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Genetic conditions affecting the skin and kidney are clinically and genetically hetero-
geneous, and target molecular components present in both organs. The molecular 
pathology involves defects of cell–matrix adhesion, metabolic or signaling pathways, as 
well as tumor suppressor genes. This article gives a clinically oriented overview of this 
group of disorders, highlighting entities which have been recently described, as well as 
the progress made in understanding well-known entities. The genetic bases as well as 
molecular cell biological mechanisms are described, with therapeutic applications.
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iNTRODUCTiON

Anomalies of both skin and kidney occur in a vast number of genetic conditions. There are two 
major reasons for this concomitant occurrence of clinical manifestations. First, skin and kidney 
share a common embryological background represented by mesoderm for dermal connective 
tissue and kidneys. Second, various molecules involved in adhesion (e.g., integrin α3, CD151), 
cholesterol biosynthesis (e.g., NSDHL), or signaling pathways [e.g., Wnt, hedgehog (Hh), Ras/
MAPK] are highly relevant for the development, structure, and function of both organs. In some 
syndromes, cutaneous and renal involvements are among the striking, pathognomonic features. 
Many of these disorders are recognizable at birth or early childhood.

Renal anomalies include congenital abnormalities of the kidney and urinary tract (CAKUT) 
(e.g., renal hypoplasia or aplasia, horseshoe deformations, anomalies of the urine collection sys-
tem), malfunctioning of glomerular filtration, and the predisposition for tumors. The spectrum of 
skin anomalies is wide including pigmentation anomalies, skin dryness and ichthyosis, vascular 
anomalies (e.g., nevi flammei and hemangiomas), benign and malign skin tumors, abnormal hair, 
and nail dystrophy.

In this overview, genetic conditions affecting the skin and the kidneys are divided into three main 
groups:

 1. Monogenic disorders with skin and renal involvement
 2. Disorders due to postzygotic mosaicism
 3. Chromosomal aberrations.

Abbreviations: CAKUT, congenital abnormalities of the kidney and urinary tract; EB, epidermolysis bullosa; Hh, hedgehog; 
HLRCC, hereditary leiomyomatosis and renal cell cancer; LEOPARD, Lentigines, Electrocardiographic abnormalities, Ocular 
hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth and Deafness; NF1, neurofibromatosis 
type 1; NS, Noonan syndrome; TSC, tuberous sclerosis complex.
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MONOGeNiC DiSORDeRS wiTH SKiN 
AND ReNAL iNvOLveMeNT

In certain monogenic disorders, such as epidermolysis bullosa 
(EB), RASopathies or disorders with tumor predisposition, 
cutaneous, as well as primary or secondary renal involvement 
may occur. In this section, we update the clinical and molecular 
features of the most relevant disorders of this vast group. In a large 
number of other genodermatoses and genetic syndromes, renal 
involvement may occur, but is not a defining feature. The clinical 
and molecular characteristics of these rare disorders are updated 
in Tables 1 and 2.

epidermolysis Bullosa
Epidermolysis bullosa encompasses disorders defined by 
cutaneous and mucosal fragility. Classification into four major 
EB types, EB simplex, junctional EB, dystrophic EB, and the 
Kindler syndrome, is based on the ultrastructural level of skin 
cleavage (2, 3). Renal and urinary tract anomalies may occur 
in all EB types, in particular in junctional and dystrophic EB.  
In patients with severe dystrophic EB due to absence of collagen 
VII various renal pathologies may occur and lead to chronic renal 
failure. Hydronephrosis, poststreptococcal glomerulonephritis, 
IgA mesangial disease, or renal amyloidosis has been reported 
in dystrophic EB case series (4, 5). The mechanisms may include 
repetitive vesiculation within the lining epithelia of the urinary 
tract, and chronic systemic inflammation (6). Only EB types 
for which reno-urinary involvement is a primary feature will be 
described here.

Interstitial Lung Disease, Nephrotic Syndrome,  
and EB (ILNEB; MIM 614748)
Clinical Features
ILNEB is a rare autosomal recessive multiorgan disorder affecting 
the skin, kidneys and lungs. So far, 11 cases have been identified 
[reviewed in Ref. (5), and own unreported data], but the disease 
may be under recognized.

The clinical manifestations of ILNEB encompass the triad 
of early onset interstitial lung disease with respiratory distress, 
variable renal anomalies, and skin fragility. Since integrin α3 
is widely expressed, clinical manifestations may occur in other 
organs, but are not characterized yet, because of the small number 
of cases and the early lethality. Skin involvement may include 
blistering, erosions or nail dystrophies, or may remain clinically 
unrecognized. The following renal anomalies were reported: con-
genital nephrotic syndrome, focal–segmental glomerulosclerosis, 
bilateral renal cysts, and a spectrum of CAKUT, including renal 
hypodysplasia, unilateral kidney hypoplasia, and ectopic conjoint 
kidney (7–12). Recently, two siblings of 13 and 9 years with viable 
ILNEB phenotypes presenting with growth retardation, severe 
pulmonary fibrosis, skin atrophy and erythema, scarce eyelashes/
eyebrows, and nail anomalies (pachyonychia) but without renal 
features were described (13).

Genetics and Molecular Pathology
This disease is caused by mutations in the gene for integrin α3 
(ITGA3) (7). Thus far, 10 ITGA3 mutations have been reported: 2  

frameshift, 2 splicing, and 6 missense mutations (5). Loss-of-
function mutations were associated with lethality before the age 
of 2 years. The consequences of missense mutations cannot be 
easily predicted. Some of them were shown to disturb the post-
translational modifications of integrin α3, which proved to be 
critical for the heterodimerization with integrin β1 and localiza-
tion to the cell membrane (8, 9, 14).

Integrin α3 is the main integrin linking podocyte foot pro-
cesses to the glomerular basement membrane [reviewed in Ref. 
(15, 16)]. In keratinocytes, it is located at cell–matrix adhesions, 
promoting epidermal adhesion primarily by maintaining the 
integrity of the basement membrane (17). The integrin α3 subu-
nit is a widely expressed type I transmembrane protein consisting 
of a large extracellular region, a single transmembrane domain, 
and a short cytoplasmic tail (18). It forms obligate heterodimers 
with β1 integrin serving as a receptor for laminins, the major 
components of epithelial basement membranes (19). Integrin α3 
is reduced or lost in several acquired conditions with glomerular 
disease, in which it is associated with reduction in podocyte 
adhesion to the glomerular basement membrane. For example, 
in podocytes of early-stage diabetic nephropathy integrin α3 
expression was upregulated (20), while expression was sup-
pressed with progression of the disease (21). In patients with 
primary focal segmental glomerulosclerosis, podocyte depletion 
was accompanied by reduced podocyte expression of α3β1 inte-
grins (22). Moreover, integrin α3 is involved in podocyte foot 
process effacement during nephrotic syndrome (23).

Nephropathy with Pretibial EB and Deafness  
(MIM 609057)
Clinical Features
Two siblings with congenital nephrotic syndrome and pretibial EB 
were first described in 1988 (24). The disease-causing mutation in 
the gene for the tetraspanin CD151 was identified in 2004 (25), 
and very recently an additional case was reported (26). The first 
two cases had proteinuria in the nephrotic range and end-stage 
renal failure requiring hemodialysis or peritoneal dialysis from 
the age of 14 or 16 years on, respectively (24). The third case was a 
33-year-old male with nephropathy manifesting with proteinuria 
below the nephrotic range, multiple episodes of pyelonephritis, 
and urinary incontinence, manifesting as a combination of 
overflow incontinence and intermittent urge incontinence (26). 
Additional manifestations included pretibial or extensive skin 
blistering, poikiloderma, nail dystrophy, hair loss, dystrophic 
teeth, involvement of the ocular, oral, gastrointestinal, and uro-
genital mucosal membranes (25, 26).

