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ABSTRACT

Objective: Hand hygiene is essential for preventing hospital-acquired infections but is difficult to accurately track.

The gold-standard (human auditors) is insufficient for assessing true overall compliance. Computer vision tech-

nology has the ability to perform more accurate appraisals. Our primary objective was to evaluate if a computer

vision algorithm could accurately observe hand hygiene dispenser use in images captured by depth sensors.

Materials and Methods: Sixteen depth sensors were installed on one hospital unit. Images were collected con-

tinuously from March to August 2017. Utilizing a convolutional neural network, a machine learning algorithm

was trained to detect hand hygiene dispenser use in the images. The algorithm’s accuracy was then compared

with simultaneous in-person observations of hand hygiene dispenser usage. Concordance rate between human

observation and algorithm’s assessment was calculated. Ground truth was established by blinded annotation

of the entire image set. Sensitivity and specificity were calculated for both human and machine-level observa-

tion.

Results: A concordance rate of 96.8% was observed between human and algorithm (kappa ¼ 0.85). Concor-

dance among the 3 independent auditors to establish ground truth was 95.4% (Fleiss’s kappa ¼ 0.87). Sensitivity

and specificity of the machine learning algorithm were 92.1% and 98.3%, respectively. Human observations

showed sensitivity and specificity of 85.2% and 99.4%, respectively.

Conclusions: A computer vision algorithm was equivalent to human observation in detecting hand hygiene dis-

penser use. Computer vision monitoring has the potential to provide a more complete appraisal of hand hy-

giene activity in hospitals than the current gold-standard given its ability for continuous coverage of a unit in

space and time.
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INTRODUCTION

Hospital-acquired infections are a seemingly recalcitrant challenge.

According to data from the Centers for Disease Control and Preven-

tion, in the United States about 1 in 31 hospitalized patients has at

least 1 healthcare-associated infection daily.1 Hand hygiene is criti-

cal in preventing hospital acquired infections yet is very difficult to

monitor and consistently perform.2 For decades, in-person human

observation has been the gold-standard for monitoring hand

hygiene.2 However, it is widely known that this method is subjec-

tive, expensive, and discontinuous. Consequently, only a small frac-

tion of hand hygiene compliance is observed.2

Technologies such as radiofrequency identification have been

tested in hospitals to help monitor hand hygiene but do not correlate

with human observation.3,4 Moreover, objects and humans must be

manually tagged and remain physically close to a base station to en-

able detection, thereby disrupting workflow. Video cameras can

provide a more accurate picture of hand hygiene activity but raise

privacy concerns and are costly to review.5–7

Computer vision technology may provide an innovative solution

to perform more accurate and privacy-safe appraisals of hand hy-

giene. Depth sensors capture 3-dimensional silhouettes of humans

and objects based on their distance from the sensor. As they are not

actual cameras and do not utilize color photo or video, they preserve

the privacy of individuals in the image. Identification of diverse vi-

sual images by computer vision has already entered the healthcare

setting by assessing pathologic images in diabetic retinopathy, skin

cancer, and breast cancer metastases.8–11 In these studies, machine

learning was applied to static images with clear pathologic defini-

tions and criteria for diagnosis. However, hand hygiene dispenser

usage is dynamic, fast, and related to physical human movements.

Moreover, understanding human activities is a challenging task,

even for more mature artificial intelligence disciplines such as robot-

ics.12–15 Computer vision has recently been evaluated in simple hand

hygiene appraisals, but only in simulated environments.16,17

We present an application of computer vision in observing hand

hygiene dispenser use. The primary objective was to determine if a

computer vision algorithm could accurately identify hand hygiene

dispenser usage from images collected from depth sensors placed in

the unit with equivalent accuracy compared with simultaneous hu-

man observation.

MATERIALS AND ETHODS

Image acquisition
Sixteen privacy-safe depth sensors were installed in an acute

care unit of Lucile Packard Children’s Hospital Stanford (LPCH)

(Palo Alto, California). As the sensors are not video cameras, faces

of people and colors of clothing are not discernable and therefore

are privacy safe (see Figure 1). Sensors were mounted on the ceiling

above wall-mounted hand hygiene dispensers outside patient rooms.

These hand hygiene dispensers are triggered by motion and dispense

hand sanitizer when a hand is placed underneath them.

Imaging data were collected at LPCH from March to August of

2017. Sensors detect motion and continuously collect image data

when movement is detected. Depending on how quickly the subjects

in the images were moving, the images could be static or could be

short (2-3 seconds) video clips. This project was reviewed by the

Stanford University Institutional Review Board and designated as

nonhuman subjects research.

