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ABSTRACT
Objectives: Ulcerative colitis (UC), an inflammatory bowel disease, affects mucosal lining of colon
leading to inflammation and ulcers. Sulforaphane is a natural compound obtained from
cruciferous vegetables. We aimed to investigate potential therapeutic effects of sulforaphane in
experimentally induced UC in rats through affection antioxidant activity, mitochondrial biogenesis
and DNA polymerization.
Methods: UC was induced in rats via an intracolonic single administration of 2 ml of 4% acetic acid.
UC rats were treated with 15 mg/kg sulforaphane. Samples of colon were used to investigate gene
expression and protein levels of peroxisome proliferator-activated receptor-gamma coactivator
(PGC-1), mitochondrial transcription factor A (TFAM), mammalian target of rapamycin (mTOR),
cyclin D1, nuclear factor erythroid 2-related factor-2 (Nrf2), heme Oxygenase-1 (HO-1) and
proliferating cell nuclear antigen (PCNA).
Results: UC showed dark distorted Goblet cell nucleus with disarranged mucus granules and no
distinct brush border with atypical microvilli. All morphological changes were improved by
treating with sulforaphane. Finally, treatment with sulforaphane significantly increased expression
of PGC-1, TFAM, Nrf2 and HO-1 associated with reduction in expression of mTOR, cyclin D1 and PCNA.
Conclusion: Sulforaphane could cure UC in rats. The protective activity can be explained by
enhancing antioxidant activity, elevating mitochondrial biogenesis and inhibiting DNA
polymerization.
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1. Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel
disease. The prevalence of UC is 5.50–24.30 cases per
100,000 population. It can be correlated to many factors
including heredity, genetic abnormalities, geographical
environment, altered dietary patterns, autoimmunity, intesti-
nal barrier dysfunction, smoking, microbiota dysbiosis, or
abnormal host immune reactions [1]. UC is characterized by
repeated periods of relapse and remission. Pathogenesis of
UC begins with inflammation of colon mucosa followed by
ulceration. Only 10–20% of the patients have aggressive
disease. About 70–80% of the patients suffer from relapse
and 50% of the patients require hospitalization [2]. Treatment
of UC involves conserving stable remission, to reduce relapses
and prevent the development of colitis associated cancer via
targeting the immune response and proinflammatory factors
[3].

mTOR, a serine/threonine kinase, regulates cellular energy,
metabolism, and differentiation of T cells. The signaling
pathway of mTOR has a key role in mediating many cellular
processes such as necrosis, apoptosis, and inflammation
leading to the incidence and development of many diseases.
It is linked to mitochondrial biogenesis [4]. Mitochondrial bio-
genesis is a term given to any process that elevated mito-
chondrial number and size. It is mediated by any
physiologic stimuli such as dietary modifications, physical
exercise, and temperature. It involves the synthesis of new

mitochondrial DNA, proteins, and membrane, as the new
mitochondria was formed by the fission of preexisting mito-
chondria instead of de novo formation. It is regulated by per-
oxisome proliferator-activated receptor gamma coactivator
1alpha (PGC1α), which is a transcription factor that controls
the production of mitochondrial proteins [5].

Sulforaphane is 1-isothiocyanato-4-(methylsulfinyl)bu-
tane. It belongs to the isothiocyanate family that is quite
present in many cruciferous vegetables such as broccoli,
Northern carrot, and kale [6]. Sulforaphane possesses many
biological activities including antimicrobial, antioxidant,
anti-inflammatory, and immunomodulatory effects [7]. Sulfor-
aphane was reported to have many therapeutic effects as
protection against gastric ulcers [8], cardiovascular diseases
[9], chronic kidney disease [10], immune regulation functions
[11], aging, and neurodegenerative diseases [12]. The metab-
olism of sulforaphane takes place through glutathione conju-
gation producing sulforaphane-N-acetylcysteine [13]. It
affects the structure of the intestinal microbial community
and attenuates colitis by alylhydrogen receptor (AHR) as it
reversed UC-induced dysbiosis [1]. Sulforaphane is a safe
compound with an LD50 value of 212.67 mg/kg in reference
[14].