Genetics and Molecular Pathology
A homozygous single-nucleotide duplication in the CD151 gene 
leading to frameshift and a premature stop codon was identified 
in the first two cases (25). Flow cytometry analysis demonstrated 
absence of reactivity for CD151, suggesting that the predicted 
truncated polypeptide was not functional. In the third case,  
a homozygous CD151 splice site mutation, affecting a canonical 
donor splice site junction was found (26). Immunofluorescence 
staining and western blot analysis confirmed that the splice site 
mutation led to absence of CD151 in the cells of the patient (26).
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TABLe 1 | Genodermatoses with reno-urinary involvement.

Disorder
MiM

Kidney involvement and its 
frequency
(% of cases), if known

Skin involvement and its frequency
(% of cases), if known

Affected gene and protein incidence Onset of clinical 
manifestations

inheritance

Restrictive dermopathy
275210

Urethral duplication occasional Skin is thin, translucent and forms  
a tight, rigid casing. Erosions and  
fissures occur mainly in folds
100

ZMPSTE24 and LAMNA 
mutations, leading to  
abnormal function of lamin A

Approximately 60 
cases reported

Prenatal/at birth AR (ZMPSTE24) less 
frequently de novo  
dominant (LMNA)

Nephrosis with ichthyosis  
and adrenal insufficiency

Steroid-resistant nephrotic  
syndrome major feature

Ichthyosis
Major feature

SGPL1, sphingosine-1-
phosphate lyase

NA Early adulthood AR

Arthrogryposis-renal 
dysfunction-cholestasis  
(ARC) syndrome
208085

Renal tubular dysfunction with renal 
tubular acidosis, nephrogenic diabetes 
insipidus, glucosuria, aminoaciduria,  
and phosphaturia
Major feature

Ichthyosis
50

VPS33B, Vacuolar protein  
sorting 33, yeast, homolog of, b

>80 cases  
reported

Birth XLR or AR

Cockayne syndrome
216400

Proteinuria, renal failure
10

Photosensitive dermatitis (overlap  
with xeroderma pigmentosum); xerosis 
cutis; anhidrosis (occasional) 75

ERCC6 and ERCC8 2.7:1,000,000  
births

Infancy AR

Ehlers–Danlos  
syndromes (EDS)
130000

Hypoplastic kidney, sporadic Lax, smooth, hyperextensible  
skin, atrophic scars, bruises
100

COL5A1 and COL5A2 for classic 
EDS

1:5,000 for 
all types, 
classical type: 
1:20,000–40,000

Childhood AD

Cranio-ectodermal dysplasia 
(Sensenbrenner syndrome)
218330

Interstitial fibrosis of the kidneys: 
thickening  
of the tubular basement and  
tubular atrophy
Common. renal failure is most  
common cause of death

Short nails, lax skin, fine sparse hair
Common

IFT122, WDR35, WDR19, IFT43;  
their protein products constitute  
the intraflagellar transport  
complex A in cilia

>40 cases 
reported

Birth AR

Ectrodactyly ectodermal 
dysplasia-clefting  
syndrome
129900

Renal agenesis and dysplasia, 
hydronephrosis, defects in urinary  
tract collection system
52

Fair pigmentation, thin skin, mild 
hyperkeratosis. Sparse, wiry hair
common

TP63 (homolog of tumor- 
suppressor gene p53), tp63

>200 patients 
described

Birth AD

GAPO (growth deficiency, 
alopecia, pseudoanodontia, 
optic atrophy)
230740

Polycystic kidney
Occasional

Mild skin laxity. Early alopecia
Common

ANTXR1, ANTXR1 appears 
necessary for actin assembly  
and thus cell adhesion

More than 30  
patients reported

Infancy (6 months 
onward)

AR
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TABLe 2 | Syndromes with cutaneous and reno-urinary involvement.

Disorder
MiM

Kidney involvement and its frequency
(% of cases)

Skin involvement and its frequency
(% of cases)

Affected gene (locus)  
and protein

incidence Onset of clinical 
manifestations

inheritance

Adams–Oliver syndrome 1
100300

Duplicated collecting system
Occasional

Aplasia cutis congenita over posterior 
parietal region (common), on trunk and 
limbs (occasional); Cutis marmorata 
telangiectasia congenita; thin, 
hypopigmented skin (occasional)
20

Gain-of-function mutations in 
ARHGAP31 (identified in some 
affected individuals); Cdc42/Rac1 
GTPase regulator

Approximately 1  
in 225,000 
individuals, >100 
cases reported

Intrauterine/birth AD, in few 
cases AR 
inheritance 
suggested

Apert syndrome
101200

Polycystic kidneys,  
hydronephrosis
10

Hyperhidrosis and pronounced acne 
(including forearms) at adolescence
Common

FGFR2; Fibroblast growth factor 
receptor 2

1:80,000 Infancy AD

Beckwith–Wiedemann 
syndrome
130650

Large kidneys showing renal medullary 
dysplasia, renal cysts, anomalies in the 
urinary tract collection system and resulting 
hydronephrosis, nephrolithiasis. Natural  
history: Development of neuroblastoma  
and Wilms tumors.
Tumor formation in approximately 7.5

Facial nevus flammeus,  
hemihypertrophy, unusual fissures  
and indentations in the external ear
Common

Distal arm of 11p
Imprinting disorder

1:13,700 Infancy/childhood AD

Coffin–Siris syndrome
135900

Hydronephrosis, microureters with  
stenoses, ectopic kidneys
Occasional

Hemangiomas, hypertrichosis,  
hirsutism
Occasional

ARIDIB (6q25) and SMARCB1; 
encode subunits of switch/ 
sucrose non-fermenting complex,  
an epigenetic modifier

Approximately 140 
cases reported

Birth/infancy Probably AD

DiGeorge syndrome
188400

Congenital abnormalities of the kidney  
and urinary tract: single kidney, multicystic, 
dysplastic kidney/small kidneys, horseshoe 
kidney, duplicated collecting system
30

Severe acne 23%; seborrhea 35% 1.5- to 3.0-Mb hemizygous  
deletion of chromosome 22q11.2 
including haploinsufficiency in the 
transcription factor gene TBX1,  
and CRKL which is a dosage-
sensitive regulator of genitourinary 
development (1)

1 in 4,000 Birth/infancy AD or sporadic 
resulting from  
de novo deletion

Early urethral obstruction 
sequence (Prune belly 
syndrome)
100100

Urethral obstruction (mostly due to  
urethral valves) leads to hydronephrosis  
and limits renal development
100

Excess and lax abdominal skin  
(“prune belly”) if bladder ruptures 
during fetogenesis
100

Several genes identified:  
ACTA2, CHRM3, HPSE2

1 in 29,231 Prenatal AR

Fabry disease
301500

Chronic kidney disease, glomerular  
sclerosis, vacuolization of glomerular  
and tubular epithelial cells, renal failure

Angiokeratomas, hypo- or anhidrosis GLA; alpha-galactosidase A 1:1,500–1:3,100 Variable; males 
develop symptoms  
in childhood,  
females >50 years

