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Macular edema (ME) is a nonspecific sign of numerous retinal vascular diseases.This paper is an updated overview about the role of
inflammatory processes in the genesis of both diabetic macular edema (DME) and ME secondary to retinal vein occlusion (RVO).
We focus on the inflammatory mediators implicated, the effect of the different intravitreal therapies, the recruitment of leukocytes
mediated by adhesion molecules, and the role of retinal Müller glial (RMG) cells.

1. Macular Edema: A Nonspecific Indication of
Numerous Retinal Vascular Disorders

Macular edema (ME) is defined as an accumulation of either
extracellular (mainly in the outer plexiform and the inner
nuclear layers) or intracellular fluid (swelling of retinalMüller
glial (RMG) cells) in the central part of the retina. Indeed,
at times, a combination of these types of fluid accumulation
occurs [1]. ME is a nonspecific sign of numerous retinal
vascular diseases, such as diabetic retinopathy (DR) and
retinal vein occlusions (RVO) [2, 3]. In these disorders,
inflammatory processes have been considered to be critical
[4–6], and breakdown of the blood retinal barrier (BRB)
coupled to the subsequent increase in vascular permeability
often causes ME and concomitant visual acuity impairment,
secondary to an increased flux in the retinal capillary
endothelial cells [7, 8]. Thus, the pathogenesis of diabetic
macular edema (DME) includes several interrelated factors
such as chronic hyperglycemia, hypoxia, accumulation of
free radicals, activation of vascular endothelial growth factor
(VEGF), alterations in endothelial intercellular junctions,

pericyte loss, retinal vessel leukostasis, disruption of the BRB,
and an increase in vascular permeability [9, 10]. Although the
pathogenesis of ME when associated with RVO (RVO-ME) is
not fully understood, increased rigidity of a crossing artery
as a result of an atherosclerotic process has been suggested
to cause compression of the underlying vein, provoking
turbulent blood flow, endothelial damage, and thrombus
formation [11]. Likewise, a common vitreous adhesion at the
obstruction site has also been reported, suggesting a possible
role of vitreovascular traction in the etiology of some cases of
BRVO [12, 13].

Atherosclerosis is a chronic low-grade inflammatory dis-
order and inflammation within the vascular wall contributes
to the development of ME [14–16]. Due to BRB breakdown
secondary to damage at the tight junctions of endothelial
cells, fluid diffusion from the occluded veins into the tissue
can lead to ME [17]. In addition, through such mecha-
nisms, inflammatory responses and vascular dysfunction can
all interact to cause retinal ischemia, which induces the
expression of VEGF [18]. DME and BRVO-ME may differ
in terms of pathogenesis because the cytokine concentrations
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in the aqueous humor are quite different, suggesting that the
inflammatory reaction may be more activated in DME than
in BRVO-ME, and ischemic insult may play a central role in
the development of BRVO-ME [19].

2. The Role of Inflammatory Mediators in
the Pathogenesis of Macular Edema

Since Vinores et al. [20] first described the role of VEGF in
both ischemic and inflammatory ocular pathologies, it is well
known that certain inflammatory mediators are present at
the sites of ME, such as the aforementioned VEGF, together
with cytokines, chemokines, angiotensin II, prostaglandins,
matrix metalloproteinases, interleukins, selectins, vascular
cell adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), and inflammatory cells (macrophages
and neutrophils), all of which participate in a complex chain
of events that has yet to be fully defined [21, 22]. The vitreous
levels of these inflammatory factors appear to be related to the
pathological processes [23], although it remains to be seen
what blood components are extravasated, how and where
they flow into the retinal tissue, and from which vessels they
are absorbed [24].

It is important to define which inflammatory mediators
are enhanced or dampened in the clinical situation. Indeed,
it is known that the concentration of several cytokines in
the vitreous cavity increases in eyes with BRVO-ME [25–
27], including VEGF and interleukin-6 (IL-6), and that such
increases are related to the severity and prognosis of ME
[28]. Likewise, increased vitreous fluid levels of interleukin-
6 (IL-6), monocyte chemotactic protein-1 (MCP-1), pigment
epithelium-derived factor (PEDF), and particularly VEGF
and ICAM-1 were related to retinal vascular permeability and
the severity of DME [29].

