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Abstract: Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignancies
in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority.
Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant
appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases of
serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and identified
multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-oncogene, non-
receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) binding pathway
consistently influenced progression-free survival and overall survival, and immunohistochemical
staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP) in serous BOT
and ovarian carcinoma samples. Epithelial–mesenchymal transition (EMT) is important during
tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor 2, SLUG) gene
showing significantly high performance by immunohistochemistry. During serous ovarian tumor
formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nuclei, bind to
AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and act on DNA
to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally, SNAI2 in the
tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although it has not
been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC subtype, the
key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a crucial role in
the pathogenetic mechanism of both tumor types, implying gradual evolutionary tendencies from
serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on these revealed
targets together with precise detection to improve therapeutic effects and patient survival rates.

Keywords: gene ontology; epithelial ovarian cancers; borderline ovarian tumors; differentially
expressed genes; aryl hydrocarbon receptor; epithelial–mesenchymal transition; integrative analysis
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1. Introduction

Ovarian tumors occupy a certain place among gynecological diseases and most cases
are benign in clinical and pathological features such as follicular cysts, corpus luteum cysts,
serous or mucinous cystadenomas, endometriomas, and teratomas [1,2]. Comparatively,
ovarian cancer is the most lethal gynecological malignancy worldwide although the pro-
portion is relatively low [3]. Epithelial ovarian cancers (EOCs) are the leading cause of
death among patients with gynecologic cancers accounting for the vast majority of all
ovarian cancers [4,5]; furthermore, serous carcinoma (SC) accounts for the most common of
EOCs, with a poor prognosis and a five-year survival rate of only 25% with metastases [6,7].
SC is less likely to be found in the early stages (International Federation of Gynecology
and Obstetrics (FIGO) stages I and II), which have higher survival rates because they are
easier to treat, whereas patients at advanced stages (FIGO stages III and IV) have poor
prognosis and high recurrence rates even after complete debulking surgery combined with
chemotherapy (carboplatin and paclitaxel) due to resistance to chemotherapy [6,8,9].

Borderline ovarian tumors (BOTs), a specific subtype of EOCs, consist of disparate
groups of neoplasms based on histopathological features, molecular characteristics, and
clinical behaviors and BOTs can generally be classified into serous, mucinous, and other
subtypes according to clinical and histopathological features [10,11]. Besides, BOTs account
for approximately 10–15% of EOCs and usually occur in younger women, resulting in
an excellent prognosis [12]. Compared with ovarian cancer patients, who almost always
require chemotherapy after a debulking operation, patients with BOTs usually have better
prognoses after adequate surgery with an extremely low probability of recurrence or metas-
tasis [13,14]. Serous BOTs, comprising approximately 65% of BOTs, occur mostly in North
America, the Middle East, and most of Europe [15]. To date, surgery is still the ideal method
to treat BOTs, while adjuvant chemotherapy and radiotherapy are not usually considered
as standard therapies [14,16]. Recent studies have inferred several assumptions, including
the incessant ovulation, gonadotropin, hormonal, and inflammation hypotheses, to explain
the tumorigenesis of serous BOTs [17–19]. Serous BOTs are characterized by mutations
in the KRAS, BRAF, and ERBB2 genes and overexpression of the p53 and Claudin-1 genes;
furthermore, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) pathway, PI3K/AKT/mTOR pathway, Hedgehog pathway, and angiogenesis
pathway are frequently activated in serous BOTs [13,14,20–25].

As a complex disease, several genetic and environmental factors contribute to SC
development with a complicated carcinogenesis pathway, and the carcinogenesis of SC
evolves through several aberrant functions, which fluctuate with disease progression based
on findings through the widely utilized FIGO system [13,26–32]. It is widely known that
most serous ovarian carcinomas are associated with TP53 mutations [30,33–36]; about
half of them have undergone abnormal DNA repair processes through homologous re-
combination due to epigenetic or genetic alterations of BRCA1, BRCA2, or other DNA
repair molecules [37,38]; and some show gene mutations, such as in BRAF and KRAS [20].
In addition to debulking surgery and subsequent adjuvant chemotherapy, targeted ther-
apy and systemic immunotherapy can also be utilized to enhance the therapeutic effects.
Poly-adenosine diphosphate (ADP) ribose polymerase inhibitors (PARPis), the first ap-
proved cancer drugs, were widely used targeted therapies for BRCA1/2-mutated breast
and ovarian cancers, and they specifically target DNA damage and repair responses, es-
pecially for patients with homologous recombination deficiencies, resulting in increased
survival [39–41]. However, resistance to PARPi has recently become an emerging issue
and breast-related cancer antigens (BRCA) and homologous recombination deficiency
(HRD) status can be considered novel predictive biomarkers of response [42–45]. Therefore,
identifying potential crucial biomarkers for monitoring drug resistance and formulating
new drug combination strategies are efficacious methods to resolve PARPi resistance along
with precision medicine [46,47].

Furthermore, it is well known that serous ovarian carcinomas have a poor clinical
prognosis because they are usually diagnosed too late, while advanced stages usually result
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in frequent emergence of chemoresistance [4,5,8,48,49]. Recent growing evidence suggests
that epithelial–mesenchymal transition (EMT) may contribute to tumor invasion and
metastasis and promote chemotherapeutic resistance, especially to cisplatin, by converting
the motionless epithelial cells into mobile mesenchymal cells, escaping cell adhesion, and
altering the cellular extracellular matrix [50–52]. EMT is a reversible process in which
many crucial components, such as E-cadherin, EpCAM, vimentin, fibronectin, neural
cadherin, matrix metalloproteinases, various integrins, and different cytokeratins, are
regulated by a complex functional network of transcription factors, including the zinc-
finger E-box-binding homeobox factors (Zeb1 and Zeb2), Snail (SNAI1), Slug (SNAI2),
and the basic helix–loop–helix factors (Twist1 and Twist2) [53–55]. Loss of breast cancer
type 1 susceptibility protein (BRCA1), a tumor suppressor that plays a role in mending
double-stranded DNA breaks, is also associated with EMT and tumor initiation [50,56].
The expression of EMT signaling pathways has been correlated with poor prognosis in
various epithelial cancers, including breast, pancreas, prostate, and ovarian cancer, and the
role of EMT in ovarian cancer progression and therapy resistance is highlighted in current
studies [57]; however, the role of EMT plasticity in serous ovarian tumors has not been
comprehensively investigated.

As mentioned above, although both are named the “serous” subtype in terms of
classification, serous BOTs and serous ovarian carcinomas still have decisive differences
in genetic mechanisms, pathological characteristics, and clinical manifestations [13,32].
Various functions can be investigated using differentially expressed genes (DEGs) detected
by microarrays. In contrast to DEGs, we established a gene set regularity (GSR) model,
which reconstructed the functionomes, that is, the GSR indices of the global functions,
and then investigated the dysregulated functions and dysfunctional pathways involved
in the complex disease. Constructing a functionome can provide information about the
dysregulated functionomes accompanied with dysfunctional pathways of complicated
illness and we had conducted several gene set-based analyses by integrating microarray
gene expression profiles downloaded from publicly available databases, which revealed
that comprehensive methods based on functionome defined by gene ontology (GO) are
useful for successfully conducting significant research on BOTs and ovarian carcinomas
of different stages and subtypes [58–64]. Previously, individual studies have focused on
gene set analysis of serous ovarian carcinomas and serous BOTs to uncover pathogenic
mechanisms during tumorigenesis. However, there is no integrated analysis to compare
and discover the genomic functionome of serous BOTs and serous ovarian carcinomas.
Therefore, we first utilized GO-based integrative approaches to explore expression profile
datasets of serous ovarian tumors, including serous BOTs and all stages of serous ovarian
carcinomas, to identify common and meaningful dysregulated functions and dysfunctional
pathways between these two groups. We then selected the featured DEGs by checking the
significant biomarkers related to EMT with cross comparison. In this experiment, we aimed
to excavate newly discovered pathogenetic mechanisms based on previous studies that
differ from previous theories and hoped to take advantage of these new findings applied
in medical detection with targeted therapy and effective avoidance of recurrence for better
prognosis of serous ovarian tumors and patient survival.

2. Materials and Methods
2.1. Workflow for the Integrative Analytic Model

The workflow for this study is shown in the flowchart in Figure 1, and detailed
information is explained below. First, we converted the gene expression profile of the
extracted gene elements downloaded from the Gene Expression Omnibus (GEO) database
with selection criteria for serous ovarian tumors and normal controls to ordered data
and then transformed them into 10,192 quantified GO terms according to the sequential
expression from the gene elements in each gene set. This process produced functionomes
consisting of 10,192 GSR indices, which defined the relatively comprehensive biological and
molecular functions to explore serous ovarian tumors, including serous BOTs and all stages
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of serous ovarian carcinomas. Next, we individually calculated the quantified functions
and functional regularity patterns among serous ovarian tumors and 136 normal ovarian
controls with GSR indices and established the GSR model for the functionome pattern.
Then, we investigated the whole informativeness of genomic functionomes consisting
of the GSR indices and constructed a functionome-based training model of classification
and prediction using the support vector machine (SVM), a set of supervised mathematical
commands from machine learning. The variation in the GSR indices between each serious
ovarian tumor group and normal control group revealed that the biomolecular functions
among serous ovarian tumors were significantly extensively dysregulated in contrast to the
normal control group. Finally, we conducted whole-genome integrative analysis to identify
meaningful dysfunctional pathways together with significant biomarkers of EMT involved
in the progression of serous ovarian carcinomas to determine crucial DEGs that may be
essential parts of the pathogenetic mechanisms for serous ovarian tumors by elucidating
dysregulated functionomes using microarray analysis of gene expression profiles. The
key biological functions and genes involved in the pathogenesis of serous BOTs and all
stages of serous ovarian carcinomas were determined by identifying genome-wide and
GO-defined functions and DEGs.