Sulforaphane was reported previously to protect against
colitis by reducing the expression of inflammatory biomarkers
inside intestinal mucosa and overexpression of Nrf2 depen-
dent genes [6], reduction of IL-6 synthesis [15], altering gut
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bacterial compositions [1] or activating AMPK [16]. However,
no previous study investigated the effect of sulforaphane on
mitochondrial biogenesis and DNA polymerization. There-
fore, we conducted this study to investigate the therapeutic
effects of sulforaphane in experimentally induce UC in rats
by investigating its effect on the colon cellular mitochondrial
biogenesis and DNA polymerization.

2. Materials and methods

2.1. Animals and treatment outlines

Thirty-six Sprague Dawley rats weighed 180–200 g was
selected. Rats were kept in standard conditions of tempera-
ture and regular 12 h light/12 h dark cycle. All methods
were carried out in accordance with guidelines and regu-
lations for working with experimental animals and the work
protocol was approved by the local ethical committee in
the Faculty of Pharmacy, Mansoura University. All methods
are reported in accordance with ARRIVE guidelines for the
reporting of animal experiments. Rats were classified into
three groups with 12 rats each.

2.1.1. Control group
Rats were fasted for 12 h overnight before starting the pro-
cedure. The rats underwent anesthesia using an intraperito-
neal injection of 30 mg/kg of 3% pentobarbital sodium.
Rats had an intracolonic single administration of 2 ml of
saline using a soft pediatric lubricated catheter under ether
anesthesia. Rats were kept in a horizontal position for 2 min
to prevent draining of saline.

2.1.2. UC group
Rats were fasted for 12 h overnight before starting the pro-
cedure. The rats underwent anesthesia using an intraperito-
neal injection of 30 mg/kg of 3% pentobarbital sodium.
Colitis was induced in colon tissues via an intracolonic
single administration of 2 ml of 4% acetic acid through a
soft pediatric lubricated catheter under ether anesthesia.
Rats were kept in a horizontal position after acetic acid
administration for 2 min to prevent draining of acetic acid.

2.1.3. UC treated with sulforaphane
After induction of ulcerative colitis in rats, they were given
15 mg/kg sulforaphane (Sigma Aldrich Chemicals Co., St
Louise, MO, U.S.A.) by oral gavage daily for two weeks.

Only one previous study illustrated the role of sulforaphane
in treating UC inmice using a dose of 20 mg/kg [1]. In addition,
there was no previous study that used sulforaphane in treating
UC in rats. Therefore, A set of preliminary studies were per-
formed testing three different concentrations of sulforaphane,
10, 15, and 20 mg/kg. The dose of 15 mg/kg is selected as it
was found to produce the best results.

2.2. Sample collection

Blood samples were collected from the trunk followed by
centrifugation at 3000 rpm for 5 min. The separated serum
samples were stored at −80°C. The whole colon was separ-
ated, weight, and measured. A piece of the colon was fixed
in 10% buffered formalin for subsequent morphologic analy-
sis. Another part was homogenized in a 10-fold volume of ice-
cold 0.01 M, pH 7.4 sodium potassium phosphate buffer

supplemented with 1.15% KCl. The separated supernatant
was stored at −80°C.

2.3. Morphologic analysis and immunohistochemistry

The paraffin-embedded samples were cut into 5 µm sections
using a rotary microtome and then transferred to a 38.5°C
warm water bath to be picked up on the slides from the
surface of the water. The slides were oven dried at 42°C over-
night. At the time of staining, sections were deparaffinized
using an ascending concentration of ethanol in xylene. The
sections were then rinsed in tris buffer, pH 7.6. Sections
were stained with Masson trichrome. Masson trichrome is
greatly used to investigate muscular pathologies such as
muscular dystrophy. In addition, it can be used for the calcu-
lation of the fibrotic area, which is stained blue. Sections were
investigated under the microscope in a masked manner. The
fibrotic area was calculated using high field powers in 10
different areas of each rat. The results of the fibrotic figure
are presented as the mean ± SE.

For immunohistochemistry, sections were incubated with
monoclonal proliferating cell nuclear antigen (PCNA) (Sigma
Aldrich Chemicals Co.) at 4°C. Sections were then incubated
with horseradish peroxidase conjugated antibody. Next, 2%
of 3,3′-diaminobenzidine in Tris-buffer was used as a chromo-
gen. Hematoxylin was used as a counter stain. The score of
IHC in colon tissues was used to indicate 0 (no positive cells
per high power field), 1 or infrequent (small number of posi-
tive cells), 2 or common (moderate number of positive cells),
and 3 or widespread (high numbers of positive cells). The
investigations were done using a digital camera-aided com-
puter system (Nikon Digital Camera, Japan).

