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Abstract: Automotive waste represents both a global waste challenge and the loss of valuable embed-
ded resources. This study provides a sustainable solution to utilise the mixed plastics of automotive
waste residue (ASR) as a resource that will curtail the landfilling of hazardous waste and its adverse
consequences to the environment. In this research, the selective thermal transformation has been
utilised to produce nano silicon carbide (SiC) using mixed plastics and glass from automotive waste
as raw materials. The composition and formation mechanisms of SiC nanoparticles have been investi-
gated by X-ray diffraction (XRD), X-ray-Photoelectron Spectroscopy (XPS) and Transmission Electron
Microscopy (TEM). The as synthesised SiC nanoparticles at 1500 ◦C has uniform spherical shapes
with the diameters of the fixed edges of about 50–100 nm with a porous structure. This facile way
of synthesising SiC nanomaterials would lay the foundations for transforming complex wastes into
value-added, high-performing materials, delivering significant economic and environmental benefits.

Keywords: automated shredder residue; end-of-life-vehicles; nano silicon carbide; windshield glass;
waste recycling

1. Introduction

The management of waste material and the limited resources within our planet
is one of the most critical challenges that engineers, and scientists are facing to solve.
Australia produced about 67 million tonnes of waste in 2016–2017 [1]. The biggest resource-
consuming and waste producer industry among different industry sectors is the automotive
industry [2]. The volume of waste material generated from end-of-life-vehicle (ELVs) is
indeed enormous that requires to be appropriately managed. The waste management
process of end-of-life-vehicle (ELVs) can be categorised in three broad stages: (I) depollution,
(II) dismantling and (III) shredding [3]. Around 70–75% of total shredded output contains
ferrous fraction and nonferrous metals, while the 20% to 25% of remaining from shredded
production is named the automotive shredder residue (ASR) [4]. Generally, ASR is found
after the separation of metals from the shredded materials which usually contains 19–31%
plastic, nearly 20% rubber, 10–42% textile and fibre materials, 2–5% wood residues, and
5.2% glass [5,6]. Previous research showed that ASR can be an excellent source of carbon
because of the presence of substantial amount of wood and plastic [7].

Sorting and recovering the value-added resources from mixed waste plastics of ASR
include two main categories; the mechanical classification of waste that is recyclable and
the thermal treatment of waste for recovering value-added materials or energy-producing
fuels [3]. Gasification technologies are increasingly considered the ideal choice for the
thermal processing of waste materials because these renewable processes decrease the
need for fossil fuels and reduce greenhouse gas emissions [8,9]. Recently, the thermal
process is receiving attention because of its flexibility to produce different proportions
in a combination of solid, liquid, and gaseous products with a wide range of variations
in the operating factors such as temperature rate, time, thermal treatment atmosphere,
etc. and providing an opportunity for transforming low-energy-density materials into
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high-energy-density biofuels [10,11]. Numerous studies have been conducted on thermal
treatment of waste from the automotive such as tyre, synthetic polymers, acrylic fibres,
mixed plastics to produce oil, gas, and carbonaceous product [12–17]. Some recent studies
showed that mixed glass from the auto waste can be a very good source of silica [18].
Still, there is a lack of research on the commingled glasses found from the automotive
waste. In addition, there are a few studies on the thermal treatment of mixed waste plastics
from auto waste for the nanomaterials. Still, the thermal energy recovery from waste
plastics from ASR has not been commercially and technically proven and requires further
investigations. Besides, most previous research has studied the thermal transformation
of ASR at moderate temperatures between 450 ◦C and 800 ◦C [19–27]. Consequently,
there is a lack of understanding associated with the use of high temperatures and the
rapid heating of carbon-bearing wastes containing oxides and their transformations under
such extreme condition—conditions that usefully minimise the generation of toxic gases.
This research aimed to find a facile solution to transform hazardous mixed plastic and
glass waste into valuable products and resources which could be the feedstock to other
manufacturing industries. Silicon carbide is an advanced ceramic compound with excellent
thermomechanical, high temperature/corrosive resistance, chemical stability and electrical
properties [28].