Figure 1. Workflow of this study. The DNA microarray gene expression profiles of 79 serous borderline tumor (BOT)
samples, 900 serous ovarian carcinoma specimens including all stages, and 136 normal ovarian controls were downloaded
from publicly available databases with gene set regularity (GSR) indices calculated by the Gene Ontology (GO) gene
set. Functionomes consisting of 10,192 GO gene sets established from the polygenic models and cumulative portion
transformations with machine learning and statistical methods were utilized to identify the functionome-based patterns to
investigate dysregulated GO terms, dysfunctional pathways, and biomarkers of epithelial–mesenchymal transition (EMT)
together with integrative analysis and to discover potential crucial differentially expressed genes (DEGs).

2.2. Microarray Dataset Collections and the Selection Criteria

The selection criteria for the microarray gene expression datasets from the GEO
database were as follows: (1) samples of normal controls and serous ovarian tumor samples,
including serous BOTs and serous ovarian carcinomas, should all originate from ovarian
tissues of homo sapiens; (2) datasets should offer sufficient information about the diagnosis
and clinical histopathological subtypes of serous ovarian tumors and normal controls
should consist of tissues or cell cultures from normal ovarian surface epithelium (NOSE)
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judged by histology; and (3) any extracted sample that did not meet the above-mentioned
conditions was discarded and any gene expression profile in a dataset was abandoned if it
contained missing data.

2.3. Computing the GSR Indices and Rebuilding the Functionomes

GSR indices were calculated and extracted from the gene expression datasets by
modifying the differential rank retention (DIRAC) algorithm [65] and used to measure
sequential changes among the gene elements in the gene set datasets of the gene expression
profiles of serous BOTs, all stages of serous ovarian carcinomas, and the most common gene
expression ordering from the normal control samples. The details and calculation process
of the GSR model were described in our previous studied papers [58–64]. The microarray-
based gene expression profiles from serous ovarian tumors and normal ovarian samples
obtained from the GEO database were produced using the corresponding gene expression
levels constructed according to the genetic elements in the GO-based functionome, which
were then con-verted into ordered data based on each expression level. By definition, the
GSR index refers to the ratio of the gene expression sequence in a gene set between the case
group and the most common gene expression sequence from the normal ovarian tissue
samples, ranging from 0 to 1, where 0 represents the most dysregulated state of a gene
set with oppositely ordered gene set regularities between the serous ovarian tumors and
the most common gene expression orderings in the normal controls, whereas 1 indicates
that the genomic regularities in a gene set remain the same between the groups of serous
ovarian tumors and the normal ovarian group. All GSR indices were measured using the R
programming language. A functionome was defined as the complete gene set of biological
functions, and we annotated and defined the human functionome using the 10,192 GO
gene set-defined functions because the definitions for comprehensive biological functions
are not yet available. Therefore, the functionomes used in this study were defined as a
combination of 10,192 GSR indices for all samples.

2.4. Statistical Analysis

The Mann–Whitney U-test was used to test the differences in serous BOTs, all stages
of serous ovarian carcinomas, and controls, and then corrected by multiple hypotheses
using the false discovery rate (Benjamini–Hochberg procedure) [66]. The p-value was set at
p < 0.05.

2.5. Classification and Prediction by Machine Learning with Set Analysis

An R package with the function “kvsm” provided by the “kernlab” (version 0.9–27;
Comprehensive R Archive Network) and kernel-based machine learning methods were
used to classify and predict patterns of GSR indices. K-fold cross-validation was used to
measure the accuracy of classification and prediction of SVM. The results of ten repetitive
predictions were used to evaluate the performance of the binary classification. The R
package “pROC” was used to calculate the area under the curve (AUC) [67]. The R package
“data.table” (version 1.12.8; Comprehensive R Archive Network) was used to display all
possible logical relationships among the dysregulated gene sets of serous ovarian tumors
clearly and sequentially in the tables.

2.6. Verification of Clinical Samples Using Immunohistochemical (IHC) Staining Method

Fifty clinical samples of serous ovarian tumors were collected (serous BOTs, n = 9;
serous ovarian carcinomas, n = 41, including 8 stage I, 2 stage II, 23 stage III, and 8 stage
IV cases). All serous ovarian tumor tissues were collected from female patients undergo-
ing surgical treatments after signing an informed consent agreement. All patients were
diagnosed and treated according to the standard therapeutic guidelines, and all tissues
of patients were kept in the biobank at Tri-Service General Hospital, National Defense
Medical Center, Taipei, Taiwan. The Institutional Review Board of the General Hospital
of the National Defense Medical Center approved the study (2-107-05-043, approved on
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October 26, 2018, and 2-108-05-091, approved on 20 May 2019). Informed consent was
obtained from all patients and control subjects. All clinical tissue samples were confirmed
via quantitative histopathological inspections and diagnosed by professional pathologists,
and IHC staining results were scored as follows: the intensity (I) was multiplied by the
percentage of positive cells (P) of all biomarkers utilized in this study (the formula is shown
as IHC score [Q] = I × P; maximum = 300) [68,69].

3. Results
3.1. Microarrays of Sample Groups for Gene Expression Profiles and Definition for Gene
Set Analysis

We performed a comprehensive bioinformatics method based on GO to explore and
analyze all relational disordered functions of serous ovarian tumors, including serous BOTs
and all stages of serous ovarian carcinomas [70]. The gene expression profiles of DNA
microarray of serous ovarian tumors and normal controls were downloaded from the GEO
repository at the National Center for Biotechnology Information (NCBI) archives. The
whole-sample data were obtained from 30 datasets containing eight heterogeneous DNA
microarray platforms without any missing data. There were 79 serous BOT samples and
900 serous ovarian carcinoma samples based on histopathological classification, including
34 stage I, 39 stage II, 696 stage III, and 131 stage IV cases among the 900 serous ovarian
carcinoma samples according to the FIGO staging system (Table 1). In addition, 136 normal
ovarian samples were collected as a control group for comparison. Table S1 provides
detailed information about all obtained samples and controls. In total, 10,192 GO-based
definitions for annotating all gene set-defined functionomes were also downloaded from
the Molecular Signatures Database (MSigDB), the version “c5.all.v7.1.symbols.gmt” [71].

Table 1. Number of samples and statistics for the groups of serous BOTs and all FIGO stages of serous ovarian carcinomas.

Groups Sample Control Total Sample Mean
(SD 1)

Control Mean
(SD 1) p-Value

Serous BOT 2 79 136 215 0.7036 (0.1772) 0.7732 (0.1646) <0.05
Serous ovarian
carcinoma stage I 34 136 170 0.7298 (0.1672) 0.7715 (0.1551) <0.05

Serous ovarian
carcinoma stage II 39 136 175 0.6976 (0.1838) 0.7713 (0.1552) <0.05

Serous ovarian
carcinoma stage III 696 136 832 0.6355 (0.1940) 0.7705 (0.1606) <0.05

Serous ovarian
carcinoma stage IV 131 136 267 0.6147 (0.1969) 0.7706 (0.1565) <0.05

1 SD, standard deviation; 2 BOT, borderline ovarian tumor.

3.2. Histograms of GSR Indices of Functionomes among Each Group with Diverse Differences

According to the divergence in ranking within a gene set between the case and control
groups characterized by GO terms, GSR indices were individually calculated by quantify-
ing alterations in the ranking of gene expression in a gene set or functionome. As displayed
in Figure 2, all averages of GSR indices for the functions of serous ovarian tumors were
computed and then rectified by the mean values of the control group. Divergences in
GSR indices between serous ovarian tumor and normal control groups were statistically
significant (p < 0.05). We found that in the serous ovarian carcinoma group, as the FIGO
stage progressed from early stages (I and II, yellow-green grids in Figure 2B,C, respectively)
to advanced stages (III and IV, yellow-green grids in Figure 2D,E, respectively), the differ-
ences from corresponding normal controls (blue grids in Figure 2) became increasingly
distinct. Furthermore, differences in mutations among serous BOTs (yellow-green grids in
Figure 2A) and normal controls seemed to be more irregular than those at the early stages
(FIGO stage I and II) but less aberrant than at the late stages (FIGO stage III and IV) of
serous ovarian carcinomas. The modulation of dysregulated functionomes was quantified
using the means of the total GSR indices of each functionome of serous ovarian tumors and
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control groups with adjustments compared to the control group. The average corrected
GSR indices for serous BOTs and serous ovarian carcinomas from stage I to IV were 0.7036,
0.7230, 0.6976, 0.6355, and 0.6147, respectively.

Figure 2. Histograms of global GSR indices of functionomes for serous BOTs, all stages of serous
ovarian carcinomas (yellow green), and control groups (blue). Different distributions of the func-
tionomes among five case sample groups and control groups are shown with statistical significance
(p < 0.05). The normal control group (blue, right) was used as the control and is the same in all
panels. Peaks in distribution were observed (yellow green), indicating dysregulated biomolecular
functionomes of serous BOTs and all stages of serous ovarian carcinomas. (A–E) Corrected GSR
indices of serous BOTs: 0.7036 (A); FIGO stage I: 0.7230 (B); FIGO stage II: 0.6976 (C); FIGO stage III:
0.6355 (D); and FIGO stage IV: 0.6147 (E).