2.4. Specimen preparation for transmission electron
microscopy

Samples measuring more than 1 mm3 were separated and
fixed using glutaraldehyde at 4°C for 4 h. Next, the samples
were dehydrated using a graded series of ethanol and propy-
lene oxide. They were then embedded in epoxy resin. Ultra-
thin sections were observed at 160 kV using a JEOL JEM-
2100 at Electron microscope Unit, Mansoura University,
Egypt.

2.5. Measurement of oxidative stress and antioxidant
activities

Conlon lysate levels of nitric oxide (NO) at wavelength
540 nm, malondialdehyde (MDA) at wavelength 534 nm,
reduced glutathione at wavelength 405 nm and glutathione
peroxidase at wavelength 340 nm were assessed using com-
mercially available kits (BioDiagnostic Company, Giza, Egypt)
using BioTek spectrophotometer, Highland, VT, U.S.A.

2.6. Enzyme-linked immunosorbent (ELISA) assay

Commercially available ELISA kits were used for the assess-
ment of mitochondrial transcription factor A (TFAM), peroxi-
some proliferator-activated receptor-gamma coactivator
(PGC-1), mammalian target of rapamycin (mTOR), Cyclin D1,
nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme
Oxygenase-1 (HO-1, MyBioSource, Inc., San Diego, CA,
U.S.A.) according to manufacturer’s instructions using
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Spectro UV-VIS Double Beam PC Scanning Spectropho-
tometer (Labomed Inc., Los Angeles, CA, U.S.A.).

2.7. Quantitative real-time polymerase chain reaction
(RT-PCR)

RNeasy Mini kit (Qiagen, U.S.A.) was used to separate the RNA
content of rat hepatic cells. Maxima® SYBR Green/Fluorescein
Master Mix (Fermentas, U.S.A.) was used to evaluate the total
RNA amount. One microgram of RNA was reverse transcribed
into cDNA using QuantiTect® Reverse Transcription Kit
(Qiagen, U.S.A.). PGC-1, TFAM, mTOR, cyclin D1, Nrf2, HO-1,
and PCNA mRNA levels in rat hepatic lysate were determined
using Maxima® SYBR Green/Fluorescein qPCR Master Mix by
Rotor-Gene Q (Qiagen, U.S.A.). Moreover, rat β-actin was
used as a housekeeping gene and internal reference
control. The work was done using Applied Biosystem
StepOne Plus, Foster City, CA, U.S.A. The gene specific PCR
primers used were summarized in Table 1.

2.8. Statistical analysis

For the representation of quantitative variables, mean ± stan-
dard error was used. For evaluation of the least number of
rats needed in each group, a SOLO power analysis was used
as significance was considered at P≤ .05 and statistical
power at 0.90. For assessment of normality of sample distri-
bution, Kolmogorov–Smirnov (K–S) test was used. For com-
parison between groups, a one-way analysis of variance
(ANOVA) was used, followed by a post hoc Bonferroni

correction test when the difference is significant. Statistical
analyses were done using SPSS version 20 (Chicago, IL,
U.S.A.). Statistical significance was predefined as P≤ .05.

3. Results

3.1. Effect of sulforaphane on UC-induced alteration
in colon length and weight

Investigation of colons from rats with UC revealed a signifi-
cant reduction in colon length as well as a significant increase
in colon weight as compared with the control group. The use
of sulforaphane in treating UC rats reversed these effects to
be near the control group (Figure 1).

3.2. Effect of sulforaphane on UC -induced
morphological changes

Microscopic images of colon sections of rats stained with
Masson trichrome in the control group showed normal intes-
tinal glands and minimal bluish stained fibers. Examination of
the UC group revealed damaged intestinal glands, severe
hemorrhage, and extensive fibrosis. Treatment of UC rats
with sulforaphane ameliorated intestinal gland damage and
hemorrhage. In addition, treatment of UC with sulforaphane
significantly reduced the fibrotic area as compared with the
UC group (Figure 2).