Development, training, and testing of the algorithm
A machine learning algorithm was developed to analyze the images

obtained by the sensors to identify when hand hygiene dispensers

were used/not used in the images. The algorithm was implemented

in Python 3.6 (Python Software Foundation, Wilmington, DE) using

the deep learning library Pytorch 1.0 (https://pytorch.org/). The al-

gorithm is a densely connected convolutional neural network

trained on 111 080 images (training set) (see Supplementary Appen-

dix).18,19 The research team annotated whether the hand hygiene

dispenser was used in each image. This annotation was done by 9

computer scientists and 4 physicians. The computer scientists were

trained by physicians to detect hand hygiene dispenser use. For the

purposes of our study, appropriate use was defined as use of the

hand hygiene dispenser upon entry or exit of a patient room as dem-

Figure 1. Depth sensor placement and image comparison. Privacy-safe depth image compared with color photos. (A) Example standard color photo and (B) corre-

sponding privacy-safe depth image captured by the sensor. The depth images are artificially colored: the darker color indicates pixels closer to the sensor. Black

pixels indicate that the pixel is out of range. (C) Two depth sensors attached to the ceiling of a hospital ward. Subjects in the photo consented to have their photo-

graph taken for illustrative purposes.
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onstrated by a human with their hand underneath the dispenser indi-

cating its usage. Nonuse was defined as a healthcare professional en-

tering or exiting a room without putting a hand underneath the

hand hygiene dispenser (see Figure 2). If a healthcare professional

used the dispenser but did not enter the room, this was not classified

as an event of interest. Annotation ambiguities were infrequent and

resolved by discussion among the annotators. It is important to note

that compliance rates were not calculated as this was not the focus

of the study; the focus was on if the physical movement captured

was consistent with dispenser usage or not.

Once all the images in the training set were annotated, 5-fold

cross validation was used to train the algorithm to detect hand hy-

giene dispenser use or nonuse.17,20,21 Five-fold cross-validation is an

evaluation framework in machine learning whereby an algorithm is

trained on a subset of the data (80% of the training set, 88 864

images) and then applied to the remaining data (20%, 22 216

images) to test its performance. The process is then repeated 4 more

times (each time on a different 80% subset) in order to continuously

refine the algorithm. Results from each round of cross-validation

training and validation can be found in the Supplementary

Appendix.

Algorithm comparison to human observation to

establish concordance
Because human observation remains the current gold-standard for

the auditing of hand hygiene, human observation and labeling were

used in 2 separate tasks. In this first human-centered task, trained

observers individually audited hand hygiene dispenser use in-person

at various dispenser locations on the unit of study for 2 hours.

Results of human audits were compared with the algorithm’s assess-

ment of images from the sensors covering the exact same dispensers

during the same time period to calculate concordance between hu-

man observation and the algorithm’s determination. A total of 718

images demonstrating dispenser use or nonuse were obtained during

the human observation period. This set of images served as the pri-

mary test set for our study.

Audits included observing for 2 events of interest as noted previ-

ously: hand hygiene dispenser use or nonuse upon room entry. For

the purposes of our study, concordance referred to the ability of the

algorithm to provide the same assessment of an event as a human

observer recorded it. The level of agreement between the human

audits and the algorithm’s assessments was calculated using Cohen’s

kappa. Cohen’s kappa adjusts the concordance rate downward

based on the rate of agreement expected by chance.

Determination of human and algorithm accuracy
In the absence of high-definition video to serve as a source of ground

truth to compare human audit results with, the second human-

centered task was the manual annotation of the entire test image set

by 3 of the authors (A.S., W.B., and T.P.).17,22 This step involved

human labeling and observation, which was separate from the con-

cordance exercise noted previously. In this portion of the study, the

3 referenced authors independently annotated the set for events of

dispenser use and nonuse. This process was “blinded” in that the

results of the prior human observation were not accessible to the

annotators. Interrater reliability was computed between the 3

authors using Fleiss’s kappa.23 Fleiss’s kappa is the analog to

Cohen’s kappa when there are more than 2 raters, in that it adjusts

the raw proportion of agreements for the proportion expected by

chance. Any differences in labeling were resolved by adjudication by

the 3 authors. The final result served as the source of ground truth

to which both human and machine labels were compared via calcu-

lation of sensitivity and specificity of both the human observers and

the algorithm.

RESULTS

A concordance rate of 96.8% was observed between human and

machine for overall labeling of events with a kappa of 0.85 (95%

confidence interval [CI], 0.77-0.92). Concordance among the 3 in-

dependent auditors to establish ground truth was 95.4%, with a

Fleiss’s kappa of 0.87 (95% CI, 0.83-0.91).

The machine learning algorithm showed a sensitivity and specif-

icity of 92.1% (95% CI, 84.3%-96.7%) and 98.3% (95% CI,

96.9%-99.1%) in correctly identifying hand hygiene dispenser use

and nonuse. Comparatively, human observations had a sensitivity

and specificity of 85.2% (95% CI, 76.1%-91.1%) and 99.4% (95%

CI, 98.4%-99.8%), respectively. The results of the labeling of dis-

penser use or nonuse by machine, human, and ground truth annota-

tion are shown in Table 1.

Table 1 illustrates the results of labeling by both human observers

and the machine algorithm as compared with the ground truth estab-

lished by remote labeling by the 3 authors (A.S., W.B., and T.P.).