XLR

Fanconi pancytopenia 
syndrome
227645 227646 227650 
300514 600901 603467 
609053 609054 610832 
613390 613951 614082 
614083 615272 616435 
617243 617244 617247

Renal anomalies (hypoplasia  
or malformation)
34

Brownish pigmentation
64

15 genes identified 1:160,000 Childhood AR

(Continued )
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Disorder
MiM

Kidney involvement and its frequency
(% of cases)

Skin involvement and its frequency
(% of cases)

Affected gene (locus)  
and protein

incidence Onset of clinical 
manifestations

inheritance

Hajdu–Cheney syndrome
102500

Renal defects, especially cystic kidneys
Occasional

Hirsutism
Occasional

NOTCH2 NA Childhood AD

Nail-patella syndrome 
(hereditary osteo-onycho 
dyplasia)
161200

Glomerulonephritis, nephrotic  
syndrome, renal insufficiency
25

Triangular lunula, hypoplastic  
nails, webbing, absence of distal  
dorsal phalangeal skin creases
Common

LMX1B; LIM homeobox  
transcription factor 1 B

1:50,000 Childhood AD

Oral–facial–digital syndrome
311200

Polycystic kidney disease  
at adult age; glomerular cysts
50

Seborrheic skin, milia, alopecia
Occasional

OFD1, involved in ciliary  
function

>160 cases reported Birth XLD

Pallister–Hall syndrome
146510

Renal ectopia or dysplasia
Common

Midline facial hemangioma
Common

GLI3 NA Intrauterine/birth AD

Roberts syndrome
268300

Polycystic or horseshoe kidney
Occasional

Midfacial capillary hemangioma
78

ESCO2
Essential in chromosomal alignment 
and adhesion in mitosis

Approximately 50 
cases reported

Prenatal/at birth AR

Robinow syndrome
268310

Renal anomalies
29

Nevus flammeus
23

ROR2 and WNT5A Sporadic cases Prenatal AR (ROR2) and 
AD (WNT5A)

Rubinstein–Taybi syndrome
180849

Renal anomalies
52

Hirsutism, capillary hemangioma, 
development of keloids
75, 25, and 22%, respectively

CBP (CREB-binding protein)  
and EP300

1:100,000–1:125,000 Infancy AD

Russell–Silver syndrome
180860

Renal anomalies, occasional Café-au-lait spots common ICR1 regulator of the  
expression of IGF-2,  
and others

1:30,000–1: 
100,000

Infancy Sporadic, 
genetically 
heterogeneous

Trichorhino
Phalangeal syndrome 
(Langer–Giedion syndrome) 
150230

Urethral reflux
Occasional

Looseness or redundancy of skin  
in childhood, macularpapular nevi 
common

Deletion in 8q24.11–q24.13 
(involving TRPS1 and EXT1)

NA Childhood AD

TABLe 2 | Continued
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FiGURe 1 | Congenital absence of the skin, also known as aplasia cutis congenita, in a newborn with hydronephrosis and pyloric atresia due to integrin α6β4 
deficiency (right panel) [clinical pictures, courtesy of Dr. P. Häusermann (Department of Dermatology Basel)].
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CD151 (syn. Raph blood group, TSPAN24) is a member of the 
tetraspanin family of cell surface proteins and acts as a stabilizer 
of integrins (27). CD151 forms complexes with integrin α3β1 in 
cell culture and in vivo (28, 29). These complexes are assembled 
early during the integrin biosynthesis and precede the interac-
tion of CD151 with other tetraspanins (30). CD151 also regu-
lates glycosylation of α3β1 (31). CD151 is widely expressed in 
epithelia, endothelia, muscle cells, renal glomerular podocytes, 
Schwann and dendritic cells, in platelets and megakaryocytes. 
CD151 is involved in the formation and/or maintenance of the 
glomerular basement membrane (32).

Junctional EB with Pyloric Atresia (MIM 226730)
Clinical Features
Junctional EB with pyloric atresia manifests with aplasia cutis 
congenita (Figure  1), generalized skin blistering, and pyloric 
atresia. Several acquired complications of the reno-urinary 
system are reported, including pyelonephritis, hydronephrosis, 
urinary retention, development of bladder hypertrophy, and 
urethral meatal stenosis (4, 33, 34).

Genetics and Molecular Pathology
The disease is caused by mutations in the genes coding for the α6  
or β4 integrin subunits, most mutations residing in ITGB4. 
Absence of α6β4 integrin is associated with a high rate of lethality 
in the first months of life, while missense and splicing mutations 
lead to moderate disease severity and reno-urinary manifestations.

Integrin α6β4 is a heterodimer composed of two type I 
transmembrane subunits localized in hemidesmosomes’, which 
anchor keratin intermediate filaments to the cell membrane and 
extracellular matrix. The intracellular region of α6β4 consists of 
the short tail of α6 and a large β4 cytoplasmic domain, which 
interacts with plectin and collagen XVII in keratinocytes. The 
ligands of α6 integrin are CD151, collagen XVII and laminin 
332. Integrin α6β4 has a major adhesive function and promotes 
polarization of the cells (35). α6β4 is expressed in the epithelial 
cells within the medulla of the kidney. In a mouse model, α6β4 
was not required for morphogenesis of the urinary tract, but 
for maintaining the integrity of the kidney collecting system. 
Collecting duct anomalies appeared as the animals aged. α6-null 
collecting duct cells were not able to withstand mechanical stress 
and detached from the basement membrane (36, 37).

Junctional EB Generalized Severe  
(Formerly: Herlitz EB; MIM 226700)
Clinical Features
Junctional EB generalized severe is caused by complete lack of 
laminin 332, the major laminin expressed in the cutaneous base-
ment membrane. Laminin 332 is a heterotrimeric glycoprotein 
consisting of three polypeptide chains: laminin α3, β3, and γ2, 
encoded by LAMA3, LAMB3, and LAMC2, respectively. The clini-
cal picture is dominated by mucocutaneous blistering from birth 
onward. Extensive generalized blistering leads to loss of fluids and 
protein and failure to thrive. The most common complications 
are anemia, dyspnea, infections, and sepsis. Affected children 
show multiorgan involvement and commonly die before the age 
of 2 years (38). In an infant with LAMB3 mutations, nephrotic 
syndrome with albuminuria due to failure of the glomerular fil-
tration barrier, and high urinary N-acetylglucosaminidase levels, 
also indicating renal tubular involvement were reported (39).

Genetics and Molecular Pathology
Laminin 332 is the major laminin expressed by keratinocytes, 
but is also present in multiple epithelial basement membranes, 
including those of kidney. Like all laminins, it is a glycoprotein 
composed of three chains (α3, β3, and γ2) bound through disulfide 
bonds (5). In junctional EB generalized severe, mutations are 
found in one of the three genes encoding the laminin 332 chains. 
In the majority of cases, mutations are located in LAMB3 and lead 
to premature termination codons, mRNA decay, and absence of 
laminin 332.

RASopathies
RASopathies represent an expanding common group of 
neurodevelopmental disorders caused by germline mutations 
in genes encoding components of the Ras/MAPK pathway 
(40). Collectively, they affect >1 in 1,000 individuals (41). The 
Ras/MAPK pathway is a conserved omnipresent intracellular 
signaling pathway that is critical in regulating cell cycle, differ-
entiation, growth, apoptosis, and senescence (40). The group of 
RASopathies includes neurofibromatosis type 1 (NF1), Noonan 
syndrome (NS), NS with multiple lentigines, Legius syndrome, 
Costello syndrome, cardio-facio-cutaneous syndrome, capillary 
malformation-arteriovenous malformation, and autosomal 
dominant intellectual disability type 5. Because of the common 
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TABLe 3 | Diagnostic criteria for neurofibromatosis 1 (NF1) (43).