Electron micrographs (transmission electron microscopy) of
colon samples from UC showed the dark distorted Goblet cell
nucleus (G) with disarranged mucus granules (m). The entero-
cytes nucleus is not in a basal position (N). The cells are separ-
ated by a wide intercellular space (between white arrowheads).
While investigating samples from UC rats treated with sulfora-
phane showed Goblet cells with disarranged mucus granules
(m) and areas of distinct brush border with typical microvilli
(black arrows heads). The enterocytes nucleus is in a basal pos-
ition (N) with less numerous lysosomes (L) and no cytoplasmic
vacuoles. The cells are separated by a narrow intercellular
space (between white arrowheads) (Figure 3).

3.3. Effect of sulforaphane on UC-induced
mitochondrial biogenesis

UC results in a 73% and 69% decrease in the gene expression
of PGC-1 and TFAM associated with 64% and 56% reduction
in the protein levels of both compounds, respectively, as
compared with the control group. Treatment of UC rats
with sulforaphane significantly increased both gene

Table 1. The primers set used for detection of gene expression in rats.

Gene
symbol Primer sequence from 5′-3′

Gene bank accession
number

β-actin F: TCCGTCGCCGGTCCACACCC
R: TCACCAACTGGGACGATATG

NM_031144.3

PGC-1 F: ACATCGCAATTCTCCCTT
R: CTCTTGAGCCTTTCGTGCTC

XM_032916070.1

TFAM F: AATGTGGGGCGTGCTAAGAA
R: AGATGCACGCACAGTCTTGA

NM_031326.2

mTOR F: CTGCACTTGTTGTTGCCTCC
R: ATCTCCCTGGCTGCTCCTTA

NM_019906.2

Cyclin D1 F: TCGACGGCCATTACCAATCG
R: CGCAGACCTCTAGCATCCAG

X75207.1

PCNA F: AGTTTTCTGCGAGTGGGGAG
R: AAGACCTCAGAACACGCTGG

NM_022381.3

Nrf2 F: 5′-CTCTCTGGAGACGGCCATGACT-3′
R: 5′-
CTGGGCTGGGGACAGTGGTAGT-3′

NM_031789

HO-1 F: 5′-CACCAGCCACACAGCACTAC-3′
R: 5′-CACCCACCCCTCAAAAGACA-3′

NM_012580

Figure 1. Effect of ulcerative colitis (UC) and 15 mg/kg sulforaphane on colon length (a) and weight (b). *Significant difference as compared with control group at
p < .05. #Significant difference as compared with UC group at p < .05.
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expression and protein levels of PGC-1 and TFAM as com-
pared with UC rats (Figure 4).

3.4. Effect of sulforaphane on UC-induced activation
of oxidative stress

Induction of UC in rats leads to 71% and 66% reduction in the
gene expression of Nrf2 and HO-1, respectively, associated
with 61% and 59% reduction in protein levels of Nrf2 and
HO-1, respectively, in the colon of rats as compared with
the control rats. Treatment of UC rats with sulforaphane
reversed these effects (Figure 5).

Rats with UC showed a significant increase in the levels of
NO (4.86 μmol/g) and MDA (48.9 nmol/g) as compared with
the control group, 1.98 μmol/g, and 14.67 nmol/g, respect-
ively. In addition, UC results in a significant reduction in glu-
tathione peroxidase activity (50.47 U/g) and reduced
glutathione concentration (0.63 mmol/g) as compared with
the control group, 107.07 U/g, and 1.83 mmol/g, respectively.
Treatment of UC rats with sulforaphane significantly decrease
the levels of NO (3.67 μmol/g) and MDA (33.0 nmol/g) associ-
ated with a significant increase in glutathione peroxidase
activity (75.57 U/g) and reduced glutathione (1.12 mmol/g)
as compared with the UC group (Figure 6).

3.5. Effect of sulforaphane on UC-induced DNA
polymerization

UC results in a 3.24- and 3.12-fold increase in the gene
expression of mTOR and cyclin D1 associated with a 2.84-

and 3.62-fold increase in the protein levels of both com-
pounds, respectively, as compared with the control group.
Treatment of UC rats with sulforaphane significantly
reduced both gene expression and protein levels of mTOR
and cyclin D1 as compared with UC rats (Figure 7).

3.6. Effect of sulforaphane on UC-induced expression
of PCNA

UC caused a 4.23-fold increase in the gene expression of
PCNA as compared with the control group. In parallel, inves-
tigation of colon sections stained with anti-PCNA antibodies
revealed intense reaction and immune staining of the colon
tissues. Treatment of UC rats with sulforaphane significantly
reduced the expression of PCNA associated with a reduction
in the immune staining of colon sections stained with anti-
PCNA antibodies as compared with UC rats (Figure 8).