Nanostructured SiC materials not only possess the excellent properties of its bulk
but also exhibits the unique properties of nanomaterials, for example, small-sized effect,
surface and boundary effect, quantum size effect [29,30]. Hence the nanostructured SiC
materials can be applied in the field of nanoscale electro-devices, nanosensors, biological
labels, and light-emitting devices [31–36]. Several efforts have been devoted to prepar-
ing various types of nanostructured SiC. The most common methods are sol-gel [37–39],
chemical vapor deposition [40,41], plasma [42,43], microwave heating [44], etc. Most of the
abovementioned methods for preparing nanostructured SiC used expensive raw materials.
Recently, the use of waste materials such as agricultural waste [45], plastic waste [46,47],
biomass gasification [48] as a carbon source, and glass waste and e-waste as silicon source
in the production of nanostructured SiC has been studied [49–51]. Researchers have utilised
the waste tyres as a carbon source to produce nano SiC [51,52]. However, producing nano
SiC by utilising waste glasses and mixed plastics of automotive waste as the silicon and
carbon sources without using any excessive raw materials is the main objective of this
study. It represents a sustainable thermal approach to utilise the automotive waste to
fabricate nanostructured SiC, simultaneously reducing pressure on virgin resources, aiding
waste management, and producing value-added high performing materials.

2. Material and Methods
2.1. Raw Materials

In this study, because of the accessibility and availability to the local manufactures,
the vehicles windshield glass waste and the mixed plastics of ASR were collected from
the local steel manufacturer in Australia. Table 1 represents oxides in the windshield
glass powder; the oxides less than 0.1 wt% are ignored. Silica is the dominant oxide of
automotive glass with a mass fraction of 71.25% and other major oxides in automotive
glass are Na2O, CaO and MgO, with mass fractions of 15.50%, 8.30%, 3.73%, respectively.
The XRF result represents that the windshield glass is a suitable source of silica. As listed
in Figure 1: (a) ASR compositions, and (b) plastic composition of ASR [26,53–55], ASR is a
complex mixture of a wide range of materials such as textiles, wood, foam, and different
plastic types [24,51–53]. According to Figure 1, ASR comprises 40% plastic, and the main
plastic-type in the ASR is polypropylene 39%. The percentages of carbon (C), hydrogen (H),
nitrogen (N), sulphur (S) and oxygen (O) of raw ASR are measured via CNHSO elemental
analysis. As summarised in Table 2, CHNS analysis of ASR, the carbon percentage in ASR
is 25.74%, which indicates that the ASR is a potential source of carbon.
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Table 1. Major oxides in the windshield glass done by XRF.

Oxide (wt%)

SiO2 71.25
Na2O 15.50
CaO 8.30
MgO 3.73
Al2O3 0.47
Fe2O3 0.46
K2O 0.13

TOTAL 99.84
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Table 2. CHNSO analysis of ASR.

N (%) C (%) H (%) S (%) O (%)

0.72 25.74 3.002 0.258 11.66

2.2. Experimental

The waste glass and the mixed plastic of ASR were grounded separately by Pulveriser
Ring mills metal screen in size range of 0.75–1 mm for 2–3 min and 10 min, respectively.
Then the waste glass powder and ASR plastics powder were mixed with 30–70% weight
ratios to make pellets using the Carver hot press (Model 2697, Menomonee Falls, WI, USA)
at 150 ◦C with a uniaxial pressure (200 bar). Then pellets were dried in the oven for more
than 12 h at 60~90 ◦C to remove any moisture content. Next, the pellets were placed in a
horizontal tube furnace (Model HTF 7060, Ceramic Engineering, Furnace Manufacturers
Sydney, Australia) under high purity argon (>99%) gas supply at 0.8 L min−1 using a mass
flow controller. The heating chamber temperature was 700 ◦C to 1500 ◦C, and the holding
time was 2 h. The as-synthesized products were collected and then purified by diluted HF
solution. The purified products were further washed by deionized water to neutral, and
the pure products were obtained after drying in an oven. The samples were grounded by
mortar and pestle for further analysis.