•	 6 or more café-au-lait macules (>0.5 cm in children or >1.5 cm in adults)
•	 2 or more cutaneous/subcutaneous neurofibromas or one plexiform 

neurofibroma
•	 Axillary or groin freckling
•	 Optic pathway glioma
•	 2 or more Lisch nodules (iris hamartomas seen on slit lamp examination)
•	 Bony dysplasia (sphenoid wing dysplasia, bowing of long 

bone ± pseudarthrosis)
•	 First degree relative with NF1
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molecular mechanisms, phenotypic features of these syndromes 
are overlapping.

NF1 (von Recklinghausen Disease, MIM 162200)
Clinical Features
With an incidence of 1:2,500–3,000 (42), NF1 is one of the 
most common disorders of this group. NF1 follows autosomal 
dominant inheritance, about half of all cases occur due to spon-
taneous mutations. Diagnosis of NF1 is established following a 
set of clinical diagnostic criteria established in 1988 [Table  3, 
diagnosis of NF1 is probable when more than two criteria are 
present (43)]. Most cases are diagnosed in childhood, but when 
the complete set of criteria is not yet evident, follow-up and re-
evaluation are necessary. Cutaneous features include café-au-lait 
macules, cutaneous and internal neurofibromas, or plexiform 
neurofibromas and axillary freckling. Renal involvement occurs 
sporadically, manifestations include hypertension due to renal 
artery stenosis, renal neurofibromas, and renal metastases of 
malignant schwannomas. The cooccurrence of NF1 and Wilms’ 
tumor has been reported in some cohorts (44, 45).

Individuals with NF1 have a high risk of developing malignan-
cies, especially malignant peripheral nerve sheath tumors (46). 
Life expectancy has been found to be approximately 8 years lower 
than in the normal population (47).

The cutaneous features progress with age. Neurofibromas as 
the main cutaneous finding in NF1 can be itchy, lead to disfigure-
ment, and cause psychological strain. They can be treated with 
excisions or laser ablation (Er:YAG or CO2 laser) (48, 49), both 
with risk for hypertrophic scarring and recurrence (42).

In uncomplicated cases, clinical evaluation in childhood 
should be performed annually and include auxologic measure-
ments, cardiovascular assessment, skin examination, and devel-
opmental progress (42). In childhood, visual assessment should 
be performed every 6–12 months for early detection of optical 
pathway glioma until the age of 7 years (42).

Genetics and Molecular Pathology
Monoallelic loss-of-function variants in NF1 coding for neu-
rofibromin 1 are disease-causing in NF1. Neurofibromin is a 
multifunctional tumor suppressive protein which functions as a 
GTPase-activating protein. Neurofibromin inhibits cell prolifera-
tion and growth by blocking RAS-mediated signal transduction 
and modulates cell motility and adhesion (50).

The mutational spectrum is highly heterogeneous including 
nonsense and missense mutations, splice site mutations (about 
30% of cases), small insertion–deletions, whole-gene deletions 

(4–5%), and structural rearrangements (51). Penetrance is 
complete after childhood, but NF1 is characterized by extreme 
clinical variability which is poorly understood, as are genotype–
phenotype correlations. Intra- and interfamilial evaluation of the 
NF1 phenotype suggests that genetic modifiers which are not 
linked to the NF1 locus contribute to the variable expressivity 
of the disease (52, 53). Differently skewed expression of the NF1 
alleles as well as somatic “second hit” variants or loss of heterozy-
gosity may account in part for the phenotypic variability (54, 55).  
In addition to NF1, atypical manifestations, such as familial 
spinal neurofibromatosis, multiple spinal ganglioneuromas, 
optic gliomas, or Lentigines, Electrocardiographic abnormali-
ties, Ocular hypertelorism, Pulmonary stenosis, Abnormalities 
of genitalia, Retardation of growth and Deafness (LEOPARD) 
syndrome, have been associated with NF1 mutations. Finally, 
incidental occurrence of NF1 mutations together with mutations 
in other genes may account for atypical phenotypic associations.

NS with Multiple Lentigines (syn. LEOPARD 
Syndrome, Multiple Lentigines Syndrome, 
Lentiginosis profusa and Progressive 
Cardiomyopathic Lentiginosis; MIM 151100)
Clinical Features
Noonan syndrome with multiple lentigines is a rare RASopathy 
that manifests in childhood. The incidence is unknown; so 
far, more than 200 cases were published. The characteristic 
cutaneous appearance is described well by the acronym 
LEOPARD: the skin appears spotted due to thousands of dark 
brown lentigines of 1–5 mm size which are distributed on the 
entire body (including sun-protected areas), cooccurring with 
café-au-lait macules (hence sometimes confused with NF1), 
hypomelanotic macules, and sometimes axillary freckling. 
Apart from LEOPARD are defining features (56). CAKUT, 
including horseshoe kidneys, occur in 11% of affected indi-
viduals (57). NS with multiple lentigines is sometimes difficult 
to distinguish from NF1 and the allelic NS (58), especially 
in early childhood when pigmentation anomalies are not yet 
pronounced (59). The prognosis is generally good, but can be 
limited by hypertrophic cardiomyopathy, arrhythmias, and 
sudden cardiac death. Annual cardiologic check-up should 
be performed life-long, and hearing assessment should be 
undertaken until adulthood. If auxologic follow-up indicates 
small statue, growth hormone therapy should be considered 
(56). Intense pulsed light has been used for cosmetic treatment 
of lentigines (60).

Genetics and Molecular Pathology
Noonan syndrome with multiple lentigines is allelic with NS and 
with the cardio-facio-cutaneous syndrome. The genetic basis of 
NS with multiple lentigines is heterogeneous including heterozy-
gous pathogenic variants in one of four genes PTPN11 (90% of 
cases), RAF1 (less than 5% of cases), BRAF and MAP2K1 (both 
in single cases) (61). One or more additional, as-yet undefined 
genes are probably associated with about 5% of cases in whom 
no pathogenic variant has been identified (61). Genotype–phe-
notype correlations are not well established (62).
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TABLe 4 | Genetic tumor predisposition syndromes with cutaneous and reno-urinary involvement.

