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Abstract: Synucleins are small naturally unfolded proteins involved in neurodegenerative diseases
and cancer. The family contains three members: α-, β-, and γ-synuclein. α-Synuclein is the most
thoroughly investigated because of its close association with Parkinson’s disease (PD), dementia with
Lewy bodies and multiple system atrophy. Until recently, the synuclein’s research was mainly focused
on their intracellular forms. However, new studies highlighted the important role of extracellular
synucleins. Extracellular forms of synucleins propagate between various types of cells, bind to
cell surface receptors and transmit signals, regulating numerous intracellular processes. Here we
give an update of the latest results about the mechanisms of action of extracellular synucleins, their
binding to cell surface receptors, effect on biochemical pathways and the role in neurodegeneration
and neuroinflammation.

Keywords: synucleins; protein misfolding; neurodegeneration; Parkinson’s disease; integrins;
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Synucleins are a family of proteins containing three members, α-, β-, and γ-synuclein implicated in
neurodegenerative diseases and cancer. Synucleins are unique to vertebrates and primarily expressed
in neural tissue and in certain tumors. Amino acid sequences of all three members of the family
have in common a highly conserved alpha-helical lipid-binding domain and several repeats with
a general sequence KTKEGV. Despite their overall sequence similarity, the members of the family
exhibit differences in their biochemical properties, playing a variety of roles inside and outside
of the cell. Since the discovery of the first member of the family 30 years ago synucleins attract
continuous attention of researchers because of their unusual properties and association with human
diseases [1]. Members of the synuclein family are readily secreted [2] and circulate between cells.
Several hypotheses including endocytosis, exosomes [2–5], and tunneling nanotube formation [6] were
generated to explain synuclein secretion. However, none of them was completely satisfactory and did
not explain all the unusual properties of α-synuclein. α-Synuclein may be released into extracellular
space as a result of oxidative stress [7] and other stress conditions. Interestingly, synucleins do not
contain signal peptides at the N-termini and therefore use unconventional mechanism of secretion [8,9].
Moreover, α-synuclein spreads out in a prion-like manner between neurons and other cell types,
contributing to the dissemination of the pathology.

Synucleins are relatively small proteins (127–140 amino acids for human proteins), but the tiny
size cannot explain their secretion, cell-to-cell-spreading and propagation, since aggregated forms
of the protein are also circulating between cells. These forms include large misfolded preformed
fibrils (PFF) of α-synuclein with 200 nm in size or bigger [10]. This enigmatic mechanism draws a
lot of attention from researchers, since these proteins not only initiate pathology, but also contribute
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to its propagation. As a result, they are attractive targets for the pharmacological interventions for
neurodegenerative diseases. Another unresolved question concerning α-synuclein biochemistry is
what is a trigger that initiates the conversion of this protein from its normal physiological functions to
a pathological role, associated with neurotoxicity and prion-like properties? Molecular mechanisms
underlying α-synuclein secretion, intercellular propagation, as well as its ability to acquire prion-like
properties and accompanying pathological functions remain obscure. In recent years, the focus of
synuclein’s research is shifting from intracellular to extracellular forms of these proteins and their
impact on intracellular processes of adjacent cells.

A number of recent studies suggests that extracellular α-synuclein acts as a specific ligand for
cell surface receptors [11–14]. Oligomeric α-synuclein binding to cell surface receptors induces the
transmission of signal into cells and causes a variety of biochemical and physiological reactions,
including Ca2+ dysregulation [15], synaptic dysfunction, neurodegeneration, cognitive deficit, etc.
α-synuclein has promiscuous partners, and many synuclein-interacting intracellular proteins have
been identified before [16]. Recent results point to an important role of α-synuclein binding to cellular
surface receptors which transmit signals affecting intracellular processes.

One of such interacting protein is a cellular prion protein (PrPC). α-synuclein in addition to
possessing prion-like properties itself [17,18] directly interacts with PrPC [11–13]. This cooperation
facilitates the transfer of α-synuclein between cells [11]. Furthermore, such interaction causes synaptic
dysfunction via a signaling cascade acting through phosphorylation of Fyn kinase and activation of
the N-methyl-D-aspartate receptor [11–14]. Apparently, α-synuclein and PrPC do not form a tight
complex, but are involved in short-term transitory interaction that alters α-synuclein conformation and
properties. An important consequence of α-synuclein-PrPC binding is the induction of cofilin/actin
rods formation [19], changing actin dynamics and resulting in rearrangements of cytoskeleton
(Figure 1). Cofilin-actin bundles or rods formed in axons and dendrites of stressed neurons may
cause synaptic dysfunction and mediate cognitive deficits in dementias [19]. Interestingly, another
member of the synuclein family, γ-synuclein, is colocalized with cofilin/actin rods located near the
nucleus. The number of these structures increases after traumatic brain injury [20]. The effect of
ligand binding to cell surface receptors and ion channels inducing rearrangement of actin cytoskeleton
is a frequent cause of neurodegeneration [21]. Extracellular α-synuclein also causes microtubule
destabilization via GSK-3β-dependent tau phosphorylation [22].
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Figure 1. The effect of extracellular α-synuclein binding to cellular receptor on neuronal or glial
cells. Various proteins may fulfill the role of such receptors, including PrPC, LAG3, neurexin 1α [17],
TLR2 [23], mGluR5 [12], Fc gamma receptor IIb [24] (Table 1) and others. Gangliosides in the lipid
rafts can also act as receptors for extracellular α-synuclein [25]. A–a cell in the absence of extracellular
α-synuclein, B–cellular response on α-synuclein binding.
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Table 1. Cell surface receptors binding extracellular α-synuclein.

