image contrast. The relative benefits of each of these
strategies and component selection remain to be fully assessed and likely will depend on
the context in which they are applied. Given the existing role of nuclear imaging in pre-
operative assessment and surgical planning ahead of FGS procedures, novel fluorophores
could be used in innovative pairings with various imaging radionuclides. Furthermore, it
would be of great utility to use the same agent for (i) preoperative patient selection and
surgical planning with PET or SPECT and (ii) intraoperative FGS, thereby reducing drug
development costs while affording signal congruence (i.e., arising from the same origin)
regardless of detection modality. Such capabilities would address the lack of biomarker
(i.e., folate receptor) specificity associated with “standard” metabolic imaging findings
from 18F-fluorodeoxyglucose (FDG)–PET and increase the accuracy of patient selection
and significance of preoperative planning. Continued multidisciplinary efforts are thus
essential for defining the roles of these emerging chemical strategies and broadening the
impact of intraoperative imaging in cancer.

Author Contributions: Conceptualization, S.M.U., S.C.M., S.H.V., M.J.S. and A.A.; writing—original
draft preparation, S.M.U., S.C.M., S.H.V., S.A., S.C.G., N.I., H.S.T.C., M.J.S. and A.A.; writing—review
and editing, S.M.U., S.C.M., S.H.V., M.J.S. and A.A.; supervision, M.J.S. and A.A.; funding acquisition,
M.J.S. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Cancer Prevention and Research Institute of Texas
(RP180812); the John S. Dunn Research Scholar Fund; and the Intramural Research Program of the
National Institutes of Health, National Cancer Institute (NCI), Center for Cancer Research (BC011506
and BC011564).

Conflicts of Interest: The authors declare the following competing financial interest(s): a patent
describing these probes has been submitted.

Abbreviations

AMBF3 ammonium methyltrifluoroborate
CT computerized tomography
Dfo desferrioxamine B
DOTA 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid
FSC Fusarinine C
MMC multimodality chelator
HYNIC 6-hydrazinonicotinic acid
DTPA diethylenetriaminepentaacetic acid
EPR enhanced permeability and retention
FDG 2-deoxy-2-fluoro-D-glucose
GBM glioblastoma multiforme
HBED-CC N,N′-bis-[2-hydroxy-5-(carboxyethyl)benzyl]- ethylenediamine-N,N′-diacetic acid
MRI magnetic resonance imaging
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NIR near-infrared
NOTA 1,4,7-triazacyclononane-1,4,7-triacetic acid
QC-1 fluorophore quencher
PDT photodynamic therapy
PEG polyethylene glycol
PET positron emission tomography
RGD Arg-Gly-Asp
SPECT single-photon computerized tomography
ACUPA (N-[[[(1S)-5-Amino-1-carboxypentyl]amino]carbonyl]-L-glutamic acid
TOC Tyr3-octreotide
IEX isotope exchange
CCK2R cholecystokinin-2 receptor
αVβ3 alpha V and integrin beta 3
MG11 minigastrin analogue
BBN bombesin
HSG histamine–succinyl–glycine
PSMA prostate specific membrane antigen
5-Ala 5-aminolevulinic acid
FRET fluorescence resonance energy transfer
SarAr hexaazamacrobicyclic cage ligand 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo

[6.6.6]eicosane-1,8-diamine
NETA 2-({1-[4,7-bis(carboxymethyl)-1,4,7-triazanonan-1-yl]-7-(4-nitrophenyl)heptan-2-yl}

(carboxy-methyl)amino)acetic acid
SSTR2 somatostatin receptor subtype 2
TF-12 anti-TROP-2 x anti-HSG bispecific antibody
EGFR epidermal growth factor receptor
MMP-14 matrix metalloproteinases-14
GRPR gastrin-releasing peptide receptor
FGS fluorescence-guided surgery
SWIR short-wavelength infrared
ccRCC clear cell renal cell carcinoma
VLP virus-like particles
OATP organic anion transporting polypeptide
DAD donor-acceptor-donor
BBT benzobis(thiadiazole)
CA-IX carbonic anhydrase IX
cRDG cyclic arginine-glycine-aspartic acid
diHSG histamine–succinyl–glycine
uPAR urokinase plasminogen activator surface receptor
CA19.9 pancreatic cancer biomarker
EpCAM epithelial cell adhesion molecule
HER2 human epidermal growth factor 2
EGFR epidermal growth factor receptor
mAb monoclonal antibody
CD146 melanoma cell adhesion molecule
VEGF vascular endothelial growth factor
CEA carcinoembryonic antigen
CEACAM5 carcinoembryonic antigen cell adhesion molecule 5
Pgp p-glycoprotein
TGF-β transforming growth factor beta
A2cDb A2 cys-diabody
PSCA prostate stem cell antigen
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