Thermo-gravimetric analysis (TGA, STA-8000, PerkinElmer, Groningen, Netherlands)
was conducted from room temperature to 850 ◦C at 20 ◦C min−1 in a nitrogen-enriched
atmosphere with a purified rate of 20 mL min−1 to characterise the thermal transforma-
tion behaviour of raw materials under the influence of heating. The primary chemical
group and gas identification of thermal decomposition of mixed powder ASR plastics and
glass were analysed by Fourier transform infrared spectroscopy (FTIR, Spotlight 400 FTIR,
PerkinElmer, Llantrisant, UK). Chemical composition and major oxides of raw materi-
als were studied via X-ray fluorescence spectroscope analyser (XRF, instrument AXIOS,
WD-XRF with Rh end-window tube, PANalytical, EA Almelo, Netherlands), “SUPERQ”
software, and WROXI 1222 program was used for substantial elements which expressed as
major oxides. X-ray-photoelectron spectroscopy (XPS, instrument ESCALAB250Xi, Thermo
Scientific, Loughborough, UK) examined the chemical state of the surface of raw and heat-
treated materials. X-ray source was monochromatic Al K-alpha with energy 1486.68 eV, the
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power of 120 W (13.8 kV, 8.7 mA), and binding energy reference C1s 284.5 eV for graphite.
To characterise and obtain information about the phase identification and crystallinity
of raw materials and synthesized SiC X-ray diffraction (XRD, Empyrean II, PANalytical,
Eindhoven, Netherlands) analysis was performed with Co Anode, K-alpha 1.78901 Å at
40 mA and 45 kV, with XRD ranged from 10◦ 2θ to 110◦ 2θ. The XRD results were further
analysed by high score plus software (version 5.1, 2021, Malvern PANalytical, Eindhoven,
The Netherlands). Specific surface areas and pore size distributions were detected via
the Brunauer–Emmett–Teller (BET, instrument type 3020, Nitrogen at temperature 77 K,
Norcross, GA, USA) and BJH models. Transmission electron microscopy (TEM, Philips CM
200, FEI Company, Eindhoven, Netherlands) was used in this study to identify morphol-
ogy, high-resolution transmission electron microscopy (HRTEM)and selected area electron
diffraction (SAED) to detect lattice structure and diffraction pattern.

3. Results and Discussion

ASR is a complicated solid waste as it is an incredibly diverse mixture of residual metals,
polymers (plastics, rubber, textile, foam) and inorganic fillers (ash and glass). Polypropylene
(PP), polyethylene (PE), polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS) and
polyamide (PA) are polymer materials that could be the main parts of ASR [56,57]. Other
trace components which could be seen in ASR are small glass pieces or metals. Thus, to
obtain a characterisation such as thermal transformation behaviour and gas evaluation, TGA,
FTIR, and find composition XPS, XRD analyses were conducted, respectively.

3.1. Characterisation of Raw Materials

Thermo-gravimetric analyses (TGA) and differential thermo-gravimetric analysis
(DTGA) of the mixed plastics of ASR and glass are illustrated in Figure 2a. TGA analysis
was carried out by heating mixed ASR plastics and glass from ambient temperature to
850 ◦C at 20 ◦C min−1 in a nitrogen atmosphere with a purify rate of 20 mL min−1. As
depicted Figure 2a, the thermal weight loss of mixed ASR plastics and glass was started
from 160 ◦C (Tonset) and ended at 800 ◦C (Tendset). The maximum thermal weight loss
(Tmax) for combined ASR and glass occurred around 378 ◦C. Moreover, Figure 2a displays
the multi-staged reduction in the TGA curve as the high mass fraction results. The plastics
in the ASR cause the first two degradation step in the TGA curve at 378 ◦C and 430 ◦C,
respectively, and the last degradation step is due to the glass transition at 726 ◦C.
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As shown in Figure 2b, FTIR analysis of the mixed powder ASR plastics and glass
thermally degraded at different temperatures and different time periods was conducted.
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Plastics of ASR released the hydrocarbon gases visible up to a specific temperature from
400 ◦C to 540 ◦C. Peaks between 2300 cm−1 and 2360 cm−1 could be assigned to CO2, which
shows CO2 release increased as temperature increased until 540 ◦C after this temperature
at 740 ◦C still there is CO2 peak but intensity decrease [58]. As shown in Figure 2b, the
absorbance bands were different before 400 ◦C and after 540 ◦C, but the location of the
absorbance bands from 400 ◦C to 540 ◦C was almost the same; however, the intensities were
different. This could conclude that the heat temperature caused each product’s yield, and
the main categories of volatile products were not affected by temperature [58]. The largest
signals are shown in 440 ◦C for 25 min graph (6). Figure 2b indicates wavenumber ranges of
absorption peaks vs. the percentage absorption at different time–temperature profiles. The
IR absorption bands around 3500–3900 cm−1 could be assigned to hydroxyl group O=H
and which are symmetric and asymmetric stretch [59]. The band observed in Figure 2b in
the graph 5 and 7 at around 2914 cm−1 is attributed to –CH2– symmetric stretch, and the
band observed about 2960 cm−1 is assigned to asymmetric stretch isopropyl functional
group (–CH3) in polypropylene [53]. The IR bands at 1536 cm−1, 1455 cm−1 and 1376 cm−1