4. Discussion

After induction of UC in rats, treatment with sulforaphane
resulted in protective effects as indicated by restoring the
normal colon length and weight. Moreover, the pathological
investigations of micro-images of colon sections stained with
Masson trichrome revealed that sulforaphane ameliorated
UC-induced intestinal glands damage, severe hemorrhage,
and inflammatory cell infiltration in the mucosa and the sub-
mucosa associated with a reduction in the fibrotic area as
compared with UC rats. Finally, investigation of colon sections
using an electron microscope revealed that sulforaphane

Figure 2. Colon sections stained with Masson trichrome in control group (a), ulcerative colitis (UC, b) and UC treated with 15 mg/kg sulforaphane (c). Examination
of UC group revealed damaged intestinal glands (yellow arrows), severe hemorrhage (red arrows) and extensive fibrosis (black arrows). The fibrotic area was
calculated for each group (d). The micro-images represented the results of examining three rats in each group with examination of 10 fields in each rat. *Significant
difference as compared with control group at p < .05. #Significant difference as compared with UC group at p < .05.
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attenuated disarranged mucus granules, dark distorted
Goblet cell nucleus, and decreased numerous lysosomes.
Only one previous study reported the therapeutic effects of
sulforaphane in UC through alteration of microbiota and pro-
duction of anti-inflammatory cytokines [1].

PGC-1 is a transcriptional co-activators of many genes
that are involved in energy management, mitochondrial bio-
genesis, respiration, glucose homeostasis, and many physio-
logical processes inside the body such as aging and stress
response. It could protect the body against oxidative
stress-related diseases [17]. It promotes mitochondrial bio-
genesis through activation of both nuclear transcription
factors and estrogen-related receptor-α leading to enhance-
ment of the expression of the genes that help in encoding
mitochondrial proteins. The overexpression of the PGC-1
gene was linked with many health benefits in many diseases
such as muscular and neurodegenerative disorders [18]. In
addition, some recent studies reported the role of overex-
pression of TFAM and PGC-1 in reducing the generation of
ROS in mitochondria as well as improving mitochondrial res-
piratory function [19]. Moreover, TFAM is a nuclear gene
essential for enhancing the replication of the mitochondrial
genome making TFAM a pivotal agent in the process of
energy production via oxidative phosphorylation [20].
TFAM is essential for the differentiation of the epidermis

[21]. In the intestine, mutations of TFAM have been
observed in colon cancers [22]. PGC-1 and TFAM were
reported previously to have a role in inflammatory bowel
diseases such as crowns disease and ulcerative colitis [23].
In addition, tissue damage in UC is accompanied by the
arrest of mitochondrial respiration, loss of mitochondrial
DNA, and the expression of mitochondrial proteins [24].
We found that sulforaphane protects against UC by increas-
ing the expression of PGC-1 and TNFA. Sulforaphane was
reported previously to protect intestinal epithelial cells
against LPS-induced intestinal changes via direct activation
of the AMPK/SIRT1/PGC-1ɑ pathway [25] and to enhance
the utilization of lipids in the HHL-5 cells and in high fat
diet rats by a direct effect on both PGC-1 and HTFM [26]
or indirectly modulate the activity of mitochondria
through antioxidant activity [27]. However, no previous
study illustrated the role of sulforaphane in elevating the
expression of PGC-1 and TNFA in UC.

The process of initiation and maintenance of inflammation
in UC depends on the imbalance between ROS and antioxi-
dant defense inside the colon. The flow of both neutrophils
and monocytes that results from inflammation can produce
more ROS through activation of enzymes of the respiratory
burst as well as enzymes produced during prostaglandin
and leukotriene metabolism. The resulted oxidative stress

