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Tracking Sensory System Atrophy and
Outcome Prediction in Spinal Cord Injury

Patrick Grabher, MSc,1 Martina F. Callaghan, PhD,2 John Ashburner, PhD,2

Nikolaus Weiskopf, PhD,2,3 Alan J. Thompson, MD,4 Armin Curt, MD,1 and

Patrick Freund, MD, PhD1,2,3,4

Objective: In patients with subacute spinal cord injury (SCI), the motor system undergoes progressive structural
changes rostral to the lesion, which are associated with motor outcome. The extent to which the sensory system is
affected and how this relates to sensory outcome are uncertain.
Methods: Changes in the sensory system were prospectively followed by applying a comprehensive magnetic reso-
nance imaging (MRI) protocol to 14 patients with subacute traumatic SCI at baseline, 2 months, 6 months, and 12
months after injury, combined with a full neurological examination and comprehensive pain assessment. Eighteen
controls underwent the same MRI protocol. T1-weighted volumes, myelin-sensitive magnetization transfer saturation
(MT), and longitudinal relaxation rate (R1) mapping provided data on spinal cord and brain morphometry and micro-
structure. Regression analysis assessed the relationship between MRI readouts and sensory outcomes.
Results: At 12 months from baseline, sensory scores were unchanged and below-level neuropathic pain became
prominent. Compared with controls, patients showed progressive degenerative changes in cervical cord and brain
morphometry across the sensory system. At 12 months, MT and R1 were reduced in areas of structural decline. Sen-
sory scores at 12 months correlated with rate of change in cord area and brain volume and decreased MT in the spi-
nal cord at 12 months.
Interpretation: This study has demonstrated progressive atrophic and microstructural changes across the sensory
system with a close relation to sensory outcome. Structural MRI protocols remote from the site of lesion provide new
insights into neuronal degeneration underpinning sensory disturbance and have potential as responsive biomarkers
of rehabilitation and treatment interventions.
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Traumatic spinal cord injury (SCI) leads in most inci-

dences to instantaneous loss of sensory input below

the level of injury and permanent paralysis.1 No effective

treatments are currently available, although limited motor

and sensory recovery can be promoted by intensive reha-

bilitation, with the greatest improvements occurring dur-

ing the first year after injury.2 During this time,

disabling sensory discomfort and neuropathic pain below

the level of lesion frequently develops as a secondary

complication in SCI patients, severely impacting on

patients’ quality of life and functional independence.3,4

The underlying mechanisms influencing sensory impair-

ment and its outcomes are thought to relate to structural

changes including axonal degeneration and demyelin-

ation,5 transneuronal atrophy,6 but also rewiring7 and

hyperexcitability of neuronal circuits.8

Within the descending motor system, progressive

structural changes have been directly linked to the recov-

ery of muscle strength and functional independence dur-

ing the first year following SCI.9 However, the structural

correlates and time course of changes in sensory impair-

ment and emergence of neuropathic pain within the

injured spinal cord, as well as the brain, are less well

defined. Cross-sectional studies in chronic SCI have

shown that sensory impairment and neuropathic pain

below the level of the lesion correlated with
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structural10–15 and functional changes16,17 within the

sensory system. However, such cross-sectional studies in

chronic SCI do not allow for assessment of the spontane-

ous evolution of structural and functional changes attrib-

utable to (1) the acute onset of deafferentation,18–20 (2)

spontaneous partial sensory recovery, or (3) relearning of

compensatory approaches relevant for activities of daily

living (ie, visual inputs).21 Therefore, there is only lim-

ited knowledge about the temporal dynamics and speci-

ficity of trauma-induced structural changes and their link

to the arising sensory impairment and outcome and

below-level neuropathic pain within the spinal cord,

brainstem, and brain.22

Recent advances in quantitative neuroimaging of

the spinal cord and brain provide the possibility of moni-

toring temporal changes of the macrostructure as well as

the microstructure from the earliest onset of SCI.23,24 In

a longitudinal prospective design, we used advanced mag-

netic resonance imaging (MRI) outcome measures to

assess the spontaneous time course of structural progres-

sive changes within the sensory system above the spinal

level of the lesion (ie, cervical cord and brain). We meas-

ured next to cross-sectional spinal cord area9 the ante-

rior–posterior width (APW) and left–right width (LRW)

at the identical cord level to provide detailed insights

into morphometric cord changes.12 At the level of the

brain, we applied tensor-based morphometry to assess

dynamic volumetric changes25 and voxel-based quantifica-

tion (VBQ) of magnetization transfer saturation (MT) and

longitudinal relaxation rate (R1) maps26 to gain informa-

tion about myelin integrity at 12-month follow-up. We

hypothesized that specific macrostructural and microstruc-

tural changes appear in the sensory system early after trau-

matic SCI and that these changes would be associated with

the extent of sensory impairment/outcome and the devel-

opment of neuropathic pain below the level of injury.