Figure 2. Positive and negative examples of depth sensor data. Examples of hand hygiene dispenser use (left) and nonuse (right) in image dataset. Yellow arrows

indicate the location of hand hygiene dispensers in the images.
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DISCUSSION

Our results demonstrate that a computer vision algorithm is concor-

dant with human audits in detection of hand hygiene dispenser us-

age or nonusage in a hospital setting. Its specificity was high and

achieved a lower false-negative rate compared with human observa-

tion. Human auditing of hand hygiene is often done monthly for

only a few hours at a time. Moreover, it is not often possible to

cover an entire hospital unit covertly. Our study demonstrates that

automated detection of hand hygiene dispenser use is a trustworthy

assessment when compared with human observation as a gold-

standard. Of note, during our observation period we noted more

events of dispenser nonuse rather than use. However, given our ex-

periment was not focused on calculating compliance rates, but

rather to discern if a machine learning algorithm could correctly

classify movements, both events (use and nonuse) were of equal

value in capturing.

Real-time video surveillance and feedback has been studied in

prior experiments with impressive improvement in hand hygiene

compliance.7 However, it requires manual human review of real-

time video data and as noted previously, video data may raise staff

privacy concerns. Consequently, the ability of a machine learning al-

gorithm as used in our study to take sensor data and in real-time

proactively intervene with an output represents the next logical step

in harnessing this technology. Our current work is focused on devel-

oping this real-time feedback loop. As a case example, a visual cue

such as a red light surrounding a patient’s bed or entry/exit thresh-

old could alert a clinician if hand hygiene is not performed upon en-

tering a patient room. This could further influence vital behavior

that is not sustained at 100% anywhere in the world.2 Extending be-

yond hand hygiene, one could combine depth sensor analysis of pa-

tient movements inside a hospital room with routine vital sign alarm

data. The algorithm can fuse this data to learn when to silence inap-

propriate alarms, liberating beside staff from “alarm fatigue,” a

known patient safety concern.24

There are limitations to our study. First, annotation errors may

have mislabeled events. We tried to mitigate this with multiple

reviewers and discussions to resolve discrepancies. Second, depth

sensors lack fine-grained detail. Color video is the optimal choice

but raises privacy concerns for patients and staff. Depth sensors at

LPCH only recorded data when triggered by motion, generating in

certain cases only a few images versus full video, depending on how

fast or slowly the subject moved. Third, our study was limited to

one location and may not generalize to other hospitals or clinics

without more detailed training of the algorithm on location-specific

images. Fourth, our human observation time was only for a few

hours in one day. However, this is similar to current practice for co-

vert human observations and may not prove to be an accurate repre-

sentation of the true number of hand hygiene events in a 24/7 care

delivery system. Additionally, as this was a proof-of-concept study,

we only had sensors installed on one unit to minimize disruption in

patient care. Installation of sensors throughout an entire hospital

would take mobilization and coordination of many resources in

units in which active patient care is taking place, possibly limiting

active installation this type of technology in an existing hospital

structure. Last, while the cost of performing the experiment on one

unit may be relatively small for a hospital budget, it could prove

more expensive to perform in an entire hospital building. At the

time of our study, the cost of the sensors used and their associated

hardware used was approximately $50 000 USD. Additional

expenses included time and labor for installation by the hospital fa-

cilities staff and engineers, which may vary substantially by institu-

tion. However, when compared with the expense of covert

observers to provide a similar level of data as continuous and auton-

omous sensors, it is likely less expensive in the long term.

CONCLUSION

We demonstrate a novel application of a passive, economical,

privacy-safe, computer vision–based algorithm for observing hand

hygiene dispenser use. The algorithm’s assessment is equal to the

current gold-standard of human observation with improved sensitiv-

ity. Its capacity of continuous observation and feedback to clinicians

may prove useful in efforts to mitigate a seemingly recurrent source

of healthcare-induced harm.

AUTHOR CONTRIBUTIONS

All authors contributed to the study concept and design. Data acquisition,

analysis, and interpretation of data were completed by AS, AH, SY, MG, and

JRG. Drafting of the initial article was completed by AS and AH. Critical revi-

sion of the article was completed by all authors. Statistical analysis was per-

formed by AS, AH, and JRG. The clinical study portion was supervised by AS

and TP, with technical oversight provided by AH, SY, MG, AA, and LF-F.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Infor-

matics Association online.

ACKNOWLEDGMENTS

The authors thank the patients, families, and staff of the study unit for their

cooperation and assistance in the study. The authors additionally thank the

facilities and engineering staff of Lucile Packard Children’s Hospital Stanford,

who assisted with installation of the sensors. The authors also thank Mr.

Zelun Luo, MS; Mr. Sanyam Mehra, MS; Ms. Alisha Rege, MS; and Ms. Lily

Li with their assistance in annotation of the image dataset. Finally, the

authors thank the hospital administrative staff and executive board for their

approval, encouragement, and support in pursuing the study.

Table 1. Results of machine and human labeling

Human observers Machine Ground truth

Dispenser used 79 92 88

Dispenser not used 639 626 630

Sensitivity, % 85.2 (95% CI, 76.1-91.1) 92.1 (95% CI, 84.3-96.7) —

Specificity, % 99.4 (95% CI, 98.4-99.8) 98.3 (95% CI, 96.9-99.1) —

CI: confidence interval.
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