Disorder
MiM

Kidney involvement  
and its frequency
(% of cases, if known)

Skin involvement and  
its frequency
(% of cases, if known)

Affected gene  
and protein

incidence Onset of  
symptoms

inheritance

Cowden syndrome
158350

Renal cell carcinoma Trichilemmomas, lipomas,  
acral keratoses, penile  
hyperpigmentation
Main feature

PTEN; Phosphatase  
and tensin homolog

1:200,000–250,000 Adulthood AD

Hereditary leiomyomatosis  
and renal cell cancer
150800

Renal cell carcinoma
10–20

Leiomyomas
76

FH; Fumarate  
hydratase

Unknown, 
approximately 100 
families reported

>30 years  
onward

AD

Birt–Hogg–Dubé syndrome  
(syn: fibrofolliculomas  
with trichodoscomas  
and acrochordons)
135150

Renal tumors (both  
benign and malign)  
and cysts
27

Fibrofolliculomas,  
trichodiscomas and  
epidermoid cysts
Common

FLCN; folliculin >400 cases 
reported

Adulthood 
(>20 years),  
renal cancer at  
around 50 years

AD

Von Hippel–Lindau  
syndrome
193300

Renal clear cell 
carcinoma, renal cysts
Variable

 Capillary malformations,  
hemangioma, café-au-lait spots
Variable

VHL; Von Hippel- 
Lindau tumor  
suppressor

1:36,000–1:45,000 Onset in 
adulthood

AD
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All involved genes code for components of the Ras/MAPK 
pathway:

•	 PTPN11 encodes the protein tyrosine phosphatase non- 
receptor type 11 that in its active form increases downstream 
Ras activity

•	 RAF1 encodes a serine–threonine kinase that activates MEK1 
and MEK2

•	 BRAF encodes the B-Raf proto-oncogene serine/threonine 
kinase that activates MEK1 and/or MEK2 by phosphorylation

•	 MAP2K1 encodes the mitogen-activated protein kinase kinase 
1 that activates ERK1 and/or ERK2 by phosphorylation (41).

Somatic mutations in all these genes are present in various 
types of cancers. Indeed, individuals with NS have a threefold 
increased risk of malignancies, such as juvenile myelomonocytic 
leukemia, acute lymphoblastic leukemia, rhabdomyosarcoma, 
and neuroblastoma (63, 64).

Genetic Tumor Predisposition Syndromes 
Affecting both Skin and Kidney
This is a large group of disorders characterized by both numer-
ous hamartomas (benign tumors that can develop in basically all 
tissues) and premature development of malignant tumors during 
childhood. The molecular pathology of these conditions is highly 
heterogeneous. The most common conditions are described 
below or in Table 4. The tumors in these syndromes can occur 
in both cutaneous and extracutaneous locations, including the 
kidney (Table 4). Other tumor predisposition syndromes which 
usually manifest in adult age are only briefly mentioned.

Tuberous Sclerosis Complex (TSC, TSC1 and  
TSC2, syn. Bourneville Disease; MIM 191100)
Clinical Features
Tuberous sclerosis complex occurs with an estimated incidence 
of 1:5,800–1:10,000 (65). It is mostly diagnosed in infancy when 
it manifests with skin findings and seizures due to cerebral 

hamartomas and giant cell astrocytomas. The diagnosis of TSC 
is made according to clinical criteria (66) (Table 5, either two 
major features are required or, alternatively, one major and two 
or more minor features). Typical cutaneous features are hypo-
pigmented macules (best seen in Wood’s light), angiofibromas 
(mostly facial), periungual fibromas, and connective tissue 
nevi (shagreen patches). The frequency of cutaneous findings 
increases with age, but polygonal hypomelanotic macules, 
known as “ash-leaf spots,” are the earliest manifestation and 
are invariably present at birth. Renal involvement is also com-
mon, with angiomyolipomas and cysts as the most frequent 
renal manifestations found in 17% of children with TSC by age 
2 years and 65% of 14 years old children with TSC (67). Renal 
cell carcinoma is more common in TSC than in the overall 
population (68).

There is large variability in the clinical course, neurological 
development, and life expectancy in TSC, mostly depending 
on the number and location of hamartomas. While cutaneous 
features are crucial for clinical diagnosis, central nervous system 
tumors are the main cause of morbidity and mortality, while renal 
disease is the second leading cause of early death (69).

As TSC involves multiple organ systems, interdisciplinary 
care is necessary. Skin examinations should be performed annu-
ally. Diagnostic work-up of the kidney should include annual 
assessment of renal function and blood pressure and imaging 
(preferably with MRI) every 1–3 years (70). Since 2005, mTOR 
inhibitors have been evaluated for the use in TSC. Everolimus 
(Votubia®) is approved as a system therapeutic for use in children 
of 3 years and older with subependymal giant cell astrocytomas 
and for adults with complicated renal angiomyolipomas (71). 
Cutaneous lesions can be treated surgically, using laser (CO2/
Erbium:YAG/Dye laser combination, or CO2, or Nd:YAG, or 
pulsed-dye laser) (72–74) and pharmacologically using topical 
mTOR inhibitors (75, 76). Surgical intervention can be con-
sidered as a therapeutic option for painful hemorrhagic renal 
angiomyolipomas and cerebral lesions.
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TABLe 5 | Diagnostic criteria of tuberous sclerosis complex [adapted from Ref. 
(66)].

Major clinical features Minor clinical features

•	 Hypomelanotic macules (≥3,  
at least 5 mm diameter)

•	 Angiofibromas (≥3) or fibrous cephalic plaque
•	 Ungual fibromas (≥2)
•	 Shagreen patch
•	 Retinal hamartomas (multiple)
•	 Cortical dysplasia (≥3, including tubers and 

brain white matter radial migration lines)
•	 Subependymal nodules
•	 Subependymal giant cell astrocytoma
•	 Cardiac rhabdomyoma
•	 Lymphangioleiomyomatosis
•	 Angiomyolipomas (≥2)

•	 “Confetti” lesions of the 
skin (hypomelanotic 
macules with 1–2 mm)

•	 Dental enamel pits (≥3)
•	 Intraoral fibromas (≥2)
•	 Retinal achromic patch
•	 Renal cysts (multiple)
•	 Nonrenal hamartomas
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Genetics and Molecular Pathology
Tuberous sclerosis complex is caused by monoallelic mutations 
in TSC1 (about 20% of cases) or TSC2 (about 70% of cases) (69) 
(Leiden open variation database). Two-thirds of TSC cases result 
from de novo pathogenic variants, and in about 10% no muta-
tion can be detected (69). Large gene rearrangements, intronic 
pathogenic variants, and somatic or germ line mosaicism may 
explain the failure to detect mutations (77, 78). Specialized 
methods, such as targeted-deep sequencing of introns and exons 
and high-resolution SNP arrays improved the mutation detection 
rate to 94% (79). Genotype–phenotype correlations revealed that 
TSC2 mutations lead to earlier onset and more severe phenotype, 
as compared with TSC1 mutations (80). The occurrence of auto-
somal dominant polycystic kidney disease in TSC may be due to 
a contiguous deletion of TSC2 and PKD1 (81).

TSC1 and TSC2 code for hamartin and tuberin which form 
heterodimers within the TSC protein complex. Loss-of-function 
mutations in either TSC1 or TSC2 lead to constitutive activation 
of the mammalian target of rapamycin complex 1 (mTORC1) 
that is uncoupled from inhibitory mechanisms. Thus tumor cells 
in TSC have increased activation of mTORC1 signaling, result-
ing in increased protein synthesis and cell growth, and reduced 
autophagy (82). In fact, somatic inactivation of normal alleles is 
expected to drive mTOR activation, but second hit mutations 
are not always observed. The pathogenesis of angiofibromas 
involves UV-induced mutations suggesting that sun exposure 
is the initiating event (83). In angiomyolipomas, about 70% of 
the second-hit events are loss-of-heterozygosity mutations (84).  
A recent study showed that in TSC, somatic mutation rates were 
lower than most malignant tumors, while whole or arm-level 
chromosome gains and losses were the most remarkable finding 
in over 10% of patients (79).