Biomedicines 2021, 9, 866 8 of 30

3.3. Regularity Patterns of Functionomes Classified and Predicted by Supervised Machine
Learning with High Sensitivity, Specificity, and Accuracy

As displayed in Figure 2, the regularity patterns of functionomes among the five
serous ovarian tumor groups were compared with those of the normal control group, and
the functional regularity patterns of the five case groups (serous BOTs and all four stages
of serous ovarian carcinomas) showed significant divergence. We then identified, classified,
and predicted different functions of various gene sets defined by GO using SVM, a powerful
technological algorithm for supervised machine learning. The accumulated data of assessed
performances were operated with ten consecutive binary classifications and checked with
forecasting approaches by five-fold cross-validation; all the calculated results with high
sensitivity, specificity, and accuracy are listed in Table S2. The sensitivity, specificity, and
accuracy of binary classification for gene set databases among serous ovarian tumor and
control groups were approximately 95.13–100.00%, 99.85–100.00%, and 98.97–100.00%,
respectively. The AUCs for the performance of each case group ranged from 0.9771 to
1.0000. The evaluated performances by binary classifications between serous ovarian
carcinoma, FIGO stage IV, and normal control groups had the best overall effects. The
results revealed that the quantified functional regularity patterns with the GSR indices
transformed from the DNA microarray gene expression profiles could offer sufficient and
credible information to the SVM for accurate identification and classification. These results
also indicated that all the functional regularity patterns of serous ovarian tumors were
demarcated and suitable for integrated genetic and molecular classifications interpreted in
this study.

3.4. The Most Dysregulated and Common GO Terms among Serous Ovarian Tumors

We used the cluster weight index (CWI) with SVM to uncover 655, 662, 643, 828, and
841 GO terms among serous BOTs and serous ovarian carcinomas at FIGO stages I–IV,
respectively. CWI, a calculated exponent based on the p-values with statistical significance,
is defined as the weighted ratio of the single weight of each clustered GO term divided
by the total weights of the whole clusters, and it is used to measure the representative
weight and express the mutual correlation for every cluster in the GO trees. All identified
GO terms were meaningful and could represent dysregulated functionomes in each group
of serous ovarian tumors. We used the calculated CWI to quantify and judge the value
of each dysregulated GO cluster among the pathogenetic mechanisms of serous ovarian
tumors. We ranked the 50 most dysregulated GO terms judged by CWI for serous ovarian
tumors, as shown in Table 2. The first dysregulated GO terms for each group were
“regulation of immune system process (GO:0002682)” for serous BOT; “transporter activity
(GO:0005215)” for serous ovarian carcinoma, FIGO stage I; “small molecule metabolic
process (GO:0044281)” for serous ovarian carcinoma, FIGO stage II; “regulation of immune
system process (GO:0002682)” for serous ovarian carcinoma, FIGO stage III; and “small
molecule metabolic process (GO:0044281)” for serous ovarian carcinoma, FIGO stage IV.
Details on dysregulated GO terms for all disease groups of serous ovarian tumors are listed
in Table S3. We then selected and reorganized the top 25 from the 50 most dysregulated GO
terms among the five groups by comprehensively comparing weighted CWIs with their
original rankings in each group, as listed in Table S4. Next, we summarized the 25 most
common dysregulated GO terms among the five disease groups of serous ovarian tumors
with representative biological and molecular effects and reclassified them into three major
categories: cellular cycle and signaling-related effects, membrane and transport-related
effects, and metabolic, immunological, and other effects.
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Table 2. The 50 most dysregulated GO terms for serous BOT and all stages of serous ovarian carcinoma ranked by cluster weight index (CWI).

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

1 GO:0002682 Regulation of immune
system process GO:0005215 Transporter activity GO:0044281 Small molecule

metabolic process GO:0002682
Regulation of

immune system
process

GO:0044281 Small molecule
metabolic process

2 GO:0005215 Transporter activity GO:0044281 Small molecule
metabolic process GO:0005215 Transporter activity GO:0044281 Small molecule

metabolic process GO:0002682 Regulation of immune
system process

3 GO:0001775 Cell activation GO:0006811 Ion transport GO:0002682 Regulation of immune
system process GO:0005215 Transporter activity GO:0005215 Transporter activity

4 GO:0006811 Ion transport GO:0006629 Lipid metabolic
process GO:0006811 Ion transport GO:0001775 Cell activation GO:0051049 Regulation of transport

5 GO:0044281 Small molecule
metabolic process GO:0051049 Regulation of transport GO:0006629 Lipid metabolic

process GO:0051049 Regulation of
transport GO:0006811 Ion transport

6 GO:0051049 Regulation of transport GO:0007267 Cell-cell signaling GO:0051049 Regulation of transport GO:0006811 Ion transport GO:0006629 Lipid metabolic
process

7 GO:0002252 Immune effector
process GO:0046649 Lymphocyte activation GO:0001775 Cell activation GO:0016070 RNA metabolic

process GO:0001775 Cell activation

8 GO:0002520 Immune system
development GO:0040011 Locomotion GO:0007267 Cell-cell signaling GO:0045595 Regulation of cell

differentiation GO:0016070 RNA metabolic process

9 GO:0001816 Cytokine production GO:0055085 Transmembrane
transport GO:0016070 RNA metabolic process GO:0006629 Lipid metabolic

process GO:0045595 Regulation of cell
differentiation

10 GO:0045595 Regulation of cell
differentiation GO:0042592 Homeostatic process GO:0045595 Regulation of cell

differentiation GO:0040011 Locomotion GO:0007267 Cell-cell signaling

11 GO:0031399 Regulation of protein
modification process GO:0045595 Regulation of cell

differentiation GO:0046903 Secretion GO:0001816 Cytokine production GO:0022008 Neurogenesis

12 GO:0006629 Lipid metabolic
process GO:0051174

Regulation of
phosphorus metabolic

process
GO:0040011 Locomotion GO:0002252 Immune effector

process GO:0046903 Secretion

13 GO:0048585 Negative regulation of
response to stimulus GO:0016491 Oxidoreductase

activity GO:0042592 Homeostatic process GO:0022008 Neurogenesis GO:0040011 Locomotion

14 GO:0042592 Homeostatic process GO:0022008 Neurogenesis GO:0022008 Neurogenesis GO:0007267 Cell-cell signaling GO:0042592 Homeostatic process

15 GO:0022610 Biological adhesion GO:0098772 Molecular function
regulator GO:0007049 Cell cycle GO:0046903 Secretion GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

16 GO:0055085 Transmembrane
transport GO:0031399 Regulation of protein

modification process GO:0060429 Epithelium
development GO:0070727

Cellular
macromolecule

localization
GO:0002520 Immune system

development

17 GO:0051240
Positive regulation of

multicellular
organismal process

GO:0048585 Negative regulation of
response to stimulus GO:0048585 Negative regulation of

response to stimulus GO:0002520 Immune system
development GO:0051276 Chromosome

organization

18 GO:0006915 Apoptotic process GO:0050865 Regulation of cell
activation GO:0051174

Regulation of
phosphorus metabolic

process
GO:0051276 Chromosome

organization GO:0060429 Epithelium
development

19 GO:0046903 Secretion GO:0070727
Cellular

macromolecule
localization

GO:0033043 Regulation of organelle
organization GO:0042592 Homeostatic process GO:0007049 Cell cycle

20 GO:0060429 Epithelium
development GO:0010817 Regulation of hormone

levels GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

GO:0007049 Cell cycle GO:0001816 Cytokine production
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Table 2. Cont.

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

21 GO:0051174
Regulation of

phosphorus metabolic
process

GO:0023056 Positive regulation of
signaling GO:0055085 Transmembrane

transport GO:0051240
Positive regulation

of multicellular
organismal process

GO:0048585 Negative regulation of
response to stimulus

22 GO:0051276 Chromosome
organization GO:0007049 Cell cycle GO:0002520 Immune system

development GO:0019219

Regulation of
nucleobase-
containing
compound

metabolic process

GO:0002252 Immune effector
process

23 GO:0007267 Cell-cell signaling GO:0002520 Immune system
development GO:0051276 Chromosome

organization GO:0033043
Regulation of

organelle
organization

GO:0051174
Regulation of

phosphorus metabolic
process

24 GO:0007049 Cell cycle GO:0015849 Organic acid transport GO:0031399 Regulation of protein
modification process GO:0031399

Regulation of
protein modification

process
GO:0031399 Regulation of protein

modification process

25 GO:0070727
Cellular

macromolecule
localization

GO:0007017 Microtubule-based
process GO:0002252 Immune effector

process GO:0060429 Epithelium
development GO:0033043 Regulation of organelle

organization

26 GO:0016070 RNA metabolic process GO:0000003 Reproduction GO:0070727
Cellular

macromolecule
localization

GO:0048585
Negative regulation

of response to
stimulus

GO:0009719 Response to
endogenous stimulus

27 GO:0040011 Locomotion GO:0060089 Molecular transducer
activity GO:0023056 Positive regulation of

signaling GO:0046907 Intracellular
transport GO:0019637 Organophosphate

metabolic process

28 GO:0033043 Regulation of organelle
organization GO:0033043 Regulation of organelle

organization GO:0010817 Regulation of hormone
levels GO:0006915 Apoptotic process GO:0051240

Positive regulation of
multicellular

organismal process

29 GO:0046907 Intracellular transport GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

GO:0016491 Oxidoreductase
activity GO:0051174

Regulation of
phosphorus

metabolic process
GO:0070727

Cellular
macromolecule

localization

30 GO:0023056 Positive regulation of
signaling GO:0051240

Positive regulation of
multicellular

organismal process
GO:0009719 Response to

endogenous stimulus GO:0023056 Positive regulation
of signaling GO:0000003 Reproduction

31 GO:0019219

Regulation of
nucleobase-containing
compound metabolic

process

GO:0046907 Intracellular transport GO:0098772 Molecular function
regulator GO:0006259 DNA metabolic

process GO:0006915 Apoptotic process

32 GO:0006468 Protein
phosphorylation GO:0022610 Biological adhesion GO:0006915 Apoptotic process GO:0055085 Transmembrane

transport GO:0006259 DNA metabolic
process

33 GO:0051241
Negative regulation of

multicellular
organismal process

GO:0050877 Nervous system
process GO:0007010 Cytoskeleton

organization GO:0000003 Reproduction GO:0007417 Central nervous
system development

34 GO:0006259 DNA metabolic
process GO:0030054 Cell junction GO:0001816 Cytokine production GO:0044419

Interspecies
interaction between

organisms
GO:0055085 Transmembrane

transport

35 GO:0005102 Signaling receptor
binding GO:0002683

Negative regulation of
immune system

process
GO:0051240

Positive regulation of
multicellular

organismal process
GO:0007417 Central nervous

system development GO:0023056 Positive regulation of
signaling
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Table 2. Cont.