are attributed to polyethylene single bond –CH3 and single bond –CH2 [60]. Figure 2b
indicates a carbonyl (O=C=O) stretch with a dipole moment and two signals at 2300 cm−1

and 2360 cm−1, implying symmetric and asymmetric stretching. The band at 2300 cm−1 is
a symmetric stretch with a strong absorbance in the double bond region. The asymmetric
stretch takes more energy; therefore, the higher signal at 2360 cm−1 is an asymmetric
stretch. As shown in Figure 2b, the bands around 1260–2000 cm−1 are attributed to C=C,
C–H, C=O. Figure 2b shows that the band in graphs f and g around 1750 cm−1 is related
to C=O stretching mode of the amide functional group in polyurethane. Moreover, the
bands around at 1255 cm−1 and 1020 cm−1 are attributed to the C–C–N bending and
C–O–C anti-symmetrical stretch in polyurethane [53]. As shown in Figure 2b, the IR bands
in graphs 5 and 7 about 740 cm−1 are allocated to the CH out of plane deformation of
ortho-disubstituted benzene, and 1495 cm−1 are assigned to the stretching mode of the
benzene ring in polycarbonate [53]. Therefore, the FTIR spectrum confirmed that ASR
contained polypropylene (PP), polyethylene (PE), polyurethane (PU) and polycarbonate
(PC) polymers.

XPS analysis was conducted to explore the chemical state of the elemental surface of
the mixed plastics of ASR. As shown in Figure 3 C1s A and O1s C are the most substantial
peaks, and other peaks of Si2p, Ca2p implies on there are inorganic fillers, for example,
fibreglass, calcium carbonate and other mineral oxides [60,61]. Moreover, carbon, oxygen
and chlorine demonstrated in Figure 3a could originate from polymer materials such as PP,
PE, ABS, PA, PU and PVC. Additionally, Figure 3a reveals aluminum and iron peaks which
could come from the metal element in ASR. As summarised in Figure 3a peaks around
103 eV, 285 eV, 347 eV, 532 eV and 1072 eV with concentrations of the formed atom, 8.64%,
36.51%, 2.64%, 30.58% and 1.36% correspond to Si2p, C1s A, Ca2p3 A, O1s B and Na1s,
respectively. Figure 3d depicted the Ca2p3 A peak which, according to the NIST database,
the peak around 346.5–347.0 eV are assigned to CaCO3. Based on Choi, M. et al., [62]
the peak around 102 eV confirmed the silicon atom is the electrovalence. According to
Farzana, R. et al., [49] the most substantial peak was for O1s with binding energy 532 eV;
this could be as a result of the presence of oxygen from the exposure of the materials to
the atmosphere.
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XPS analysis was conducted to obtain information about the chemical compounds’
state on the surface of the glass from automotive waste. As summarised in Figure 4a, the
binding energy of Na1s, O1s, Ca2p1 B, C1s, Si2p peaks are around, 1071 eV, 532 eV, 351
eV, 285 eV, 102 eV, respectively. The C1s peak is called adventitious carbon caused by the
adsorption of hydrocarbon impurities which does not affect interpreting the results [63].
C1S is related to the sp2 carbon bonding (sp2C) at 284.3± 0.15 eV, sp3 carbon bonding (sp3C)
at 285.0± 0.1 eV, C–O bonding at 286.2± 0.1 eV and C=O bonding at 287.9± 0.1 eV [64,65].
O1s is the highest peak. The high-resolution XPS spectrum of O1s shows two peaks around
532 eV and 530 eV with an atomic percentage of 41.94% and 10.37%, respectively. According
to Liste, S. et al. [66], 532 eV refers to the Si–O–Si vibration (bridging oxygen groups, BO)
and the value of 530 eV is associated with the nonbridging silicon-oxygen groups (NBO).