Basal Cell Nevus Syndrome (syn. Gorlin  
Syndrome, Gorlin–Goltz Syndrome, Nevoid  
Basal Cell Carcinoma Syndrome; MIM 109400)
Clinical Features
The basal cell nevus syndrome is a rare autosomal dominant 
condition, occurring with an estimated incidence of 1:30,000 
(85). It formally belongs to the group of hamartoses, but is 

mainly ranked among the tumor predisposition syndromes. 
Its characteristic feature is the occurrence of multiple basal cell 
carcinomas from young adulthood onward. Development of 
basal cell carcinoma in infancy has also been described (86). 
Other skin manifestations include palmar and plantar punc-
tate dyskeratotic pits and facial milia. Skeletal abnormalities  
(e.g., polydactily), jaw cysts, and medulloblastoma occurring 
in 5% of patients are early features that can hint toward the 
diagnosis of basal cell nevus syndrome. Renal anomalies, such as 
renal agenesis (87) or Wilms tumors (88, 89), were reported in 
single cases. Diagnosis can be difficult in childhood due to few 
or unspecific findings. In suspected basal cell nevus syndrome, a 
systematic work-up including examinations by a dermatologist, a 
radiologist, a dentist, a gynecologist, a cardiologist, and a geneti-
cist is recommended (90). After the occurrence of the first basal 
cell carcinoma, dermatologic examinations should be performed 
every 6–12 months. A baseline cerebral MRI with yearly controls 
until the age of 8  years is recommended. Echocardiography 
should be performed at baseline to rule out cardiac fibromas. 
X-ray of the jaw should be repeated yearly until a first jaw cyst 
is detected, after that every 6 months or according to symptoms. 
For scoliosis detection, an X-ray at the age of 1 year or at time 
of diagnosis is recommended. If normal, it is only repeated in 
case of symptoms. If scoliosis is present, regular follow-ups are 
appointed. Other baseline evaluations include pelvic ultrasound 
and ophthalmologic assessments. Psychological evaluation and 
support is advisable (90).

For many years, excision of basal carcinoma was the main 
treatment option for this condition. Understanding of the molec-
ular pathology has recently led to development and approval 
of vismodegib (Erivedge®) as an effective therapy. Vismodegib 
targets the sonic Hh pathway and leads to regression of existing 
and inhibits the development of new tumors (91). Radiation 
should be avoided as it will trigger the eruption of multiple new 
tumors (92).

Genetics and Molecular Pathology
The genetic basis of the basal cell nevus syndrome is heteroge-
neous. The main cause is represented by monoallelic germline 
pathogenic variants in PTCH1 responsible for approximately 
85% of the cases. SUFU pathogenic variants reside in about 5% 
of the cases (93). Rare causes are PTCH2 and SMO mutations: a 
missense mutation in PTCH2 was disclosed in a Chinese family 
(94), and a SMO mutation in a single case with a segmental basal 
cell nevus syndrome (95). In about 15–27% of cases, the genetic 
basis remains unclear (93). Low level of postzygotic mosaicism 
may explain some of the genetically unsolved cases (96). PTCH1 
pathogenic missense variants have also been associated with 
holoprosencephaly (97).

All these genes encode key players in the Hh signaling 
pathway, which is essential for development of vertebrates and 
drives proliferation, migration, and differentiation of progenitor 
cells (98):

•	 PTCH1 encodes the patched homolog 1, the receptor for sonic 
Hh

•	 SUFU encodes the suppressor of fused homolog, a negative 
regulator of the Hh signaling pathway
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•	 PTCH2 encodes patched 2
•	 SMO encodes smoothened frizzled class receptor, a G pro-

tein-coupled receptor that interacts with the patched protein.

Activation of the Hh pathway is initiated by the Hh ligand 
binding and inhibition of the transmembrane receptor patched 
1, allowing the signal transducer smoothened to activate Gli 
transcription factors and amplify the expression of Hh target 
genes (98). Somatic mutations that activate the Hh signaling 
pathway drive growth of various cancers including basal cell 
carcinomas, medulloblastomas, pancreatic, prostate, and small 
cell lung cancer, that account for up to 25% of all human cancer 
deaths (99).

Birt–Hogg–Dubé Syndrome
Clinical Features
The Birt–Hogg–Dubé syndrome is an autosomal dominant 
disorder which manifests with cutaneous lesions, pulmonary 
cysts and/or history of pneumothorax, and various types of 
renal tumors (100). Skin involvement occurs during the sec-
ond, third, or fourth decade of life and progresses with age. 
It includes various benign tumors such as fibrofolliculomas, 
trichodiscomas/angiofibromas, perifollicular fibromas, and 
acrochordons. Fibrofolliculomas are the most common phe-
notypic features of the Birt–Hogg–Dubé syndrome, occurring 
in more than 85% of the patients over the age of 25 years (101). 
They appear as multiple, small, skin-colored papules dissemi-
nated on the face, neck, and upper trunk. Treatment by laser 
ablation results in temporary improvement, but relapse usually 
occurs.

Individuals with Birt–Hogg–Dubé syndrome have a 
sevenfold increased risk to develop renal tumors, that are 
typically bilateral and multifocal (102, 103). They are usually 
diagnosed in adults (median of diagnosis is 48 years, but have 
been described as early as 20  years of age) and have a slow 
progression (103). The histologic types of renal tumors found 
in individuals with Birt–Hogg–Dubé syndrome are: by far 
predominant are chromophobe renal cell carcinomas, followed 
by hybrid oncocytic tumors and oncocytomas, while clear cell 
renal cell carcinomas are uncommon. Yearly screening by 
renal MRI is indicated in individuals with Birt–Hogg–Dubé 
syndrome age 18 years or older. In some families, renal tumors 
and/or spontaneous pneumothorax occur without cutaneous 
manifestations.

Genetics and Molecular Pathology
The Birt–Hogg–Dubé syndrome is caused by monoallelic patho-
genic variants in FLCN, encoding folliculin. Mutation analysis 
detects disease-causing variants in 88% of the affected families; 
the deletion or duplication of a cytosine at position c.1285 is a 
mutational hot spot. Partial- or whole-gene deletions account for 
3–5% of the cases and must be identified with specific methods. 
About 7–9% of the cases remain genetically unsolved. The protein 
folliculin forms a complex with folliculin-interacting protein 1 or 
2 and binds to the 5′ AMP-activated protein kinase suppressing 
tumorigenesis (104). Moreover, it plays a role in mTOR activation 
(105–107).

Hereditary Leiomyomatosis and Renal Cell  
Cancer (HLRCC)
Clinical Features
Hereditary leiomyomatosis and renal cell cancer is character-
ized by the occurrence of cutaneous and uterine leiomyomata, 
and/or a single, unilateral, and aggressive renal tumor (108). 
Cutaneous leiomyomata may be multiple or single, appear in 
adults (mean age of 25 years), and increase in size and number 
with age. They manifest as skin-colored papules or nodules, 
disseminated on the trunk, extremities, and face. The treatment 
consists of surgical or laser excision, or cryoablation. Renal 
tumors occur in about 10–16% of individuals with HLRCC at 
a median age of 44 years and cause hematuria and lower back 
pain. Histologically they are classically classified as type 2 papil-
lary (108).

Genetics and Molecular Pathology
Hereditary leiomyomatosis and renal cell cancer is caused by 
monoallelic FH mutations that lead to reduced activity of the 
enzyme fumarate hydratase (109). In tumor tissue, somatic vari-
ants and loss of heterozygosity are found. No genotype–pheno-
type correlations are known, and there is significant intrafamilial 
variability. Biallelic mutations resulting in fumarase deficiency 
cause an inborn error of metabolism characterized by rapidly 
progressive neurologic impairment including hypotonia, sei-
zures, and cerebral atrophy (110).