Figure 3. Electromicrographs (transmission electron microscopy) of colon samples from the control group (a), ulcerative colitis (UC, b) and UC treated with 15 mg/
kg sulforaphane (c). Images represented Goblet cell nucleus (G), mucus granules (m), typical microvilli (black arrows heads), enterocytes nucleus in a basal position
(N), lysosomes (L) and intercellular space (between white arrow heads). Scale bar is 5 µm. The micro-images represented the results of examining three rats in each
group with examination of 10 fields in each rat.
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has a role in mediating intestinal damage in many inflamma-
tory bowel diseases [28]. The resulted fatty acid radicals and
lipid hydroperoxides could attack cell membrane and
destroy double bonds in polyunsaturated fatty acids

leading to more oxidative damage. It has been proved that
serum MDA levels are increased in patients with UC [29]. In
addition, nitric oxide is an inhibitor of platelet aggregation
and neutrophil chemotaxis as well as it helps in the relaxation

Figure 4. Effect of ulcerative colitis (UC) and 15 mg/kg sulforaphane on gene expression of proliferator-activated receptor-gamma coactivator (PGC-1, a) and
mitochondrial transcription factor A (TFAM, c) as well colon levels of PGC-1 (b) and TFAM (d). *Significant difference as compared with control group at p
< .05. #Significant difference as compared with UC group at p < .05.

Figure 5. Effect of ulcerative colitis (UC) and 15 mg/kg sulforaphane on gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2, a) and Heme Oxyge-
nase-1 (HO-1, c) as well colon levels of Nrf2 (b) and HO-1 (d). *Significant difference as compared with control group at p < .05.
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of both blood vessels and smooth muscles [30]. It is linked to
inflammation of the large intestine in UC patients and is
associated with a bad diagnosis of patients [31]. Nitric oxide
was found to be overexpressed in patients with UC, especially

in the colonic mucosa leading to pathological changes in
tissues, DNA damage, production of inflammatory cytokines,
inhibition of the repair process, and elevating the risk of con-
version of UC to colon cancer [30,31]. We found that UC

Figure 6. Effect of ulcerative colitis (UC) and 15 mg/kg sulforaphane on colon levels of nitric oxide (NO, a), malondialdehyde (MDA, b), reduced glutathione (c) and
glutathione peroxidase (GPx). #Significant difference as compared with UC group at p < .05.

Figure 7. Effect of ulcerative colitis (UC) and 15 mg/kg sulforaphane on gene expression of mammalian target of rapamycin (mTOR, a) and cyclin D1 (c) as well
colon levels of mTOR (b) and cyclin D1 (d). *Significant difference as compared with control group at p < .05. #Significant difference as compared with UC group at
p < .05.
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results in increased levels of MDA that were ameliorated by
treating the mice with sulforaphane.

One of the elements of the antioxidant system in the
body is Nrf2. When the body suffers from oxidative stress,
Nrf2 is activated and translocated inside the nucleus,
leading to the expression of downstream antioxidant
enzymes [32]. In addition, the overexpression of Nrf2 was
previously reported to improve UC [33]. One of the down-
stream of Nrf-2 is HO-1, which is one of the antioxidant
defense proteins [34]. It was reported previously to
prevent colon tissue oxidative damage [35]. Moreover, the
epithelium tissue in the colon contains many antioxidant
systems, for example, antioxidant enzymes and low molecu-
lar-weight molecules represented by reduced glutathione,
ascorbic acid, and vitamin E [36]. Reduced glutathione is a
significant component of antioxidant defenses of most
tissues. It is a thiol-containing tripeptide. It has a high
reduction potential, and it promotes the formation of the
reduced forms of ascorbate and α-tocopherol. Depletion of
tissue glutathione has been shown to be associated with a

marked cellular degeneration of colon epithelium. Gluta-
thione of gastrointestinal mucosa is derived from the
endogenous synthesis, inter-organ transport, and the
absorption of glutathione from diet and biliary secretions
[37]. Luminal glutathione makes a large contribution to
mucosal levels throughout the small intestine; however,
the bioavailability of luminal glutathione in the colon
would appear to be limited and potentially dependent on
factors such as intestinal transit time and metabolic activity
of luminal flora. The fact that the glutathione synthetic rate
of the colon is lower than that of many tissues, including the
duodenum and small intestine, further suggests that the
colon could be particularly vulnerable to abnormalities in
glutathione metabolism [38]. We found that treating UC
rats with sulforaphane results in increased levels of Nrf2,
HO-1, reduced glutathione, and glutathione peroxidase. Sul-
foraphane was reported previously to possess antioxidant
activity in many animal models, however, there was no pre-
vious study that assessed the effect of sulforaphane on UC-
induced reduction in the antioxidant activity.