Figure 5 demonstrates the XRD pattern of the mixed plastics of ASR and glass. Ac-
cording to Figure 5, the XRD pattern of glass shows a broad peak which indicates glass
was used in this study has an amorphous nature. Additionally, based on the information
from An, Z. et al., [67] a broadened dispersion peak at 22◦ with no sharp diffraction peak
corresponds to the occurrence of amorphous materials. Moreover, the XRD pattern reveals
the lack of any ordered crystalline structure [68]. Figure 5 shows the XRD pattern of the
mixed waste plastics of ASR, which identified the main crystalline phases. The ASR graph
shows that the mixed plastics of ASR mainly contains SiO2, CaCO3, MgAl2Si3O10, and
(Na,Ca)Al(Si,Al)3O8. The strongest peak in the XRD pattern of ASR belongs to Si2O. The
quantitative XRD analysis suggests that the volume percentage of the MgAl2Si3O10 phase
are less than 1% ASR plastics.
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3.2. Thermal Transformation of the Waste Glass and Mixed Plastics of ASR

In this paper, glass from the windshield of cars was used as a Si source and ASR
plastics as a source of C to synthesise high-value materials. X-ray diffraction spectra
indicate that SiC did not form up to the temperature of 1100 ◦C. Only peaks of SiO2
were identified, which suggests that the thermal energy was not sufficient to trigger the
reaction between the SiO2 of the glass and C of the ASR plastics. Figure 6 demonstrates
that the formation of SiC has been started at 1300 ◦C, and by increasing the temperature
to 1500 ◦C, the production of SiC was also increased. Therefore, the results suggest that
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the reaction between Si and C happens at a higher temperature, confirmed by the other
researchers [51]. SiC peaks at 1500 ◦C are stronger than 1300 ◦C. At 1500 ◦C, there are
no SiO2 peaks observed; just a minor peak of SiOxCy could be seen, which suggests an
almost complete reaction between the SiO2 of glass and C of ASR plastics for the total
transformation into SiC. The highest peak for SiC is around 35.69◦. The SiC in both 1300 ◦C
and 1500 ◦C has a cubic crystal system.
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X-ray photoelectron spectroscopy (XPS) was used to study the chemical phenomenon
occurring at surfaces of materials. XPS analysis of mixed ASR plastics and glass at 1500 ◦C
was conducted. The results of samples at 1500 ◦C illustrates the reduction of SiO2 with
carbon to produce SiC. Additionally, Figure 7a and Table 3 depicts the highest peaks
belonging to O1s with binding energy 532 eV with concentrations of the formed atom
was 28.86%, which could result from contamination caused by exposure to oxygen in the
atmosphere. C1s C, Si2p A, Ca2p3 A have high peaks around 283 eV, 101 eV, 347.57 eV
with concentrations of the formed atom 22%, 29.96%, 1.84%, respectively. As shown in
Table 3 and Figure 7b, Si2p has two peaks around 101 eV, 102.5 eV allocated to SiC and
SiO2 [69–71]. High-resolution XPS spectrum of C1s indicates that the highest peak C1s
C (283 eV) associated with high-coordination C–Si, and C1s A (284.8 eV) related to C–C
as reported by McKenna, J. et al. [72]. As stated by Lee, K. H. et al. [73] Si2p with the
binding energy of 101 eV–102 eV confirms the formation of the Si–C bond; whereas the C1s
spectrum with the binding energy of 282 eV–284 eV demonstrates the development of Si–C
bond. Moreover, according to Aitana et al. (2018) the peaks of Si2p and C1s spectra with
the binding energy of 101 eV and 283 eV associated with the unoxidised Si and C atoms of
the SiC [71,74]. As discussed by Rajarao, R. et al. [75] O1s with binding energy, 532 eV is
related to Si–O–C bond in silicon oxycarbide. Subsequently, the XPS results confirm the
formation of SiC.
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Table 3. Typical photoelectron binding energies of heat-treated sample at 1500 ◦C for 2 h.