DiSORDeRS DUe TO POSTZYGOTiC 
MOSAiCiSM

The disorders in this group are caused by mutations that are 
mostly lethal if occurring as a germline mutation affecting all 
cells. However, if these mutations occur postzygotic in early 
embryogenesis, disorders with unilateral or segmental manifesta-
tions result, as proposed by Happle (111, 112). His hypothesis 
is supported by the elucidation of the molecular basis of several 
segmental disorders since the implementation of next-generation 
sequencing technologies.

Linear Sebaceous Nevus Sequence 
[Schimmelpenning–Feuerstein–Mims 
Syndrome, Nevus Sebaceous of 
Jadassohn; MiM 163200]
Clinical Features
This syndrome belongs to the group of epidermal nevus syn-
dromes. More than 100 sporadic cases have been described, 
the incidence is not known. While solitary sebaceous nevi are 
a reasonably common finding in infants, the sebaceous nevi in 
this syndrome are associated with seizures, mental retardation, 
skeletal and ophthalmic anomalies, and asymmetric growth.  
At birth, one (or multiple) sebaceous nevi is/are found mostly in 
the mid-face. Involvement of the head/neck area is possible, as are 
locations on trunk or extremities. The sebaceous nevus shows a 
linear configuration along the lines of Blaschko. While it is mostly 
flat and wax-like in infancy, verrucous changes, hyperpigmenta-
tion, hyperkeratosis, and hypertrophy are seen toward puberty. 
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FiGURe 2 | Unilateral epidermal nevus in a patient with CHILD syndrome, 
before (left panel) and after 5 years topical application of a simvastatin/
cholesterol cream (right panel).
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In adulthood, development of (mostly benign) tumors within 
the sebaceous nevus is noted. Skeletal, ophthalmic, and renal 
involvements occur occasionally, the latter comprising CAKUT, 
such as double urinary collecting system and horseshoe kidneys, 
and renal hamartoma and nephroblastoma.

Surgical treatment of sebaceous nevi can be offered for cos-
metic or psychological reasons. Excision is generally not indicated 
because of cancer prophylaxis, as the risk for malignant tumors 
is very low (113). Therapeutic options include excision and laser 
ablation (114). Regarding the main complications, seizures, 
neurological retardation, and rickets, interdisciplinary care for 
children with linear sebaceous nevus sequence should be offered.

Genetics and Molecular Pathology
This syndrome can be considered a mosaic RASopathy because 
it is caused by postzygotic pathogenic variants in HRAS (HRas 
Proto-Oncogene, GTPase), KRAS (KRAS Proto-Oncogene, 
GTPase), or the NRAS (NRas Proto-Oncogene, GTPase) genes 
(115, 116). The recurrent activating mutations induce constitu-
tive activation of the MAPK and PI3K/AKT signaling pathways. 
Somatic mutations in the HRAS and/or KRAS genes were also 
found in isolated sebaceous nevi. These mutations are only 
present in keratinocytes which give rise to the cutaneous lesions.

The proteins encoded by the Ras oncogene family have intrin-
sic GTPase activity and function in signal transduction pathways 
important for cell growth, proliferation, and survival. Defects in 
these genes are present in various cancers.

Neurocutaneous Melanocytosis (syn. 
Neurocutaneous Melanosis Sequence, 
Neuromelanosis; MiM 249400)
Clinical Features
The landmark lesion of this syndrome, a giant pigmented nevus, 
is seen at birth. It is usually located in the posterior head or 
trunk (117). Sometimes, three or more large congenital nevi are 
found rather than a single giant nevus. Numerous disseminated 
(“satellite”) nevi can be present at birth and more will develop in 
the course of disease. The presence and proliferation of melanin-
producing cells within cranium and spine leads to increased 
intracranial pressure, seizures, mental deterioration, and death 
in early childhood (117). Leptomeningeal and intracranial 
melanoma occur in a significant portion of patients. Occasional 
abnormalities found in neurocutaneous melanocytosis are cer-
ebral malformations such as syringomyelia and Dandy–Walker 
malformation, CAKUT, and unilateral renal cysts. Other tumors 
occurring in the syndrome include rhabdomyosarcoma, liposar-
coma, and malignant peripheral nerve sheath tumors.

There is a risk of development of cutaneous malignant mela-
noma within the congenital nevi. They develop in the depth of 
the lesion and can be felt earlier than they can be seen. This has 
been suggested to be as high as 15% (118) in giant congenital 
melanocytic nevi, although others have reported incidences of 
0.7% (119). The amount of patients with the full picture of neu-
rocutaneous melanocytosis developing malignant melanoma is 
not known, probably as most of these patients die before develop-
ing melanomas.

They clinical course is mostly determined by neurologic symp-
toms. If these occur, there is no effective therapeutic approach. If 
the child shows normal psychomotoric development, excision for 
the giant melanocytic nevi is recommended. Such surgical proce-
dures may require several steps and the use of tissue expanders. 
Dermabrasio is not considered as a therapeutic option any more. 
To date, a causal therapy is not available, but a recent in  vitro 
assessment of inhibitors of the NRAS-signaling pathway (drugs 
also successfully used in the therapy of malignant melanoma) 
showed promising results (120).

Genetics and Molecular Pathology
Somatic oncogenic missense mutations affecting codon 61 of the 
NRAS gene were identified in affected cutaneous (melanocytes) 
and nervous tissues from patients with congenital melanocytic 
nevus syndrome and/or neurocutaneous melanosis (118).

CHiLD Syndrome (Congenital 
Hemidysplasia with ichthyosiform 
erythroderma and Limb Defects;  
MiM 308050)
Clinical Features
This epidermal nevus syndrome was coined with the acronyme 
“CHILD” by Happle and colleagues in 1980 (121) to sum up the 
main findings in children with this condition: a characteristic, 
mostly unilateral epidermal nevus in combination with ipsilateral 
congenital hemidysplasia of bones (affecting any part of the body, 
mainly limbs). The epidermal nevus is usually present at birth but 
can also develop in the first weeks of life. Spontaneous involution 
is sometimes witnessed (113). The CHILD nevus is red and scaly. 
It can show strict lateralization (right side more frequently than 
left side, 3:2) and midline demarcation, but it can also follow 
lines of Blaschko, and both patterns may be present in an affected 
individual (113) (Figure  2). Next to cardiovascular anomalies, 
renal findings comprise CAKUT, such as renal agenesis (122) 
or hypoplasia (123), to unilateral hydronephrosis, but their 
frequency is unknown (124).

Addressing the molecular pathology of CHILD, a therapeutic 
approach for treating the epidermal nevus combining simvastatin 
and cholesterol for topical use proved to be effective (125, 126) 
(Figure 2).
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TABLe 6 | Chromosome anomalies with cutaneous and reno-urinary involvement.