Figure 8. Effect of ulcerative colitis (UC) and 15 mg/kg sulforaphane on gene expression of proliferating cell nuclear antigen (PCNA, a) as well colon sections
stained with anti-PCNA antibodies in control group (b), UC group (c) and UC group treated with sulforaphane (d). Immunohistochemistry score of positive staining
(e). *Significant difference as compared with control group at p < .05. #Significant difference as compared with UC group at p < .05. The micro-images represented
the results of examining three rats in each group with examination of 10 fields in each rat.
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mTOR is a serine/threonine kinase with the ability to regu-
late cellular metabolism. It regulates the differentiation of T
cells. mTOR signaling pathway plays a vital role in mediating
numerous processes, including cell proliferation, apoptosis,
necrosis, and inflammation [4]. mTOR is considered as a
central regulator of both cell growth and proliferation. It is
regulated by cellular energy. The regulation of energy metab-
olism is mediated by several related signaling pathways,
wherein mTOR signaling pathways jointly constitute a
switch of anabolic and catabolic processes in cells [39]. Sulfor-
aphane was previously reported to inhibit mTOR in bronchial
carcinoid [40], esophageal squamous cell carcinoma [41],
bladder cancer cells [42], and endometrial cancer [43], lipopo-
lysaccharide-induced spatial learning and memory dysfunc-
tion [44] and rotenone-induced neurotoxicity [45]. However,
no previous study illustrated the role of sulforaphane in redu-
cing mTOR expression in UC.

Cyclin D1 gene is a nuclear protein that plays a role in the
transition from G1 to S phase in the cell cycle. Cyclins are
involved in all phases of the cycle by complexing with
Cyclin-dependent kinases. The cell enters the S phase by pro-
viding the transcription of the genes required for entry into
the S phase and the synthesis of DNA occurs. Cyclin D1 is a
downstream cell proliferation related gene of STAT3 [46].
Cyclin D1 was reported to be overexpressed in UC [46–48].
Overexpression of cyclin D1 protein is associated with inflam-
mation and cell proliferation that takes place in active UC [49].
Sulforaphane was also reported to inhibit cyclin D1
expression in human colon carcinoma cells [50] and non-
small cell lung cancer cell lines [51].

Finally, we examined the effect of sulforaphane on PCNA,
which is a good marker of proliferation activity of intestinal
mucosal epithelial cells and is considered as an oncogenic
transcription factor. It is a protein present inside the
nucleus. It works as a cofactor for DNA polymerase and
DNA synthesis. It enhances genomic stability, between poly-
merase and DNA [52]. It has been reported to play crucial
role during UC [53]. We found a significant increase in the
gene expression of PCNA associated with an increase in
immunostaining of PCNA in micro-images, which is consist-
ent with previous studies [53,54]. We found that the treat-
ment of UC rats with sulforaphane significantly reduced the
expression of PCNA. However, no previous study illustrated
the role of sulforaphane in reducing the expression of PCNA.

5. Conclusion

Sulforaphane protects against experimentally induced UC in
rats. It restores the normal weight and length of the colon. In
addition, the pathological investigations of colon sections
revealed the ability of sulforaphane to ameliorate UC-
induced intestinal glands damage, dark distorted Goblet
cell nucleus, severe hemorrhage, inflammatory cell infiltra-
tion and decreased numerous lysosomes. The results illus-
trated that sulforaphane protects against UC through
different mechanisms such as enhancing antioxidant
activity, elevating mitochondrial biogenesis, and inhibiting
DNA polymerization. We believe that our results can be
readily translated to clinical use for several reasons. Sulfora-
phane is a safe natural product as illustrated by many pre-
vious studies as the LD50 value of sulforaphane was
reported at 212.67 mg/kg compared with 15 mg/kg in our
study. Sulforaphane is given orally to rats in our study

which could resemble the ability to use it for protection
by eating broccoli, Northern carrot, and kale. Finally, con-
tents of sulforaphane in cabbage ranged from 3.91–
52.00 mg/kg, while they were 62.64–982.36 mg/kg in
florets of broccoli; 18.11–274.00 mg/kg in stems of broccoli
and 6.55–256.46 mg/kg in leaves of broccoli [55]. Therefore,
the dose used in this study can be obtained by eating about
19–255 g of cabbage, 1–16 g florets of broccoli, 4–55 g
stems of broccoli or 4–152 g of leaves of broccoli.
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