Subjects and Methods

Subjects and Study Design
Fourteen patients with a subacute (<2 months postinjury) trau-

matic SCI (Table) and 18 healthy control subjects were

recruited at the University Hospital Balgrist between July 2010

and June 2013. All patients fulfilled the following inclusion cri-

teria: subacute (<2 months postinjury) traumatic SCI without

head and brain lesions, no pre-existing neurological, mental, or

medical disorders affecting functional outcome, and no contra-

dictions to MRI.

A comprehensive and detailed clinical protocol and pain

questionnaire were performed on patients at baseline, 2 months,

6 months, and 12 months to assess their sensory and motor

impairments. This protocol included the International Stand-

ards for the Neurological Classification of Spinal Cord Injury

(ISNCSCI) protocol27 for motor, light touch, and pinprick

score, and the Spinal Cord Independence Measure (SCIM).28

Using the European Multicenter Study about Spinal Cord

Injury (EMSCI) pain questionnaire (v4.2, http://www.emsci.

org/),29,30 we assessed multiple aspects of pain (eg, onset, dura-

tion, maximal and average pain intensity, quality of pain [eg,

nociceptive or neuropathic]) at each time point. To be classified

as below-level neuropathic pain, ongoing pain had to be located

3 or more segments below the level of lesion. Pain intensity was

assessed using an 11-point numeric rating scale from “0” indi-

cating no pain to “10” indicating the worst pain imaginable

pain.

All participants underwent a comprehensive MRI proto-

col at the same time points. The relationship between SCIM

and ISNCSCI motor scores and structural changes have been

reported previously in a subgroup of the present study cohort.9

Informed written consent was obtained from all partici-

pants before participation. The study protocol was in accord-

ance with the Declaration of Helsinki and was approved by the

local ethics committee of Zurich (EK-2010-0271).

Image Acquisition
Participants were scanned with a 3T Magnetom Verio MRI

scanner (Siemens Healthcare, Erlangen, Germany) operating

with a 16-channel radiofrequency (RF) receive head and neck

coil and RF body transmit coil. All participants were carefully

positioned in the same position at all times by the radiogra-

phers to obtain high reproducibility across participants and

time points to exclude any bias related to potential gradient

nonlinearity over time at the level of the spinal cord.

T1-weighted (T1w) structural whole-brain volumes

including the cervical cord to C5 were collected at each time

point. At 12 months, we acquired additional data using a mul-

tiparameter mapping (MPM) quantitative MRI (qMRI) proto-

col.26 Data collected using this protocol can be used to

compute maps of R131 and MT.32 These metrics are physical

MRI parameters, respectively describing the relaxation and mag-

netization transfer behavior of protons within their microenvir-

onments. Both processes are enhanced by the presence of

macromolecular content (eg, myelin). As such, they are sensitive

to tissue microstructure and provide quantitative measures that

can be used for multicenter studies and give information about

myelin, water, and iron content.33 All image volumes were

checked for artifacts.

For each subject, a 3-dimensional (3D) T1w scan (mag-

netization-prepared rapid acquisition gradient echo

[MPRAGE])34 with 176 partitions was acquired at 1mm iso-

tropic resolution in 9 minutes using the following parameters:

field of view 5 224 3 256 mm2, matrix size 5 224 3 256, rep-

etition time (TR) 5 2,420 milliseconds, echo time (TE) 5 4.18

milliseconds, inversion time 5 960 milliseconds, flip angle

a 5 98, and readout bandwidth 5 150 Hz per pixel.

The quantitative MPM data were derived from 3 differ-

ently contrast-weighted 3D multiecho fast low-angle shot

(FLASH) volumes acquired with 1mm isotropic resolution and

a field of view of 240 3 256 mm2 (matrix size 5 240 3 256)
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with 176 partitions in a total scan time of 23 minutes. To

reduce the overall acquisition time, parallel imaging with a

speed-up factor of 2 was used in the phase-encoding direction

(anterior–posterior) using a generalized autocalibration partially

parallel acquisition algorithm (GRAPPA). Additionally, a par-

tial Fourier acquisition with a 6/8 sampling factor was used

in the partition direction (left–right). Predominantly T1

weighting was achieved with TR 5 25 milliseconds and

a 5 238, whereas proton density (PD) weighting was achieved

with TR 5 25 milliseconds and a 5 48. Magnetization transfer

weighting (TR 5 37 milliseconds, a 5 98) was achieved by

applying an off-resonance RF pulse prior to nonselective exci-

tation. The readout bandwidth was 480Hz per pixel. Seven

equidistantly spaced echoes were acquired with TE ranging

from 2.46 milliseconds to 17.22 milliseconds for all volumes.