Disorder
MiM

Kidney involvement  
and its frequency
(% of cases)

Skin involvement  
and its frequency
(% of cases)

Affected gene  
and protein

incidence Onset of 
symptoms

inheritance

Microdeletion 17q21 
syndrome (Koolen–De 
Vries syndrome)
610443

Hydronephrosis, pyelectasis,  
renal dysplasia and duplex  
renal system
32

Altered pigmentation of hair 
and skin, hyperelastic skin, 
thickened skin in some areas, 
hyperpigmentation of nevi
55% (hair anomalies)

Microdeletion within 
chromosome 17 
(17q21.31) involving 
KANSL1, a chromatin 
modifier gene

1:16,000 Birth AD

Trisomy 18  
(Edwards Syndrome)

Horseshoe kidneys, ectopic kidney, 
double ureter, hydronephrosis, 
polycystic kidneys. Wilms tumor
10–50% (Wilms tumor in <10%)

Redundant skin, cutis  
marmorata, hirsutism  
(especially at forehead) >50%

Trisomy 18 1–9/1,000 
000

Birth Random, 
mosaicism

Deletion 2q37 syndrome
600430

Kidney and urinary tract  
anomalies, Wilms tumors <5%

Eczema Subtelomeric deletion  
in chromosome 2

>100 
patients 
described

Variable AD

Deletion 18q syndrome
601808

Horseshoe kidney, ureteral reflux 
occasional

Skin dimples (knuckles,  
shoulder), eczema occasional

Deletion of long arm  
of chromosome 18

1:40,000 Infancy AD

Killian/Teschler–Nicola 
syndrome (=Pallister–
Killian syndrome)
601803

Persistence of urogenital  
sinus/cloaca occasional

Streaky hypo- and 
hyperpigmentation, abnormal 
sweating occasional

Tissue-limited mosaicism 
with partial trisomy due 
to isochromosome of 
Chromosome 12p

5.1 per 
million live 
births

Neonatal 
period

Somatic 
mosaicism

Microdeletion 3q29 
syndrome
609425

Horseshoe kidneys occasional Abnormal skin  
pigmentation occasional

Microdeletion 3q29 >20 cases 
described

Usually 
onset in 
childhood

Unclear, 
only isolated 
cases 
described

AD, autosomal dominant; AR, autosomal recessive; NA, not available; XLD, X-linked dominant; XLR, X-linked recess.
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Genetics, Molecular Pathology
CHILD syndrome is caused by monoallelic loss-of-function 
pathogenic variants in the NSDHL gene encoding the NAD(P)
H steroid dehydrogenase-like protein, which is a C4 demethylase 
involved in postsqualene cholesterol biosynthesis (127). The 
enzyme is located within the membranes of the endoplasmic 
reticulum. Its deficiency leads to impaired cholesterol process-
ing, causing abnormal sonic Hh signaling, which affects spatial 
patterning during embryogenesis (128). The cutaneous features 
may result from a dual mechanism: accumulation of cholesterol 
precursors and cholesterol deficiency (128).

This X-linked dominant disorder is lethal in male during 
gestation and thus predominantly affects females. The CK 
syndrome [initials of the original proband (129)] is an X-linked 
recessive disorder that affects males being also caused by patho-
genic NSDHL variants (130). In CHILD syndrome, mosaicism 
results from inactivation of an X-chromosome in females. Inter-
individual differences in the pattern of X inactivation explain the 
phenotypic variations.

Focal Dermal Hypoplasia (Goltz  
syndrome; MiM 305600)
Clinical Features
Focal dermal hypoplasia is rare; more than 175 cases have been 
reported. The focal dermal hypoplasia is mostly encountered 
in females (90%), as its X-linked dominant inheritance leads to 
lethality in male fetuses. Affected males usually show a mosaic 
form of focal dermal hypoplasia. This syndrome is evident 
at birth, when skin and skeletal symptoms are predominant. 

Children with focal dermal hypoplasia show skin atrophy with 
Blaschko linear arrangement, appearing as depressed or slightly 
raised red macules. This finding explains the original name 
“focal dermal hypoplasia” (131). Over the course of disease, 
fatty tissue can herniate through gaps in the underdeveloped 
connective tissue forming lipomatous papules. Papillomas and 
angiofibroma occur on the face and in the urogenitoanal region 
(132). Additional findings are patchy alopecia and thin hair. 
Affected children show facial dysmorphies and asymmetric 
skeletal deformities (e.g., syndactyly, polydactyly, amelia, scolio-
sis). Renal anomalies occur occasionally and include horseshoes 
kidneys and hydronephrosis.

No specific therapy for focal dermal hypoplasia exists. 
Papillomas can be surgically removed, but may reoccur.

Genetics and Molecular Pathology
Focal dermal hypoplasia is an X-linked dominant disorder 
which reflects mosaicism resulting from inactivation of an 
X-chromosome in females. The pathogenic variants affect PORCN 
(133). PORCN is a gene of the porcupine family, which code for 
endoplasmic reticulum proteins with multiple transmembrane 
domains involved in the processing of Wnt (wingless and int 
homolog) proteins. Mutations in different players of the Wnt 
signaling pathway have been described before to cause CAKUT 
(134), explaining the pathogenesis of CAKUT in focal dermal 
hypoplasia. The disease is lethal in males; live-born affected males 
are rare and nearly always have somatic mosaicism for a de novo 
postzygotic pathogenic variant. Postzygotic mutations may also 
cause mild disease in females (135).
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CHROMOSOMAL ABeRRATiONS

In case of chromosomal aberrations, e.g., deletions or trisomies, 
a large number of genes are affected by the defect. Therefore, the 
resulting clinical picture is broad and includes renal and cutane-
ous anomalies in some syndromes (Table 6). However, these are 
not defining for the clinical picture.

DiFFeReNTiAL DiAGNOSiS iN 
NewBORNS

Several acquired conditions affect both skin and kidney either 
pre- or postnatally. For example, maternal intake of valproate 
leads to fetal valproate syndrome commonly showing hemangio-
mas, altered pigmentation, and occasional renal malformations. 
Intake of phenytoin during pregnancy causes fetal hydantoin syn-
drome, in which hirsutism and coarse hair are common and renal 
malformations can occur. The oligohydramnios sequence (Potter 
syndrome) arises from lack of amniotic fluid. This anhydramnion 
or oligohydramnion can either be caused by primary renal prob-
lems such as agenesis, severe polycystic kidney deformation or 
obstruction of the urinary tract, or by chronic leakage from the 
amniotic sac. Fetal development, especially of the lungs, and life 
expectancy are severely limited.

CONCLUSiON

Genetic disorders affecting the skin and the kidneys cover 
a broad range of phenotypes and molecular mechanisms, 
which have been largely uncovered in the last decades. Many 
of these conditions comprise involvement of multiple organs 
and systems. Although, in many cases, the cutaneous findings 
(e.g., café-au-lait spots, angiofibromas, nevi) have no significant 
impact on the prognosis, they represent precious signs for the 

clinical diagnosis and should alert pediatricians to carefully 
evaluate the patients.

•	 Because of the clinical complexity these patients require an 
interdisciplinary care, comprising geneticists, dermatologists, 
nephrologists, cardiologists, etc., in which the pediatrician has 
a central coordinating role.

•	 The rarity of these disorders renders their diagnosis sometimes 
difficult, underrecognized and delayed. In addition, the cuta-
neous lesions have an esthetic impact (e.g., angiofibromas of 
the face, neurofibromas, nevi) and the tumors have an unpre-
dictable, mostly progressive course. All these factors have a 
high psychological impact on the patients and their families, 
who require psychological aid and support from patients’ 
organizations.

•	 Illumination of the molecular pathomechanisms of some rare 
disorders (e.g., Ras/MAPK, mTOR, cholesterol biosynthesis) 
opened new opportunities to repurpose known drugs and use 
them to slow down disease progression. Such evolving ther-
apies, either in the clinical practice or in clinical trials, have 
been briefly outlined in this review.
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