Name Peak BE Atomic% Possible Compounds Ref.

Si2p A 101 29.96 SiC [70,71]
Si2P B 102.5 5.34 SiOC/CaSiO3 [69,76]
C1s C 283 22 SiC [71,73,77]
C1s A 284.8 7.46 C [72,78]
O1s 532 28.86 SiOC/MgO/Al2O3/CaSiO3 [75,76,79–82]

Ca2p3 A 347.54 1.84 CaSiO3 [76]
Al2p 75 3.88 Al2O3 [83–85]
Mg2p 51 0.10 MgO [86]
N1s 399 0.13 pyridinic N [87]

Na1s A 1073 0.23 NaCl/Cu [88]
F1s A 686 0.2 Na2SiF6 [89]

Figure 8a plots the N2 adsorption–desorption isotherms of SiC representing the type-
IV shape; this type of curves has the characteristic of mesoporous materials [90,91]. As
depicted in Figure 8a, when the relative pressure is in the range of 0.5 p/p◦ to 0.9 p/p◦, the
adsorption and desorption isotherms are abruptly changed, which is one of the prominent
aspects of mesoporous materials [92]. Moreover, the adsorption–desorption isotherms still
rise above the relative pressure of 0.9 p/p◦, which suggested that the sample has some
macroporous [93]. According to BET analysis, the surface area is 58.8203 ± 0.2508 m2/g.
Figure 8b, demonstrates that the sample’s pore width is between 2 and 16 nm. The
maximum pore width is about 4.50 nm, indicating that the sample is mesopores.
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The structure and morphology of SiC nanoparticles obtained at 1500 ◦C for 2 h were
characterised by using transmission electron microscopy (TEM). Figure 9a shows the low-
resolution transmission electron microscopy (LRTEM) image of as synthesised SiC. As
depicted in Figure 9a SiC are quasi-spherical particles with the length of the fixed edges of
about 50–100 nm with a porous structure. These SiC particles are stacked together to form
secondary particles with irregular pores. Figure 9b represents high-resolution transmis-
sion electron microscopy (HRTEM). It indicates SiC is highly crystallised, which means
that nanoparticles are composed of many small single-crystalline SiC nanoparticles with
different orientations. As presented by Wang et al. [94], the high crystallinity of SiC could
be recognised by the regularly arranged lattice. XRD patterns of SiC nanospheres confirm
that there are three perfect diffraction peaks at 35.69 ◦, 60.11 ◦ and 71.78 ◦ correspond to
rings (111), (220) and (311) planes of cubic SiC (Reference code: 00-029-1129). HRTEM
image demonstrates sharp lattice separation of (111) planes with d = 0.25 nm links to the
cubic phase of SiC crystals. The peaks in Figure 9c illustrates the selected area electric
diffraction pattern (SAED) of a single spherical nanoparticle. As depicted in Figure 9c the
SAED patterns reveal that nanoparticle is polycrystalline SiC and each diffraction ring
could be indicated to the (111), (220), (311) planes of the cubic SiC, respectively.