However, whereas the aqueous humour is easily accessi-
ble and can be examined even in an outpatient setting, it is
not possible to evaluate the vitreal levels of these cytokines
in a routine examination [30]. When the vitreous levels
of VEGF and interleukin-6 (IL-6) have been measured in
patients with DME or with ME due to BRVO and CRVO, the
vitreal VEGF concentration proved to be very similar in each
group [31]. However, the level of IL-6 in the vitreous cavity
was significantly higher in DME patients than in those with
BRVO or CRVO. Noma et al. investigated whether VEGF
or IL-6 contributes to the pathogenesis of ME in eyes with
BRVO [26] andCRVO [32].They found that the vitreous fluid
level of VEGF was significantly higher in the patients with
BRVO and CRVO than in controls. The vitreous fluid level
of IL-6 was also significantly higher in the patients with both
types of RVO than in the control subjects. In the BRVO and
CRVO patients, there was a significant correlation between
the vitreous levels of VEGF and IL-6. Vitreous fluid levels of
bothVEGF and IL-6were significantly higher in patientswith
BRVO/CRVO patients with ischemia than in those without
ischemia. In addition, the vitreous levels of both factors
were significantly correlated with the severity of macular
edema in the BRVO/CRVO patients. Nevertheless, further
studies will be needed to fully understand the relationship of

certain inflammatory mediators to DME and ME secondary
to BRVO or CRVO.

3. Recruitment of Leukocytes
Mediated by Adhesion Molecules

Chemokines are multifunctional mediators that can
recruit leucocytes to sites of inflammation, promoting
further inflammation [33, 34]. The vitreous levels of some
chemokines, including MCP-1 and MIP-1a and MIP-1b,
have been reported to be affected by different retinal
diseases, including DME and RVO [35–37]. Mononuclear
cell chemoattractants, such as MCP-1, IL-1, IL-6, IL-8, IL-12,
and TNF-𝛼, are also known to be expressed in ischemic areas,
and these factors may induce the recruitment of leukocytes
and their adhesion to the target tissue [38]. Thus, it may not
be surprising that MIP-1b is expressed in eyes with DME and
ME-RVO given that these disorders lead to retinal ischemia
and inflammation [19, 36, 37, 39].

Leukocytes also play a role in increasing vascular per-
meability, along with VEGF. When they accumulate in
the perivascular space, monocytes and lymphocytes initi-
ate this process through leucocyte endothelial interactions
[40]. These interactions are mediated by adhesion molecules
(selectins, immunoglobulins, integrins, etc.) expressed by the
vascular endothelium [41], which contribute to the disruption
of tight junctions and the breakdown of the BRB [42, 43].
BRB breakdown may be initiated by different mechanisms,
including leucocyte-mediated (recruitment and adhesion)
endothelial injury, changes in endothelial cells, activation
of protein kinase C, and the induction of fenestrations and
vesiculovacuolar organelles [1].

4. The Role of Retinal Müller
Glial (RMG) Cells

It is well known that ME develops due to vascular leakage
and/or through cytotoxic events (e.g., glial cell swelling) [44,
45]. Although their importance in retinal vascular diseases is
not fully known, RMG cells play a crucial role in regulating
the volume of the extracellular space and water and ion
homeostasis and in preserving the inner BRB [46].

Excess water is absorbed by retinal pigment epithelium
(RPE) and RMG cells. RPE cells carry out the subretinal fluid,
whereas RMG cells dehydrate the inner retinal tissue [44].
Transcellular water transport is linked to a transport of potas-
sium and chloride ions [47]. Water flow through the RMG
and RPE cells membranes is facilitated by water-selective
channels: the aquaporins. The major water channel of RPE
cells and photoreceptors is aquaporin-1, whereas RMG cells
express aquaporin-4 [48, 49]. Water transport is coupled
to the spatial-buffering potassium currents flowing through
RMG cells [50]. Alteration of the transglial water transport
after downregulation of Kir4.1 channels and osmotic swelling
of RMG cells under pathologic conditions such as transient
retinal ischemia-reperfusion and diabetes mellitus have been
implicated in the development of ME [51, 52].
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Moreover, they contribute to the survival of ganglion
cell neurons and photoreceptors, they are responsible for
the stabilization of retinal structure, and they modulate
inflammatory and immune responses [53, 54]. Thus, the
RMG cells can upregulate the expression of inflammatory
mediators, including MCP-1, which recruit microglial cells
and phagocytotic monocytes/macrophages to regions of
damage [55, 56]. Distinct disorders are associated with BRB
breakdown, which results in the extravasation of the blood
constituents that inactivate Kir channels and that induce
RMG cell depolarization [57, 58].

Vascular leakage is a crucial pathogenic mechanism
involved inME [59]. Retinal capillaries are closely ensheathed
by glial processes [53] and RMG cells enhance the bar-
rier function of the vascular endothelium [60–62]. Due to
inflammation and hypoxia, RMG cells produce factors such
as VEGF, TNF-𝛼, IL-1𝛽, and prostaglandins, all of which
enhance retinal vascular permeability [62–74].