Name of the Receptor Properties References

N-methyl-D-aspartate receptor NMDAR—Glutamate ionotropic receptor and ion
channel in nerve cells. [12]

Lymphocyte-activation gene 3
(LAG3) (CD223)

LAG3—immune checkpoint receptor with diverse
biologic effects on T cell function. [26,27]

TLR2 receptors

TLR2—toll-like receptor 2—a membrane receptor
expressed on the cell surface binding extracellular

molecules and transmitting signals to the cells of the
immune system.

[28]

CD11b integrin (the α-chain of
integrin αMβ2)

CD11b—transmembrane receptor facilitating
cell-extracellular matrix adhesion. [29]

Adenosine A2AR
heteroreceptor complex

Adenosine receptor, G protein-coupled receptor (GPCR)
family which possess seven transmembrane alpha

helices, as well as an extracellular N-terminus and an
intracellular C-terminus.

[30]

PrPC

PrPC—a cellular prion protein. α-Synuclein directly
interacts with PrPC [10–12]. This cooperation facilitates

the transfer of α-synuclein between cells [10] and
induces cofilin/actin rods formation.

[11–13]

Neurexin-α
Neurexin-α is a presynaptic protein connecting neurons

at the synapse. Located mostly on the presynaptic
membrane, contains a single transmembrane domain.

[17]

P2X7
PDX7—purinoceptors for ATP serves as a pattern

recognition receptor for extracellular ATP-mediated
apoptotic cell death.

[28,31,32]

mGluR5 mGluR5—metabotropic glutamate receptor 5 is a
member of the family of G protein-coupled receptors [12]

Fc gamma receptor IIb FCGR2B is a low affinity receptor for IgG. Mutation in
the gene leads to a lupus phenotype [24]

Gangliosides in the lipid rafts Gangliosides in the lipid rafts acts as receptors for
extracellular α-synuclein [33] [25]

Another cell surface receptor which assists in transmission of misfolded α-synuclein (more
exactly misfolded preformed fibrils or PFF of α-synuclein) from neuron to other cells and takes
part in signal transduction is a product of lymphocyte-activation gene 3 (LAG3) (former CD223,
cluster of differentiation 223) [26]. LAG3 is a member of immunoglobulin superfamily molecule
involved in immunoregulation [27]. It is an immune checkpoint receptor possessing various biologic
effects on T cell function. The interaction between α-synuclein-PFF with LAG3 provides a new
target for the therapeutic interventions with potential to reduce the progression of PD and related
α-synucleinopathies. Interestingly, LAG3 binds misfolded α-synuclein built-in in PFF with high
selectivity (dissociation constant 77 nM) but does not interact with monomeric α-synuclein. Similar
specificity to aggregated, but not monomeric α-synuclein is described for toll-like receptor-2 (TLR2)
and transmembrane ion channels receptor P2X7 [28]. The binding induces a concentration-dependent
microglial glutamate release and activation of the cystine/glutamate antiporter system Xc [31].
The results of a recent study demonstrate that binding of extracellular α-synuclein to P2X7
receptor-pannexin induces ATP release in neuroblastoma SH-SY5Y cells [32]. Recently, an interaction
of synucleins with another protein involved in immunoregulation-CD11b integrin (the α-chain of
integrin αMβ2) was described [29]. One more type of receptor that modulate α-synuclein aggregation
and toxicity in both nerve cells and microglia is adenosine A2AR heteroreceptor complex [30].
These recent results propose that antibodies against synuclein’s receptors are promising tools for
immunotherapy and their application may be considered as a potential therapeutic intervention for
synucleinopathies [23].

Remarkably, LAG3 complex with misfolded synuclein is colocalized with small Ras-like GTPases
(Rabs), including Rab5a and Rab7, which are mediators of the vesicle recycling and protein
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traffic [34,35]. As a result, LAG3 in cooperation with Rabs plays an essential role in α-synuclein-PFF
endocytosis, cell-to-cell transmission, and internalization of pathologic α-synuclein. Furthermore,
since LAG3 is a major player in the immune system, its interaction with misfolded α-synuclein may
affect downstream signaling [26]. In addition to Rab5a and Rab7, other small Ras-like GTPases,
including Rab3A, Rab5, and Rab8 are associated with aggregated α-synuclein. This data indicates that
α-synuclein aggregates have a tendency to sequester Rab proteins [34,35]. Moreover, Rabs-α-synuclein
interaction may also influence α-synuclein processing, clearance, spreading, and aggregation [36].