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

36 GO:0098772 Molecular function
regulator GO:0030030 Cell projection

organization GO:0019637 Organophosphate
metabolic process GO:0030030 Cell projection

organization GO:0051241
Negative regulation of

multicellular
organismal process

37 GO:0080134 Regulation of response
to stress GO:0042127 Regulation of cell

proliferation GO:0046907 Intracellular transport GO:0065003 Protein-containing
complex assembly GO:0046907 Intracellular transport

38 GO:0022008 Neurogenesis GO:0042493 Response to drug GO:0022610 Biological adhesion GO:0022610 Biological adhesion GO:0030030 Cell projection
organization

39 GO:0015849 Organic acid transport GO:0023057 Negative regulation of
signaling GO:0000003 Reproduction GO:0009607 Response to biotic

stimulus GO:0007010 Cytoskeleton
organization

40 GO:0044419 Interspecies interaction
between organisms GO:0071495 Cellular response to

endogenous stimulus GO:0030030 Cell projection
organization GO:0007010 Cytoskeleton

organization GO:0098772 Molecular function
regulator

41 GO:0023057 Negative regulation of
signaling GO:0051270 Regulation of cellular

component movement GO:0051241
Negative regulation of

multicellular
organismal process

GO:0009719
Response to
endogenous

stimulus
GO:0065003 Protein-containing

complex assembly

42 GO:0010941 Regulation of cell
death GO:0051338 Regulation of

transferase activity GO:0007417 Central nervous
system development GO:0080134 Regulation of

response to stress GO:0022610 Biological adhesion

43 GO:0042127
Regulation of cell

population
proliferation

GO:0022603
Regulation of

anatomical structure
morphogenesis

GO:0007017 Microtubule-based
process GO:0006468 Protein

phosphorylation GO:0009790 Embryo development

44 GO:0009790 Embryo development GO:0009057 Macromolecule
catabolic process GO:0014070 Response to organic

cyclic compound GO:0032101
Regulation of

response to external
stimulus

GO:0006468 Protein
phosphorylation

45 GO:0002250 Adaptive immune
response GO:0009790 Embryo development GO:0023057 Negative regulation of

signaling GO:0098772 Molecular function
regulator GO:0016491 Oxidoreductase

activity

46 GO:0019637 Organophosphate
metabolic process GO:0051093 Negative regulation of

developmental process GO:0006259 DNA metabolic
process GO:0018193 Peptidyl-amino acid

modification GO:0018193 Peptidyl-amino acid
modification

47 GO:0018193 Peptidyl amino acid
modification GO:0043603 Cellular amide

metabolic process GO:0098796 Membrane protein
complex GO:0006952 Defense response GO:0010817 Regulation of hormone

levels

48 GO:0009628 Response to abiotic
stimulus GO:0030855 Epithelial cell

differentiation GO:0042493 Response to drug GO:0051241
Negative regulation

of multicellular
organismal process

GO:0080134 Regulation of response
to stress

49 GO:0000003 Reproduction GO:0010876 Lipid localization GO:0015849 Organic acid transport GO:0019637 Organophosphate
metabolic process GO:0014070 Response to organic

cyclic compound

50 GO:0009719 Response to
endogenous stimulus GO:0051094 Positive regulation of

developmental process GO:0006468 Protein
phosphorylation GO:0044093

Positive regulation
of molecular

function
GO:0023057 Negative regulation of

signaling
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3.5. Three Reclassified Categories of the Top 25 Common Dysregulated GO Terms and the Most
Relevant Corresponding DEGs

As displayed in Table 3, we reclassified the top 25 most common dysregulated GO
terms among serous ovarian tumors into three major categories based on each representa-
tive function. There were 9, 8, and 8 GO terms belonging to “cellular cycle and signaling-
related effects”, “membrane and transport-related effects”, and “metabolic, immunological,
and other effects”, respectively. We sorted the potential genes annotated for all regrouped
GO terms among each category with definitions (http://geneontology.org/, accessed on
5 June 2021) and selected the most relevant DEGs with the highest repetitive frequencies
determined statistically with cross comparisons. Nine GO terms were reclassified to cellu-
lar cycle- and signaling-related effects and four most relevant DEGs were identified with
the highest repetition: EDN1 (endothelin 1), AKT1 (AKT serine/threonine kinase 1), IL1B
(interleukin 1 beta), and INS (insulin). Eight GO terms were reclassified to membrane- and
transport-related effects and the two most relevant DEGs were identified with the highest
repetition: CDK5 (cyclin dependent kinase 5) and ATP1B1 (sodium/potassium-transporting
ATPase subunit beta-1). Eight GO terms were reclassified to metabolic, immunological, and
other effects and the seven most relevant DEGs were identified with the highest repetition:
PTK2B (protein tyrosine kinase 2 beta), MTOR (mechanistic target of rapamycin kinase),
APP (amyloid beta precursor protein), KIT (tyrosine-protein kinase KIT), LEP (leptin),
MAPK3 (mitogen-activated protein kinase 3), and SRC (proto-oncogene tyrosine-protein
kinase Src).

3.6. The Significant Common Dysfunctional GO-Defined Pathways and Corresponding DEGs

We firstly discovered that there were 5346, 4047, 6779, 7985, and 8251 dysfunctional
pathways defined with GO terms in the serous BOT and serous ovarian carcinoma stage
I–IV groups, respectively. Then, we placed these pathways in order of correlation for each
group according to statistically significant p-values. Next, we selected the top 50 most dys-
functional pathways ranked by p-value for each disease group to investigate meaningful
correlations, as listed in Table 4 and the detailed GO-defined pathways for serous ovarian tu-
mors are listed in Table S5. “Negative regulation of isotype switching (GO:0045829)” ranked
first in the serous BOT group; “modified amino acid transmembrane transporter activity
(GO:0072349)” ranked first in serous ovarian carcinoma, FIGO stage I; “DNA double-strand
break processing involved in repair via single-strand annealing (GO:0010792)” ranked
first in serous ovarian carcinoma, FIGO stage II; “DNA double-strand break processing
involved in repair via single-strand annealing (GO:0010792)” ranked first in serous ovarian
carcinoma, FIGO stage III; and “aryl hydrocarbon receptor binding (GO:0017162)” ranked
first in serous ovarian carcinoma, FIGO stage IV. Moreover, we found only one common
dysfunctional pathway among the five disease groups of serous ovarian tumors: “aryl
hydrocarbon receptor binding (GO:0017162),” which is ranked at 42, 2, 2, 29, and 1 in
the groups of serous BOTs and serous ovarian carcinomas of stages I–IV, respectively.
Meanwhile, we also found ten corresponding genes, AHR (aryl-hydrocarbon receptor), AIP
(aryl-hydrocarbon receptor-interacting protein), ARNT (aryl hydrocarbon receptor nuclear
translocator), ARNT2 (aryl hydrocarbon receptor nuclear translocator 2), ARNTL (aryl
hydrocarbon receptor nuclear translocator-like), NCOA1 (nuclear receptor coactivator 1),
NCOA2 (nuclear receptor coactivator 2), TAF4 (TATA-box binding protein associated factor
4), TAF6 (TATA-box binding protein associated factor 6), and TBP (TATA box binding pro-
tein), with their representative proteins annotated for these GO term-defined dysfunctional
pathways acquired from the GO gene set database (http://geneontology.org/, accessed on
5 June 2021).

http://geneontology.org/
http://geneontology.org/
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Table 3. Categorized lists of the top 25 common dysregulated GO terms among serous ovarian tumors reclassified by
biological functions and the most relevant corresponding DEGs in each group.