One additional echo was acquired at 19.68 milliseconds for

both the PD-weighted (PDw) and T1w volumes.

Image Analysis

CHANGES TO THE MACROSTRUCTURE AND MICROSTRUC-

TURE OF THE CERVICAL CORD. We investigated remote

trauma-induced structural changes within the spinal cord at cervical

level C2/C3. In addition to the previously reported cross-sectional

spinal cord area,9 we here assessed its change in the shape, which we

parameterized with APW and LRW, because reductions in these are

related to sensory and motor impairment, respectively.12

We used JIM 6.0 (Xynapse Systems, Aldwincle, UK) to

extract 10 contiguous and reformatted axial slices of 3 mm at

the C2/C3 level from the structural MPRAGE T1w volume.

The cross-sectional cord area was then calculated automatically

with an active-surface model.35 An ellipse was fit to the bound-

ary of this spinal cord area, defined in the previous step in MAT-

LAB (MathWorks, Natick, MA) to extract APW (elliptical short

axis) and LRW (elliptical long axis).

To assess changes to the myelin content at the identical

cervical cord level, we used in-house MATLAB scripts based on

nearest-neighbor region growing to define the cord volume

(stopping criterion: 40% drop in parameter value) within the

MT map followed by the same ellipse-fitting procedure. This

region of interest (ROI) for the spinal cord was superimposed

on the R1 maps and used to extract the mean quantitative

parameters from the MT and R1 maps (processing of quantita-

tive maps is explained in the next section).

CHANGES TO THE MACROSTRUCTURE AND MICROSTRUC-

TURE OF THE BRAIN. We used tensor-based morphometry,

implemented in SPM12 (Wellcome Trust Centre for Neuroimaging,

TABLE 1. Clinical and Behavioral Data of 14 Patients with Subacute Traumatic Spinal Cord Injury

Injury

ISNCSCI
Grade at
Baseline

Initial
Site of
Impairment,
Motor/
Sensory

ISNCSCI Pinprick ISNCSCI Light Touch

ID Age at
Injury, yr

Type Severity Baseline,
Left/Right

12 Months,
Left/Right

Baseline,
Left/Right

12 Months,
Left/Right

1 19 Fall Complete A C5/C4 13/13 16/17 12/12 16/17

2 23 Fall Incomplete B C7/C6 18/20 19/18 34/35 35/37

3 70 Fall Incomplete B T10/T10 37/38 NAa 40/38 NAa

4 75 Fall Incomplete D T12/T12 52/50 NAb 56/55 NAb

5 44 Fall Incomplete D T11/T11 56/53 55/51 56/51 55/51

6 42 Fall Complete A C5/C5 10/10 10/8 13/14 9/11

7 71 Fall Incomplete B C7/C8 16/20 22/19 42/43 56/56

8 20 MVA Complete A C5/C5 10/9 15/11 10/11 29/24

9 30 MVA Incomplete B C7/C8 17/18 18/19 33/31 35/35

10 52 Fall Incomplete D T9/T9 45/44 45/45 48/47 45/45

11 42 MVA Incomplete D C5/C4 53/51 56/41 52/52 56/42

12 29 Fall Complete A T11/T11 44/44 38/40 43/43 41/41

13 70 MVA Complete A T7/T7 28/37 31/37 35/37 31/36

14 52 MVA Incomplete B C6/C6 19/19 30/14 32/33 33/34

All patients were male, except Patient 3.
aNo sensory testing was performed.
bPatient died.
ISNCSCI 5 International Standards for the Neurological Classification of Spinal Cord Injury. MVA 5 motor vehicle accident;
NA 5 not available.
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University College London, London, UK), to investigate dynamic