Binding of α-synuclein to cell surface receptors may cause pathological changes through various
mechanisms. According to one of them, α-synuclein oligomers released from neuronal cells induce
proinflammatory responses from microglia. These responses are mediated by the activation of Toll-like
receptor 2 (TLR2) signaling, cytokine receptor signaling and other immune receptor signaling pathways
producing various proinflammatory cytokines and chemokines. On the next step, actin cytoskeleton
rearrangement pathways and cell migration are activated, while TLR signaling and cytokine and
chemokine production are continued [37]. The importance of TLR2 receptor in this process is validated
by experiments with its deletion, which resulted in elimination of cytokine/chemokine gene induction
by α-synuclein. Thus, α-synuclein released from cells is an endogenous agonist for TLR2 through
which microglia are activated and become neurotoxic. This study shows that α-synuclein oligomers
are inducers of inflammatory innate immunity in the nervous system [37].

Another recent study demonstrates that α-synuclein-induced microglial activation may be
processed via an alternative pathway omitting TLR2) signaling. This mechanism is carried out
via CD11b, the α chain of integrin αMβ2 [29,38]. The activation of microglial NADPH oxidase (NOX2)
induced by α-synuclein is a well-known mechanism implicated in Parkinson’s disease (PD) and other
synucleinopathies. Recent finding show that integrin CD11b mediates α-synuclein-induced NOX2
activation through a RhoA-dependent pathway. These results suggest a new mechanistic insight and
also point to a novel potential therapeutic synucleinopathies [29].

As shown above, synucleins modulate many intracellular processes and interact with a plethora
of proteins, affecting signaling pathways [11–14,16,23,26,29,32]. What structural elements of these
proteins ensure their binding diversity and involvement in many cellular functions? Being intrinsically
disordered or natively unfolded proteins, synucleins lack an ordered three-dimensional structure
and do not autonomously fold up into a unique stable conformation. Unfolded α-synuclein may
represent an overlay of at least 50 various structures taken from the protein ensemble database
(PyMOL, Schrödinger, Inc. New York, NY, USA) [39]. Such flexible protein conformation and ability
to adopt multiple 3D structures have certain physiological advantages. In contrast to proteins with
stable secondary and tertiary structure, synucleins possessing flexible conformation can easily alter
its 3D structure in response to changing environmental stimuli: ionic strength, pH, binding of small
molecules, etc., exposing its hidden domains. Such structural transition allows interaction with specific
protein partners to these exposed parts, ensuring binding specificity in response to altered milieu. As a
result synucleins may serve as sensors transmitting information in response to changing conditions.

Taking into consideration an important regulatory role of α-synuclein, several attempts have
been made to find the way to specifically modify its properties by mutations, post translational
modifications (PTMs), interaction with other proteins or compounds. One approach is to modify
synuclein’s secondary and tertiary structure by interaction with β-wrapins—genetically engineered
binding proteins. β-wrapins are artificial proteins which stabilize the β-hairpin conformations of
α-synuclein and other amyloidogenic proteins and inhibit their aggregation and toxicity [33,40].
The exact design of β-wrapins may be optimized for specific pathology by computational methods,
molecular dynamics simulations, and free energy calculations. This approach presents a promising
therapeutic strategy for inhibition the aggregation and toxicity of amyloidogenic proteins.

In addition to artificial proteins, graphene based nanomaterials GQDs (graphene quantum
dots) also could modulate synuclein properties. Graphene are composed of carbon atoms arranged
in a hexagonal lattice representing flat polycyclic aromatic hydrocarbons [41]. Graphene based
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nanomaterials GQDs (graphene quantum dots) and graphene oxide quantum dots (GOQDs) are
composed of carbon atoms arranged in a hexagonal lattice representing flat polycyclic aromatic
hydrocarbons [42,43]. The development of split-luciferase complementation test may become a base
for the generation of bioluminescence biosensors to monitor oligomerization of α-synuclein inside the
cells [42].

GQDs inhibit α-synuclein fibrilization, interact with α-synuclein PFFs, induce interaction-coupled
unfolding and could dissociate them. Importantly, GQDs can penetrate through brain blood barrier
and therefore are promising candidates for pharmacological interventions for synucleinopathies [43].
The development of methods of synuclein’s handling in vitro or in biological systems with using these
man-made materials may open a new direction in the development of cure for Parkinson’s disease.

Recent findings of new α-synuclein interacting proteins, cell surface receptors, and engineered
materials offer a new explanations of some unusual behavior of α-synuclein inside and outside of
a cell. They point to new potential drug targets for synucleinopathies treatment and indicate new
connections of α-synuclein with components of immunosystem. Therapeutic intervention may be
directed not only to disease-causing molecules, but also on their cell surface receptors and downstream
signaling cascades in order to prevent or delay the pathological changes. However, the development
of new methods of treatment directed to α-synuclein receptors and to downstream signaling cascades
should be implemented with caution taking into consideration the pleiotrophic effects of α-synuclein.
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