Cellular Cycle and Signaling Related Effects

GO ID GO Term Most Relevant DEGs

GO:0045595 Regulation of cell differentiation

EDN1, AKT1, IL1B, INS

GO:0007267 Cell-cell signaling

GO:0042592 Homeostatic process

GO:0048585 Negative regulation of response to stimulus

GO:0007049 Cell cycle

GO:0033043 Regulation of organelle organization

GO:0051240 Positive regulation of multicellular
organismal process

GO:0023056 Positive regulation of signaling

GO:0098772 Molecular function regulator

Membrane and Transport Related Effects

GO ID GO Term Most Relevant DEGs

GO:0005215 Transporter activity

CDK5, ATP1B1

GO:0006811 Ion transport

GO:0051049 Regulation of transport

GO:0040011 Locomotion

GO:0055085 Transmembrane transport

GO:0070727 Cellular macromolecule localization

GO:0046907 Intracellular transport

GO:0022610 Biological adhesion

Metabolic, Immunological, and Other Effects

GO ID GO Term Most Relevant DEGs

GO:0044281 Small molecule metabolic process

PTK2B, MTOR, APP, KIT, LEP, MAPK3, SRC

GO:0006629 Lipid metabolic process

GO:0031399 Regulation of protein modification process

GO:0051174 Regulation of phosphorus metabolic process

GO:0019219 Regulation of nucleobase containing
compound metabolic process

GO:0002520 Immune system development

GO:0022008 Neurogenesis

GO:0000003 Reproduction
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Table 4. The top 50 most dysfunctional GO-defined pathways among serous BOT and all stages of serous ovarian carcinoma ranked by p-values.

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

1 GO:0045829 Negative regulation of
isotype switching GO:0072349

Modified amino acid
transmembrane

transporter activity
GO:0010792

DNA double-strand
break processing

involved in repair via
single-strand annealing

GO:2001269

Positive regulation of
cysteine-type

endopeptidase activity
involved in apoptotic

signaling pathway

GO:0017162 Aryl hydrocarbon
receptor binding

2 GO:0008395 Steroid hydroxylase
activity GO:0017162 Aryl hydrocarbon

receptor binding GO:0017162 Aryl hydrocarbon
receptor binding GO:0042908 Xenobiotic transport GO:0072349

Modified amino acid
transmembrane

transporter activity

3 GO:0016578 Histone
deubiquitination GO:0097501 Stress response to

metal ion GO:0045002
Double-strand break

repair via single-strand
annealing

GO:2001267

Regulation of
cysteine-type

endopeptidase activity
involved in apoptotic

signaling pathway

GO:0036507 Protein
demannosylation

4 GO:0090482
Vitamin

transmembrane
transporter activity

GO:0016589 NURF complex GO:0070162 Adiponectin secretion GO:0015701 Bicarbonate transport GO:0045618
Positive regulation of

keratinocyte
differentiation

5 GO:0033499
Galactose catabolic

process via
UDP-galactose

GO:0055059 Asymmetric neuroblast
division GO:0046643

Regulation of
gamma-delta T cell

activation
GO:0046007

Negative regulation of
activated T cell

proliferation
GO:0015106

Bicarbonate
transmembrane

transporter activity

6 GO:0005347 ATP transmembrane
transporter activity GO:0004865

Protein
serine/threonine

phosphatase inhibitor
activity

GO:0010957
Negative regulation of
vitamin D biosynthetic

process
GO:0010957

Negative regulation of
vitamin D biosynthetic

process
GO:0045002

Double-strand break
repair via single-strand

annealing

7 GO:0015867 ATP transport GO:0008628
Hormone-mediated
apoptotic signaling

pathway
GO:0036507 Protein

demannosylation GO:0072608 Interleukin-10
secretion GO:0045793 Positive regulation of

cell size

8 GO:0006825 Copper ion transport GO:0036507 Protein
demannosylation GO:0046137

Negative regulation of
vitamin metabolic

process
GO:0090482

Vitamin
transmembrane

transporter activity
GO:0004016 Adenylate cyclase

activity

9 GO:0046007
Negative regulation of

activated T cell
proliferation

GO:0015106
Bicarbonate

transmembrane
transporter activity

GO:1990239 Steroid hormone
binding GO:0072350 Tricarboxylic acid

metabolic process GO:0006171 cAMP biosynthetic
process

10 GO:0044743

Protein
transmembrane import

into intracellular
organelle

GO:0046643
Regulation of

gamma-delta T cell
activation

GO:0071360 Cellular response to
exogenous dsRNA GO:0033617

Mitochondrial
respiratory chain

complex IV assembly
GO:0006517 Protein

deglycosylation

11 GO:0050859
Negative regulation of

B cell receptor
signaling pathway

GO:0005078 MAP-kinase scaffold
activity GO:0044854 Plasma membrane raft

assembly GO:0016409 Palmitoyltransferase
activity GO:0010957

Negative regulation of
vitamin D biosynthetic

process

12 GO:0099132

ATP hydrolysis
coupled cation
transmembrane

transport

GO:0045618
Positive regulation of

keratinocyte
differentiation

GO:0016589 NURF complex GO:0005451
Monovalent

cation:proton
antiporter activity

GO:0015701 Bicarbonate transport

13 GO:0000244
Spliceosomal

tri-snRNP complex
assembly

GO:0045793 Positive regulation of
cell size GO:0097501 Stress response to

metal ion GO:0018345 Protein palmitoylation GO:0036065 Fucosylation

14 GO:0045623
Negative regulation of

T-helper cell
differentiation

GO:0015116 Sulfate transmembrane
transporter activity GO:0072349

Modified amino acid
transmembrane

transporter activity
GO:0016417 S-acyltransferase

activity GO:0072497 Mesenchymal stem cell
differentiation
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Table 4. Cont.

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

15 GO:0004089 Carbonate dehydratase
activity GO:0008271

Secondary active
sulfate transmembrane

transporter activity
GO:0015106

Bicarbonate
transmembrane

transporter activity
GO:0046137

Negative regulation of
vitamin metabolic

process
GO:0050859

Negative regulation of
B cell receptor

signaling pathway

16 GO:0033270 Paranode region of
axon GO:0004016 Adenylate cyclase

activity GO:0050428
3′-phosphoadenosine

5′-phosphosulfate
biosynthetic process

GO:0002370 Natural killer cell
cytokine production GO:0019870 Potassium channel

inhibitor activity

17 GO:0050686 Negative regulation of
mRNA processing GO:0006171 cAMP biosynthetic

process GO:0001765 Membrane raft
assembly GO:0045618

Positive regulation of
keratinocyte

differentiation
GO:0036066 Protein O-linked

fucosylation

18 GO:0044183
Protein binding

involved in protein
folding

GO:0008272 Sulfate transport GO:0019531
Oxalate

transmembrane
transporter activity

GO:0016589 NURF complex GO:0046137
Negative regulation of

vitamin metabolic
process

19 GO:0061082 Myeloid leukocyte
cytokine production GO:0022821 Potassium ion

antiporter activity GO:0045618
Positive regulation of

keratinocyte
differentiation

GO:0015924
Mannosyl-

oligosaccharide
mannosidase activity

GO:0044322
Endoplasmic reticulum

quality control
compartment

20 GO:0000002 Mitochondrial genome
maintenance GO:0015924

Mannosyl-
oligosaccharide

mannosidase activity
GO:0008271

Secondary active
sulfate transmembrane

transporter activity
GO:0045616

Regulation of
keratinocyte

differentiation
GO:0004865

Protein
serine/threonine

phosphatase inhibitor
activity

21 GO:0045591
Positive regulation of

regulatory T cell
differentiation

GO:0019373 Epoxygenase P450
pathway GO:0015116 Sulfate transmembrane

transporter activity GO:0070162 Adiponectin secretion GO:0007175

Negative regulation of
epidermal growth

factor-activated
receptor activity

22 GO:2001182 Regulation of
interleukin-12 secretion GO:0019532 Oxalate transport GO:0032184 SUMO polymer

binding GO:0022821 Potassium ion
antiporter activity GO:0042359 Vitamin D metabolic

process

23 GO:0097503 Sialylation GO:0099509

Regulation of
presynaptic cytosolic

calcium ion
concentration

GO:0045586
Regulation of

gamma-delta T cell
differentiation

GO:0015377 Cation: chloride
symporter activity GO:0009975 Cyclase activity

24 GO:0008373 Sialyltransferase
activity GO:0019531

Oxalate
transmembrane

transporter activity
GO:0019532 Oxalate transport GO:0015379 Potassium: chloride

symporter activity GO:0045616
Regulation of
keratinocyte

differentiation

25 GO:0008385 Ikappab kinase
complex GO:0050428

3′-phosphoadenosine
5′-phosphosulfate

biosynthetic process
GO:0071447 Cellular response to

hydroperoxide GO:0098719
Sodium ion import

across plasma
membrane

GO:0016849 Phosphorus-oxygen
lyase activity

26 GO:0072643 Interferon-gamma
secretion GO:0008391

Arachidonic acid
monooxygenase

activity
GO:0042363 Fat-soluble vitamin

catabolic process GO:0072643 Interferon-gamma
secretion GO:1990239 Steroid hormone

binding

27 GO:0031248
Protein

acetyltransferase
complex

GO:0097267 Omega-hydroxylase
P450 pathway GO:0072497 Mesenchymal stem cell

differentiation GO:0097503 Sialylation GO:0071305 Cellular response to
vitamin D

28 GO:0000188 Inactivation of MAPK
activity GO:0010792

DNA double-strand
break processing

involved in repair via
single-strand annealing

GO:0005337
Nucleoside

transmembrane
transporter activity

GO:0008373 Sialyltransferase
activity GO:0070162 Adiponectin secretion

29 GO:0002634 Regulation of germinal
center formation GO:0031010 ISWI-type complex GO:0008272 Sulfate transport GO:0017162 Aryl hydrocarbon

receptor binding GO:0006895 Golgi to endosome
transport
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Table 4. Cont.