3.3. Formation Mechanism of the SiC Nanospheres

At a high temperature, thermal treatment isolated useful carbon from ASR plastics
materials to produce carbon products and silica layers. The reaction mechanism of car-
bothermic reduction is explained from equation 1 to 6. The carbothermic reduction of
SiO2 to synthesis SiC is one of the most efficient methods due to cheap raw materials and
minimal reaction equipment [95–98]. The reaction temperature and the raw material have
significant roles in synthesising the SiC nanosphere [99]. Based on the general reaction
(6), SiO2 reacts with C and form SiC. However, the formation of SiC is a complicated and
needs a series of solid–solid, solid–liquid, solid–gas and gas–gas reactions [100–103]. The
synthesis of SiC is a multi-step reaction with the beginning of the reduction of SiO2 by
C based reaction (1) in direct physical contact [104]. The mixed ASR plastics and glass
were heated at 1500 ◦C for 2 h, during this time, SiO2 and C reacted, and SiO and CO
were generated, as shown in reaction (1). Then, the reaction of CO with SiO2 results in
the formation of SiO and CO2 (2). CO2 reacted with the surrounding C to form CO (5);
this reaction boosted reaction (4) to grow SiC continuously [51,99]. Moreover, SiO and C
could react together and produce SiC (3). As demonstrated in reaction (4), the SiO and CO
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reacted together and produced SiC. The reduction of SiO2 by the reaction between C and
Si to synthesise SiC can be explained as follows [47–49].

SiO2(s,l) + C(s)→ SiO(g) + CO(g), (1)

SiO2(s,l) + CO(g)→ SiO(g) + CO2(g), (2)

SiO(g) + 2C(s)→ SiC(s) + CO(g), (3)

SiO(g) + 2CO(g)→ SiC(s) + CO2(g), (4)

CO2(g) + C(s)→ 2CO(g). (5)

Based on An, Zibo et al., the general reaction is as follows [38].

SiO2(s,l) + 3C(s)→ SiC(s) + 2CO(g) (6)

Nanomaterials 2021, 11, 2781 11 of 16 

Figure 9. (a) A general low-resolution TEM image, (b) a representative high-resolution, (c) a corresponding selected area 
electron diffraction pattern of SiC nanoparticles obtained at 1500 °C for 2 h. 

3.3. Formation Mechanism of the SiC Nanospheres 
At a high temperature, thermal treatment isolated useful carbon from ASR plastics 

materials to produce carbon products and silica layers. The reaction mechanism of car-
bothermic reduction is explained from equation 1 to 6. The carbothermic reduction of SiO2

to synthesis SiC is one of the most efficient methods due to cheap raw materials and min-
imal reaction equipment [95–98]. The reaction temperature and the raw material have sig-
nificant roles in synthesising the SiC nanosphere [99]. Based on the general reaction (6), 
SiO2 reacts with C and form SiC. However, the formation of SiC is a complicated and needs 
a series of solid–solid, solid–liquid, solid–gas and gas–gas reactions [100–103]. The syn-
thesis of SiC is a multi-step reaction with the beginning of the reduction of SiO2 by C based 
reaction (1) in direct physical contact [104]. The mixed ASR plastics and glass were heated 
at 1500 °C for 2 h, during this time, SiO2 and C reacted, and SiO and CO were generated, 
as shown in reaction (1). Then, the reaction of CO with SiO2 results in the formation of SiO 
and CO2 (2). CO2 reacted with the surrounding C to form CO (5); this reaction boosted 

(a) 

(b) (c) 

111
220

311

β-SiC(111)
0.25nm

Figure 9. (a) A general low-resolution TEM image, (b) a representative high-resolution, (c) a corresponding selected area
electron diffraction pattern of SiC nanoparticles obtained at 1500 ◦C for 2 h.



Nanomaterials 2021, 11, 2781 12 of 15

4. Conclusions

In this research, mixed glass and plastics from the automotive waste have been
transformed thermally into the SiC nanoparticles. Thermal transformation from 700 ◦C to
1300 ◦C could not be converted the SiO2, and whatever trace of formation of SiC at 1300 ◦C
confirmed by XRD indicated that slight partial transformation occurred at this stage. Hence
the results show that at low temperature the chance of formation SiC is low. Accordingly,
the results demonstrate that the carbothermic reduction has taken place at 1500 ◦C, and
with the presence of Si and C in waste glass and mixed plastics of ASR, silicon carbide was
synthesised. The characterisation of the sample obtained after the thermal transformation
at 1500 ◦C confirms SiC nanoparticles with the diameter of about 50–100 nm. The BET
surface area of the as synthesised material is 58.82 ± 0.25 m2/g with a pore diameter
between 2 and 16 nm. Converting the problematic mixed waste plastics and glass waste
into refined nanomaterials is promising for the sustainable solution of the automotive
waste, which will otherwise be destined to be landfilling.
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