volumetric brain changes in patients and controls over time. This

was performed with the MPRAGE T1w images obtained at baseline,

2 months, 6 months, and 12 months. For each participant, the 4 vol-

umes were aligned longitudinally to their midpoint average using

inverse-consistent 3D nonlinear registration.25 This generated Jaco-

bian determinant maps for each time point, as well as the partici-

pant’s average image (in terms of both shape and intensity). Unified

segmentation was used to segment the average image into gray mat-

ter, white matter, and cerebrospinal fluid.36 The Jacobian determi-

nant maps were transformed to Montreal Neurological Institute

(MNI) space using deformations derived from the fast diffeomorphic

image registration algorithm (Dartel).37 The spatially normalized

Jacobian maps were finally smoothed with an isotropic Gaussian ker-

nel filter with 2mm full width at half maximum (FWHM). The

processed data encoded volumetric expansion and compression in

each participant.9

We used VBQ26,38 to investigate the cross-sectional dif-

ferences in myelin integrity between patients and controls at 12

months. MT-weighted, PDw, and T1w FLASH volumes were

used to calculate quantitative parameter maps of MT and R1,

which are sensitive to microstructural features of the tissue.23

Whereas MT maps are primarily sensitive to macromolecular

content, most notably myelin,32,39 R1 maps are additionally

sensitive to free water content, axon diameter, and iron

content.31,40

UNICORT was used for bias estimation and correction

of RF transmit field inhomogeneity effects in the R1 maps.26

The MT maps for each participant were segmented into gray

matter, white matter, and cerebrospinal fluid using unified seg-

mentation.36 The transformation to MNI space was performed

using Dartel.37 Finally, the MT and R1 maps were warped to

MNI space with the participant-specific flow fields from the

MT maps obtained with Dartel and smoothed with an isotropic

Gaussian kernel filter with 3 mm FWHM. The VBQ approach

was used for this normalization process to minimize partial vol-

ume effects.38

Because we were interested in trauma-induced degenera-

tion in the ascending sensory system, we defined specific ROIs.

The subcortical and cortical ROIs were defined as a single ROI

encompassing the bilateral anterior cingulate cortex (ACC),

thalamus, primary and secondary (S2) somatosensory cortex,

and insula to include the main sensory and pain modulatory

structures,15,41–44 using the anatomy toolbox for SPM.45 The

brainstem and cerebellum were defined as a further ROI using

the SUIT toolbox for SPM.46 Regions were chosen according

to whether they contain/receive ascending sensory

pathways.47–50

Statistical Analysis
Stata 13 (StataCorp, College Station, TX) was used for statisti-

cal analysis of all nonbrain data. We estimated the rates of

change of clinical impairments in patients with linear regression

models, with time as predictor. To accommodate nonlinear

recovery, time was modeled on a logarithmic scale. We assessed

the rate of change of the spinal cord parameters using linear

regressions in all participants. A group indicator, group 3 time,

and time 3 time interaction were included in the regression

model to compare the rates of change and to accommodate

quadratic effects. Age, sex, and their interaction with time were

used to diminish any confounding (linear) effects. Two-sample t

tests were used to assess MT and R1 differences between

patients and controls in the spinal cord at 12 months.

Linear and non-linear (quadratic) regression models in

SPM12 were used to assess longitudinal brain volume changes

in gray and white matter, and the microstructure at 12 months,

in the defined ROIs. The analyses included a group indicator

and time. To assess non-linear changes, time was modelled as

the quadratic term. Age was treated as a covariate of no interest.

Statistical parametric maps were initially thresholded with an

uncorrected voxel threshold of p 5 0.001. To account for multi-

ple testing, only clusters surpassing a corrected cluster threshold

of p 5 0.05 (familywise error corrected based on Gaussian ran-

dom field theory) were considered as significant (unless other-

wise stated for peak voxel)51 and reported in Results. One-

tailed t tests with a significance threshold of p< 0.05 were used

in each voxel of interest to test for decreases in patients and to

compare the integrity of myelin between controls and patients,

using the 12-month MT and R1 data. To ensure that each

voxel was analyzed only once, either in the gray matter or white

matter segments, explicit masks for each subspace were gener-

ated by assigning each voxel with a probability >20% to the

tissue class with the highest probability.52 After characterizing

the average group effects, we explored regional structural corre-

lates of sensory function. We used the linear and quadratic

coefficients derived from the aforementioned regression models

as response variables and clinical outcomes at 12 months in

patients as dependent variables. Age and lesion level were mod-

eled as confounds. These associations were tested with F statis-

tics. Only significant associations with p values of less than

0.05 are reported.

Results

Fourteen patients with subacute traumatic SCI (13 men

and 1 woman), with a mean age of 45.6 years (standard

deviation [SD] 5 20.0), and 18 healthy participants (12

men and 6 women), with a mean age of 34.1 years

(SD 5 9.5), were enrolled in this study (see Table). There

was no statistically significant difference between the

mean ages in the 2 groups (Mann–Whitney U test

p 5 0.138). Eight patients suffered from a tetraplegia (3

with a complete lesion) and 6 from paraplegia (2 with a

complete lesion) according to the ISNCSCI classification.