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

30 GO:2000515

Negative regulation of
CD4-positive,

alpha-beta T cell
activation

GO:0071360 Cellular response to
exogenous dsRNA GO:0002175

Protein localization to
paranode region of

axon
GO:0032689

Negative regulation of
interferon-gamma

production
GO:0097225 Sperm midpiece

31 GO:2000320
Negative regulation of

T-helper 17 cell
differentiation

GO:0006685 Sphingomyelin
catabolic process GO:0019373 Epoxygenase P450

pathway GO:0015296 Anion:cation
symporter activity GO:2000535 Regulation of entry of

bacterium into host cell

32 GO:0060907
Positive regulation of
macrophage cytokine

production
GO:0071577

Zinc ion
transmembrane

transport
GO:2001182 Regulation of

interleukin-12 secretion GO:0046643
Regulation of

gamma-delta T cell
activation

GO:0004198
Calcium-dependent

cysteine-type
endopeptidase activity

33 GO:0032426 Stereocilium tip GO:0005385
Zinc ion

transmembrane
transporter activity

GO:0090177

Establishment of
planar polarity

involved in neural tube
closure

GO:0042788 Polysomal ribosome GO:0019373 Epoxygenase P450
pathway

34 GO:0046915
Transition metal ion

transmembrane
transporter activity

GO:0044854 Plasma membrane raft
assembly GO:0015858 Nucleoside transport GO:0045503 Dynein light chain

binding GO:1905276 Regulation of epithelial
tube formation

35 GO:0033549 MAP kinase
phosphatase activity GO:0099516 Ion antiporter activity GO:0031095 Platelet dense tubular

network membrane GO:2000773 Negative regulation of
cellular senescence GO:0071313 Cellular response to

caffeine

36 GO:0016854 Racemase and
epimerase activity GO:0038044 Transforming growth

factor-beta secretion GO:0019870 Potassium channel
inhibitor activity GO:0002707

Negative regulation of
lymphocyte mediated

immunity
GO:0045671

Negative regulation of
osteoclast

differentiation

37 GO:0043371

Negative regulation of
CD4-positive,

alpha-beta T cell
differentiation

GO:0097264 Self-proteolysis GO:0034139
Regulation of toll-like
receptor 3 signaling

pathway
GO:0070234 Positive regulation of T

cell apoptotic process GO:0099516 Ion antiporter activity

38 GO:0030890 Positive regulation of B
cell proliferation GO:0045852 pH elevation GO:0101020

Estrogen
16-alpha-hydroxylase

activity
GO:0071447 Cellular response to

hydroperoxide GO:0019532 Oxalate transport

39 GO:0050798 Activated T cell
proliferation GO:0009698 Phenylpropanoid

metabolic process GO:0002933 Lipid hydroxylation GO:0099587
Inorganic ion import

across plasma
membrane

GO:2001222 Regulation of neuron
migration

40 GO:0015662

ATPase activity,
coupled to

transmembrane
movement of ions,
phosphorylative

mechanism

GO:2001182 Regulation of
interleukin-12 secretion GO:0060353

Regulation of cell
adhesion molecule

production
GO:0071636

Positive regulation of
transforming growth

factor beta production
GO:0016712

Oxidoreductase
activity, acting on

paired donors, with
incorporation or

reduction of molecular
oxygen, reduced flavin
or flavoprotein as one

donor, and
incorporation of one

atom of oxygen

41 GO:0048291 Isotype switching to
IgG isotypes GO:0015491 Cation: cation

antiporter activity GO:0008391
Arachidonic acid
monooxygenase

activity
GO:0033962

Cytoplasmic mRNA
processing body

assembly
GO:2000833

Positive regulation of
steroid hormone

secretion

42 GO:0017162 Aryl hydrocarbon
receptor binding GO:0071313 Cellular response to

caffeine GO:1905276 Regulation of epithelial
tube formation GO:0043189

H4/H2A histone
acetyltransferase

complex
GO:0007077 Mitotic nuclear

envelope disassembly
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Table 4. Cont.

Groups Serous BOT Serous Ovarian Carcinoma Stage I Serous Ovarian Carcinoma Stage II Serous Ovarian Carcinoma Stage III Serous Ovarian Carcinoma Stage IV

Ranking GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term GO ID GO Term

43 GO:0061081

Positive regulation of
myeloid leukocyte

cytokine production
involved in immune

response

GO:2000833
Positive regulation of

steroid hormone
secretion

GO:0031010 ISWI-type complex GO:0043968 Histone H2A
acetylation GO:0015924

Mannosyl-
oligosaccharide

mannosidase activity

44 GO:0016226 Iron-sulfur cluster
assembly GO:0070162 Adiponectin secretion GO:0045671

Negative regulation of
osteoclast

differentiation
GO:2001222 Regulation of neuron

migration GO:2001182 Regulation of
interleukin-12 secretion

45 GO:0030007 Cellular potassium ion
homeostasis GO:0031995 Insulin-like growth

factor II binding GO:0031995 Insulin-like growth
factor II binding GO:0070670 Response to

interleukin-4 GO:0015373 Anion: sodium
symporter activity

46 GO:0015701 Bicarbonate transport GO:0005451
Monovalent cation:
proton antiporter

activity
GO:0008541

Proteasome regulatory
particle, lid
subcomplex

GO:0018230 Peptidyl-L-cysteine
S-palmitoylation GO:0090177

Establishment of
planar polarity

involved in neural tube
closure

47 GO:0071850 Mitotic cell cycle arrest GO:0008541
Proteasome regulatory

particle, lid
subcomplex

GO:0052173

Response to defenses
of other organism

involved in symbiotic
interaction

GO:0005416 Amino acid: cation
symporter activity GO:0016725

Oxidoreductase
activity, acting on CH

or CH2 groups

48 GO:0071014 Post-mRNA release
spliceosomal complex GO:0031095 Platelet dense tubular

network membrane GO:0038085 Vascular endothelial
growth factor binding GO:0006825 Copper ion transport GO:0002335 Mature B cell

differentiation

49 GO:0008242 Omega peptidase
activity GO:0016712

Oxidoreductase
activity, acting on

paired donors, with
incorporation or

reduction of molecular
oxygen, reduced flavin
or flavoprotein as one

donor, and
incorporation of one
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3.7. The Influences of Distinct Valuable DEGs with Corresponding Biomarkers Expressed in Serous
Ovarian Tumors

So far, we have performed GO-based integrative methods to analyze, discover, and
reclassify the 25 most important common dysregulated functions among the serous ovarian
tumor groups into distinct effective categories and obtained 13 corresponding DEGs in
total. We also found one common dysfunctional pathway among the five disease groups
and the corresponding ten DEGs. Next, we searched several important biomarkers and
relevant genes with close relationships with EMT among ovarian cancers from previous
research [50,57,72] and compared them with the DEGs of the top 25 meaningful dysregu-
lated functionomes in this experiment by checking for repetitions and cross comparisons.
Five featured DEGs were selected: CDH1 (cadherin 1), CTNNB1 (catenin beta 1), SNAI1
(snail family transcriptional repressor 1, SNAIL), SNAI2 (snail family transcriptional repres-
sor 2, SLUG), and TWIST1 (twist-related protein 1). In addition, we have individually estab-
lished three functional protein–protein interaction networks using the STRING database
(https://string-db.org, accessed on 5 June 2021) based on the relevant DEGs and their
corresponding proteins as biomarkers. These networks comprised the following: one, all
relevant DEGs sorted from the top 25 common dysregulated functionomes (Figure 3A); two,
the 10 DEGs involved in the dysfunctional AHR binding pathway (Figure 3B); and three,
the featured DEGs among relevant biomarkers associated with EMT (Figure 3C). All these
biomarkers revealed intensive interactions with regulatory cross effects in each network.
Simultaneously, we searched the GEO (http://www.ncbi.nlm.nih.gov/geo/, accessed
on 5 June 2021) and The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov,
accessed on 5 June 2021) repositories, including datasets downloaded from three major
microarray platforms, GPL96 (Affymetrix HG-U133A), GPL570 (Affymetrix HG-U133 Plus
2.0), and GPL571/GPL3921 (Affymetrix HG-U133A 2.0), which contained extracted and cor-
rected raw data of 1232 patients with serous ovarian carcinoma. We entered these datasets
with gene expression into the PostgreSQL relational database and compared 28 meaningful
DEGs (EDN1, AKT1, IL1B, INS, CDK5, ATP1B1, PTK2B, MTOR, APP, KIT, LEP, MAPK3, SRC,
AHR, AIP, ARNT, ARNT2, ARNTL, NCOA1, NCOA2, TAF4, TAF6, TBP, CDH1, CTNNB1,
SNAI1, SNAI2, and TWIST1) selected from the above steps. Then, we calculated and investi-
gated the DEG expression levels, progression-free survival (PFS), and overall survival (OS)
among serous ovarian carcinoma patients using the Mann–Whitney test and the receiver
operating characteristic test in the R statistical environment (http://www.r-project.org, ac-
cessed on 5 June 2021) with Bioconductor libraries (http://www.bioconductor.org, accessed
on 5 June 2021) followed by a second normalization to set the average expression of the
22,277 identical probes (http://kmplot.com/analysis/index.php?p=service&cancer=ovar,
accessed on 5 June 2021) [73]. Combining all the methods mentioned above, we found
that only four DEGs (SRC, ARNT, TBP, and SNAI2) showed stronger and closer relation-
ships than the other biomarkers in each functional protein–protein interaction network
(Figure 3A–C) and had consistent synchronous poor effects on PFS and OS among patients
with serous ovarian carcinomas with statistical significance (Figure 3D–K). The high ex-
pression levels of the four potentially crucial genes (SRC, ARNT, TBP, and SNAI2) were
significantly correlated with poor prognosis and survival, and the hazard ratios of PFS and
OS are shown in each graph below (Figure 3D–K).