Fluid clearance is usually mediated by osmotic water
transport through RMG cells, a process facilitated by Kir
channels andwater channels, especially AQP4 [75–78]. AQP4
acts in combination with K+ channels to maintain osmotic
retinal homeostasis. Indeed, Kir4.1 channel dysfunction,
such as that observed in retinal vascular disorders, disturbs
transcellular water transport [45, 79], resulting inwater influx
and RMG cells swelling [46]. Although a few studies have
investigated the mechanisms of action of corticosteroids in
ME, it has been shown that RMG cells express both the gluco-
corticoid receptor (GR) and the mineralocorticoid receptor
(MR) [44]. Moreover, the MR ligand aldosterone increases
the expression of AQP4 and Kir4.1, and it induces retinal
swelling [80]. Finally, the two main corticosteroids used
in intravitreal therapies, TA and dexamethasone, the latter
administered through a sustained-release implant, regulate
AQP4 and Kir4.1 distinctly, indicating that they are not
functionally equivalent [44].

5. The Effect of the Different
Intravitreal Therapies

It is also important to determine whether there are any
differences in the response to different therapies. Intrav-
itreal injection of both triamcinolone acetonide (TA) and
bevacizumab has been reported to be effective in reducing
macular thickness in DME [39, 81]. Indeed, intravitreal
injection of TA is effective in decreasing macular thickness
in patients with ME due to BRVO or CRVO, reducing the
ocular expression of inflammatory cytokines [31]. Recently,
it was shown that intravitreal TA injection significantly
diminished MCP-1 (monocyte chemotactic protein-1) and
MIP-1b (macrophage inflammatory protein-1b) levels in the
aqueous humour of eyes with BRVO-ME [28]. Moreover,
the decrease in aqueous humour MIP-1b, a chemokine
with proinflammatory activity, was correlated with the basal
foveal thickness and its improvement following TA injection.
Although the exact mechanism leading to the improvement
in BRVO-ME following intravitreal TA injection has not been
well established, several possible mechanisms have been con-
sidered. For example, TA could downregulate VEGF, which

might prevent a decrease in occlusion as well as inhibiting any
increase in glial fibrillary acidic protein (GFAP) expression
in RMG cells [82]. Likewise, intravitreal TA prevents osmotic
swelling of the RMG cells through the opening of K+ (Kir)
4.1 channels and aquaporin-1 and aquaporin-4 (AQP-1 and -
4) in the Müller cell membrane [83, 84]. These effects might
reduce the BRB breakdown that occurs in BRVO, promoting
the resolution of the ME. However, IL-6-independent VEGF
secretion might also contribute to the persistence BRVO-ME
after intravitreal TA injection [6].

Intravitreal injection of an anti-VEGF antibody has also
been reported to be effective in reducing CRVO and DR
associated with ME [39, 85]. Antiangiogenic drugs, such as
ranibizumab, could be anti-inflammatory as well, and part of
their actions could be through an anti-inflammatory process.
They would need to be able to prevent the VEGF induced by
TNF-𝛼 from acting on the RPE outside the cell. Inhibition of
VEGF may act through both anti-inflammatory and antian-
giogenic processes and human recombinant antiangiogenic
isoforms such as VEGF-A

165
b can be anti-inflammatory on

RPE cells stimulated by TNF-𝛼 [86].
While intravitreal TA injection may have the same ben-

eficial effects as bevacizumab in decreasing foveal thickness
and improving visual acuity in the management of ME
due to BRVO, TA seems to be more effective than anti-
VEGF therapy in patients with DME [23, 34]. Therefore,
regarding the improvement in DME, anti-VEGF therapy
would be less beneficial than corticosteroid therapy. This
suggests that the pathogenesis of DME can be attributed
not only to VEGF alone but also to the other inflammatory
molecules that are suppressed by corticosteroids [31, 87].
Although the pathogenesis of DME is not fully understood,
steroids can modulate vascular permeability by suppressing
the expression of VEGF and its receptor, as well as IL-6
and ICAM-1. In addition, they can also reduce the activity
of inflammatory cells that release cytokines, stabilizing cell
membranes and tight junctions, acting upstream of pigment
epithelium-derived factor (PEDF) expression [88].Therefore,
TA has multiple actions compared with bevacizumab, which
only diminishes the intraocular levels of free VEGF.

The use of anti-VEGF and steroid agents inME secondary
to retinal vascular diseases is an evolving field. There is an
ongoing debate regarding the safety, efficacy, and economic
concerns related to these intravitreal therapies to reduce the
treatment burden [89]. The future of treatment for DME and
macular edema associated with central and branch retinal
vein occlusion will probably be some kind of combination:
anti-VEGF inhibitors, steroids, and laser.

In conclusion, inflammatory processes can be considered
crucial in the pathogenesis of ME related to retinal vascular
disorders, thereby representing important therapeutic targets
in these diseases.
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