https://string-db.org
http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov
http://www.r-project.org
http://www.bioconductor.org
http://kmplot.com/analysis/index.php?p=service&cancer=ovar
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Figure 3. The significant biomarkers influencing serous ovarian tumors. (A–C) Panels display identified potential in-
volving DEGs subjected to protein–protein interaction (PPI) analysis with interactive network from the STRING database
(https://string-db.org (accessed on 21 July 2021)) with intensive interactions. (A) All 13 relevant DEGs sorted from the
top 25 common dysregulated GO terms, (B) all ten DEGs in-volved in dysfunctional aryl hydrocarbon receptor (AHR)
binding pathway, and (C) five featured DEGs among relevant biomarkers associated with EMT. (D–K) The four meaningful
DEGs (SRC, ARNT, TBP and SNAI2) associated with poor survival outcomes. PFS: (D) SRC, (E) ARNT, (F) TBP, (G) SNAI2;
OS: (H) SRC, (I) ARNT, (J) TBP, and (K) SNAI2 in serous ovarian carcinomas. The hazard ratios of the PFS of SRC,
ARNT, TBP, and SNAI2 were 1.36 (1.11–1.68, p = 0.0031), 1.89 (1.51–2.36, p = 1.3 × 10−8), 1.34 (1.16–1.54, p = 7.5 × 10−5),
and 1.34 (1.16–1.55, p = 7.3 × 10−5), respectively. The hazard ratios of the OS of SRC, ARNT, TBP, and SNAI2 were
1.34 (1.05–1.72, p = 0.017), 1.46 (1.17–1.84, p = 0.00098), 1.24 (1.04–1.48, p = 0.018), 1.36 (1.16–1.59, p = 0.00015), respectively.

3.8. Immunohistochemical Validation of Expression Levels for SRC, ARNT, TBP, and SNAI2
among Serous Ovarian Tumors

Since the inferred biomarkers including SRC, ARNT, TBP, and SNAI2 from the previ-
ous analysis were assumed to be influential in the tumorigenesis of serous ovarian tumors,
we gathered relevant clinical samples from a cohort of patients (serous BOT, n = 9; serous
ovarian carcinoma, n = 41, including n = 8, 2, 23, and 8 for FIGO stages I–IV, respectively)

https://string-db.org
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to explore the clinical characteristics and verify the specific manifestations of the four
abovementioned selected DEGs that were determined to participate in the pathogenetic
mechanisms of serous ovarian tumors. Because the number of samples in each group
was inconsistent, we combined groups as follows to facilitate verification and comparison:
serous BOTs, early-stage serous ovarian carcinomas (FIGO stages I and II), and late-stage
serous ovarian carcinomas (FIGO stages III and IV). We then performed IHC staining of
anti-SRC, anti-ARNT, anti-TBP, and anti-SNAI2 antibodies separately among the three
modified disease groups to clinically assess the significant manifestation of SRC, ARNT,
TBP, and SNAI2. Professional pathologists verified and interpreted the results evenly
and repeatedly throughout the whole diagnostic process using SPSS software (IBM SPSS
Statistics version 22.0 for Windows, IBM Corp., Armonk, NY, USA) to quantify the im-
munoscores of SRC, ARNT, TBP, and SNAI2. The organized results clearly showed that
the highest biomarker expression levels tended to occur in the group of late-stage serous
ovarian carcinoma, followed by the early-stage group, and lastly the serous BOT group
(Figure 4A). We also found that the highest mean values of expression levels for all these
biomarkers (SRC, ARNT, TBP, and SNAI2) belonged to the late-stage serous ovarian car-
cinoma group, with clear increasing trends from the serous BOT group to the late-stage
group, and the calculated mean values of the relevant biomarkers were statistically sig-
nificant (Figure 4B). The detailed results of all scores for relevant featured biomarkers of
clinical samples and detailed clinical characteristics of the patients (grade, menopausal
status, the presence of BRCA1, BRCA2 mutation, overall survival, and Ca125 level) are
listed in Table S6. These results were in accordance with our inferences, implying that
many dysregulated functionomes deduced from the integrative GO-based enrichment
analysis are dedicated to the pathogenetic mechanisms of serous ovarian tumors. Similarly,
these validated results also demonstrated that the dysfunctional AHR binding pathway
played a role in the tumorigenesis of serous ovarian tumors. Furthermore, this verification
supported the association between EMT and tumor progression. All these significant
results confirmed the importance of the previously proposed DEGs and related pathogenic
tumorigenesis for serous ovarian tumors.
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Figure 4. Verified analysis of biomarkers among serous ovarian tumors by IHC staining. (A) Clinical
samples from patients with serous BOTs (n = 9, left column), early stages of serous ovarian carcinomas
(n = 10, middle column), and late stages of serous ovarian carcinomas (n = 31, right column) were
immunostained with hematoxylin and eosin (first row), anti-SRC antibody (second row), anti-ARNT
antibody (third row), anti-TBP antibody (fourth row), and anti-SNAI2 antibody (fifth row). (B) Box
plots for expressed biomarkers including SRC, ARNT, TBP, and SNAI2 among groups of serous
BOTs (blue), early stages of serous ovarian carcinomas (green), and late stages of serous ovarian
carcinomas (light brown). All the expression levels of these meaningful biomarkers were quantified
and clearly revealed an increasing trend of mean values from serous BOTs to late stages of serous
ovarian carcinomas with statistical significance.

4. Discussion

In this study, we implemented a comprehensive GO-based multi-genome interpre-
tative model using gene set defined functionomes and GSR indices calculated based on
gene expression profiles and levels downloaded from public gene set databases to further
investigate the complicated and divergent molecular and genetic events of serous ovarian
tumors, including serous BOTs and serous ovarian carcinomas at all stages. All results
obtained using SVM were statistically significant with high sensitivity, specificity, and
accuracy. The GSR indices of all groups of serous ovarian tumors compared to the control
groups revealed obvious deviations. The most apparent divergence detected was in the
group of serous ovarian carcinoma, FIGO stage IV, and the deviation of serous BOT was
just between the early and late stages of serous ovarian carcinomas. Among all groups
of serous ovarian tumors, we first identified the top 25 significant common dysregulated
functionomes with 13 relevant DEGs, then found one common dysfunctional pathway,
AHR binding (GO:0017162), containing 10 corresponding DEGs and excavated five ap-
plicable EMT-related DEGs that were related with ovarian neoplasms. Recently, EMT, a
reversible process in which epithelial cells acquire mesenchymal cell characteristics due to
the loss of cellular polarity and adhesion with increasing cellular migration, has become
an important concept in research on tumorigenesis, progression, and chemoresistance
of ovarian neoplasms; thus, we included biomarkers of EMT for ovarian tumors in this
research. After integrative analysis, including comparison of functional protein–protein
interactions and patient survival (PFS and OS) of serous ovarian carcinomas, we obtained
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four potentially important DEGs: SRC, ARNT, TBP, and SNAI2. Finally, IHC validation of
these four biomarkers revealed that they significantly increased in samples incrementally
from serous BOT to early stages and then to late stages of serous ovarian carcinomas.
Since the results obtained in this study are extraordinarily rich and complex, we mainly
explained and discussed the crucial dysfunctional AHR binding pathways accompanied by
four consequential DEGs that were statistically verified. However, other related meaningful
results deserve further exploration and investigation.

Among the preliminary results of GO-based analysis for each group of serous ovarian
tumors, we noticed significant differences between serous BOT and serous ovarian carci-
nomas, that is similar to the divergences of clinical manifestations and histopathological
characteristics between the two groups; furthermore, there were also discrepancies even in
the four stages of serous ovarian carcinomas. This experiment thus revealed that serous
BOTs and serous ovarian carcinomas are basically inconsistent, although all histopathologi-
cal classifications are confirmed as “serous”. Even so, we identified the top 25 dysregulated
functionomes from the first 50 GO-defined terms among the five groups and reclassified
them into three categories according to their representative functions. After statistical
comparison, we noticed that the category of metabolic and immunological effects had the
greatest influence on serous ovarian tumors, followed by membrane and transport-related
effects, and lastly, cellular cycle and signaling-related effects. Therefore, we can reasonably
infer the importance of the metabolome and immunome in the tumorigenesis of serous
ovarian tumors, which require investigation in the future together with the other two
effects. In our experiments, we also identified 13 highly relevant DEGs. Many related
studies have examined how these DEGs affected the formation of serous ovarian tumors,
such as tyrosine kinase related DEGs (PTK2B, KIT, and SRC) [74–76], crucial factors known
to be related to tumorigenesis (AKT1, MTOR, MAPK3) [64,77–80], DEGs related to cellular
metabolism and immunity (EDN1, IL1B, INS, APP, LEP) [29,56,60,81–86], and agents for
signal transmission and channels of cell membranes (CDK5 and ATP1B1) [59,87,88]. Among
these DEGs, we found that SRC has consistently poor effects on the survival of serous ovar-
ian carcinoma patients with a poor prognosis of PFS and OS. SRC, a non-receptor protein
tyrosine kinase known as a proto-oncogene, participates in the regulation of embryonic
development and cell growth [89]. SRC has been found to be activated and overexpressed
in association with HER-2/neu overexpression in a high percentage of ovarian cancers,
especially in the late stage, and to increase proliferation, angiogenesis, and invasion dur-
ing tumor development [90]. Silencing of SRC could enhance the cytotoxicity of taxol in
ovarian cancer cells to improve the efficacy of chemotherapy [91].

Of the top 50 GO-defined dysfunctional pathways, we found only one meaningful
common pathway (AHR binding, GO:0017162) among the five disease groups. We con-
ducted integrated analysis to comprehensively discover the pivotal role of the AHR binding
pathway in the tumorigenesis of serous ovarian tumors for the first time. However, in ad-
dition to the dysfunctional AHR binding pathway, we also found two common disordered
pathways, including positive regulation of keratinocyte differentiation (GO:0045618) and
adiponectin secretion (GO:0070162), in all stages of serous ovarian carcinomas. Although
not in the top 50 pathways of serous BOTs, these two disordered pathways may be poten-
tial problems to be investigated further for the pathogenesis of serous ovarian carcinoma.
Through comprehensive analysis, it was revealed that ARNT and TBP have consistently
poor effects on PFS and OS. AHR, a ligand-activated transcription factor, is notable for
its role in environmental chemical toxicity [92–94]; however, in recent studies, AHR was
also recognized to play a critical role in tumorigenesis through complex epigenetic and
pathogenetic mechanisms encompassing both pro- and anti-tumorigenic activities [95,96].
AHR exists in the cytoplasm and is induced and activated by linking with a group of
environmental pollutants as well as other AHR ligands from microbes and diet, and it
undergoes certain conformational transformations together with SRC and other cofactors
in the cytoplasm to translocate to the nucleus in a dissociated form [95,97–99]. AHR can
heterodimerize with ARNT, a nuclear translocator, to compose the AhR-ARNT complex,
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which subsequently binds with specific DNA sequences and xenobiotic response element
(XRE) in the enhancer region of certain genes associated with TBP, leading to transcrip-
tional activation of enzymes, such as the cytochrome P450 (CYP) enzymes 1A1 (CYP1A1),
CYP1A2, and CYP1B1, for xenobiotic metabolism to induce carcinogenicity of cancer stem
cells as tumors or initiate cancer (Figure 5) [100–103]. Although the current research on the
AHR binding pathway and serous ovarian tumors is still limited, it can be roughly under-
stood that the AHR binding pathway influences the formation and occurrence of serous
ovarian malignancy through the deep deletion and amplification of AHR transcription
factors [95,96,104,105]. Moreover, localization of AHR in the nucleus of tumor cells has
been associated with a worse outcome in patients with ovarian cancer, and the role of the
AHR/ARNT/CYP-enzyme pathway [106,107] and AHR-driven TBP gene expression in
carcinogenesis and cancer initiation, as well as its potential use, have been considered as
therapeutic targets for better outcomes [108]. In addition, AHR and NCOA1 discovered in
this experiment may also be targets warranting further discussion [98].

Figure 5. Proposed pathogenetic mechanism of the AHR binding pathway combined with EMT-related factors for tumori-
genesis of serous ovarian tumors. BOT: borderline ovarian tumor; OvCa: ovarian carcinoma.

Approximately 80% of patients with ovarian cancer suffer from recurrence of metasta-
sis within five years after the initial therapy with debulking operation and chemotherapy
due to the development of resistance [109,110]. Accumulating findings have recently
demonstrated that EMT may induce chemotherapy resistance and cancer cell stemness
by regulating EMT transcription factors, such as Zeb1, Zeb2, Snail, Slug, and Twist1, in
a complicated network, and all functional EMT in the tumor microenvironment could
exchange tumor cell morphology to upgrade metastatic abilities via migration and inva-
sion [72,111–113]. Because avoidance of EMT may be crucial for evaluating and managing
tumor metastasis and recurrence [114], we selected five featured DEGs by proofreading and
collation with all meaningful DEGs from the top 25 common functionomes of all groups
of serous ovarian tumors, and we found that SNAI2 was the most influential DEG due to
the concordant results of patient survival. IHC analysis showed an increasing trend from
borderline tumors to the late stage of ovarian malignancy. The transcriptional factor SNAI2,
also known as SLUG, is considered important for cell migration, differentiation, and metas-
tasis [115,116]. Our study identified the expression and role of SNAI2 in serous ovarian
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tumors, indicating the progression of serous ovarian tumors possibly through EMT. So far,
the association between the AHR binding pathway and EMT among serous ovarian tumors
remains unexplored thoroughly, and this experiment provides the opportunity to solve this
problem. Aromatic hydrocarbon substances, such as phthalates, di(2-ethylhexyl)phthalate
(DEHP), or bisphenol A, are recognized as aggravators, as they upregulate and promote
cell proliferation and tumor progression [117–119]. In contrast, dietary phytoestrogen
and kaempferol could exert anti-carcinogenic and anti-proliferative effects through AHR-
related pathways to inhibit the EMT process [120]. Our results showed that there is indeed
a tight correlation between AHR and EMT as the degree of malignancy develops in serous
ovarian tumors, just like other malignancy [121]. However, how the AHR binding path-
way and EMT interact and influence each other in tumor progression and resistance to
chemotherapy warrants further research.

This study had several limitations. First, we noticed some limitations in the integrative
analytic methods utilized in this study, because the gene set databases of GO terms and
related biomolecular pathways did not completely contain or fully define all functionomes
of humans. False positivity was attributed to the heterogenicity of disparate cellular
histopathological compositions and the indistinguishable elements of different gene sets
among the chosen tumor and control samples, and detection by the GSR model was un-
certain due to missed errors and untransformed GSR indices if the expression levels were
undetectable when converting levels for ordering gene expression. However, these disad-
vantages may not be obvious in the overall results coupled with the statistically significant
high sensitivity, specificity, and accuracy of this experiment. To eliminate these problems in
the future, a more precise programming syntax design and more specified sample screening
are required. The second limitation is the uneven distribution of case groups. The numbers
of serous BOTs, serous ovarian carcinomas, and normal control samples are quite different,
and even in the largest population of serous ovarian carcinomas, the numbers of tumors
in each stage are quite different. According to the known proportions of serous ovarian
tumors, serous ovarian carcinomas account for more EOCs than BOTs, and early stages of
serous ovarian carcinomas are usually difficult to diagnose, resulting in fewer diagnoses
than at advanced stages. The number of specimens collected for subsequent clinical verifi-
cation also fits this situation. Although the number of clinical samples is small, with the
support of the support vector machine (SVM) used in this study, the preliminary results of
this multidisciplinary comprehensive analysis are reliable with high sensitivity, specificity,
and accuracy. Even a relatively small number could obtain statistically significant results
through IHC verification. Perhaps a more intact gene expression profile database could
be constructed to decrease individual discrepancies among ethnic groups in retrospective
or prospective cohort studies conducted on a larger scale globally. Third, this study only
investigated the common pathogenetic mechanisms of serous ovarian tumors. However,
due to the current lack of research, the small number of clinical specimens, and limited
funds, data gathered from the GO term database are somewhat obstructed, especially data
of serous BOT. Nevertheless, the results are clear and statistically significant, as determined
by clinical verification with the immunostaining method. In the future, it may be necessary
to gather more specimens, examine more global academic research, and utilize databases
of various subtypes to compare and investigate more profoundly and comprehensively the
pathogenetic mechanisms with the aid of large-scale experimental tests and funding.

In summary, to investigate potential crucial pathogenetic mechanisms, we performed
an integrated GO-based analysis to obtain global genome-wide expression profiles individ-
ually and explore meaningful dysregulated functionomes, dysfunctional pathways, and
relevant biomarkers of EMT among assorted groups of serous ovarian tumors with the
support of elementary machine learning. Based on the above conclusions, we proposed
the inferred hypothesis for the formative process of serous ovarian tumor that activated
AHR could cooperate with SRC in the cytoplasm to enter cell nuclei and then bind to
ARNT together with TBP to act on DNA for initiating targeted AHR-responsive genes to
cause tumor or cancer initiation. Besides, biomarker of EMT such as SNAI2 in the tumor
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microenvironment could also facilitate EMT process accompanied with tumorigenesis
(Figure 5). These results provided new directions for understanding the tumorigenesis
of serous ovarian tumors and more potential crucial targets for the identification, treat-
ment, monitoring, and even prevention of recurrence combined with targeted therapies as
precision medicine in the future.

5. Conclusions

Serous ovarian tumors, consisting mainly of serous ovarian carcinoma and serous
BOT, are epithelial tumors of the ovary with distinctive characteristics for each subtype.
In this study, we made use of integrative analytic methods to select the top 25 significant
common GO terms as dysregulated functionomes reclassified into three crucial categories
(metabolic, immunological, and other effects; membrane and transport-related effects; and
cellular cycle and signaling-related effects) and acquired 13 corresponding DEGs with
high probability through cross comparison. For the first time, the dysfunctional AHR
binding pathway accompanied with 10 corresponding DEGs was found significantly to
be participated in tumorigenesis of both serous BOT and serous ovarian carcinoma and
five vital biomarkers related to EMT were searched and gathered for this analytic study.
Finally, four important DEGs (SRC, ARNT, TBP, and SNAI2) were compiled to have distinct
effects on the survivals of serous ovarian tumor patients with the help of IHC staining
for verification showing elevated expression among all clinical samples with increasing
malignancy from serous BOT to early stages and to late stages of serous ovarian carcinomas.
All acquired results initially supported the inference that dysregulated functionomes
with active DEGs and relevant biomarkers could cooperate with the dysfunctional AHR
binding pathway together with increased EMT effects in the tumor microenvironment
to synergistically influence tumor initiation. These findings considerably contributed to
elucidating the pathogenesis of serous ovarian tumors.
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