The mean interval from the time of injury to the

baseline scan was 45.93 days (SD 5 18.38), to the sec-

ond scan 96.64 days (38.09), to the third scan 209.46

days (59.14), and to the last scan 380.54 days (109.32).

In total, 122 data sets were included, of which 32 were

acquired at baseline, 29 at 2 months, 31 at 6 months,
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and 30 at 12 months. Thus, 95.3% of planned assess-

ments were accomplished.

Besides the improvements in ISNCSCI motor score

and SCIM score (as reported for this patient cohort ear-

lier9), patients did not recover on the ISNCSCI pinprick

(increase of 0.046 per log month, p 5 0.967) and

ISNCSCI light touch (increase of 1.439 per log month,

p 5 0.324) scores. Neuropathic pain below the lesion

emerged in 6 patients, and their pain intensity increased

over time on the EMSCI pain questionnaire (mean pain

intensity increased by 0.71 per log month, 95% confi-

dence interval [CI] 5 0.072–1.341, p 5 0.029).

Changes to the Macrostructure and
Microstructure of the Cervical Cord
In addition to progressive decrease in overall cord area at

C2/C3 above the lesion level in patients,9 we found spa-

tially specific dynamic shape changes of the APW and

LRW at the identical level (Fig 1A, B) between patients

and controls (p< 0.001). In patients, the decrease of the

APW was 0.022 mm per month (95% CI 5 20.041 to

20.003, p 5 0.023) and LRW decreased by 0.034 mm

per month (95% CI 5 20.059 to 20.010, p 5 0.005).

In controls, the cord metrics did not change over time

(p 5 0.238 for cord area, p 5 0.136 for APW, p 5 0.412

for LRW). In patients, the rate of decrease was similar

between the APW and LRW (p 5 0.520).

At the cervical cord level at 12 months, myelin-

sensitive MT and R1 were reduced in patients (MT:

2.65%, 95% CI 5 2.40–2.90, p 5 0.003; R1: 0.848 sec-

onds21, 95% CI 5 0.769–0.926, p 5 0.012) compared

to controls (MT: 3.08%, 95% CI 5 3.00–3.16; R1:

0.968 seconds21, 95% CI 5 0.916–1.020) by 14.96%

and 12.41%, respectively (see Fig 1C, D).

Changes to the Macrostructure and
Microstructure in the Brain
Progressive focal brain volume decreases of up to 3% in

the right thalamus (x: 20, y: 235, z: 2, z score 5 4.20,

p 5 0.037, cluster extent 5 287; x: 2, y: 25, z: 8, z

FIGURE 1: Longitudinal shape and cross-sectional microstructural changes of the spinal cord above the lesion level at C2/C3 in
patients (red) compared to controls (blue). (A) Shrinkage of the anterior–posterior width (APW) in patients compared to con-
trols. (B) Shrinkage of the left–right width (LRW) in patients. No significant change was detected in controls. Vertical error bars
show standard error (SE) for change in APW and LRW and horizontal error bars show SE for scan intervals. (C, D) Reduction of
mean longitudinal relaxation rate (R1) and magnetization transfer saturation (MT) respectively at cervical C2/C3 level in
patients compared to controls. Note that the results from the cross-sectional cord area change has been reported previously9

and are shown only for illustrative purposes.
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score 5 3.82, p 5 0.019, cluster extent 5 358), left thala-

mus (x: 220, y: 230, z: 9, z score 5 3.98, p< 0.001,

cluster extent 5 1324), right ACC (x: 17, y: 30, z: 3, z

score 5 3.89, p 5 0.003, cluster extent 5 586), left ACC

(x: 215, y: 28, z: 21, z score 5 3.62, p 5 0.010, cluster

extent 5 432), left insula (x: 238, y: 224, z: 17, z score-

5 3.85, p< 0.001, cluster extent 5 1,028), left S2 (x:

254, y: 7, z: 5, z score 5 4.09, p< 0.001, cluster exten-

t 5 842), and pons (x: 2, y: 239, z: 231, z score 5 4.62,

p< 0.001, cluster extent 5 926) developed over time in

patients compared to controls (Fig 2).

At 12 months, myelin-sensitive R1 was reduced

in the thalamus by up to 19% (x: 0, y: 226, z: 23,

z score 5 4.10, p< 0.001, cluster extent 5 959). R1

was also reduced by 20% in the left (x: 9, y: 245, z:

230, z score 5 4.39, p< 0.001, cluster exten-

t 5 1,940) and by 17% in the right cerebellum (x: 2,

y: 253, z: 214, z score 5 4.31, p< 0.001, cluster

extent 5 3,124). The latter cluster extends into the

brainstem (eg, medulla oblongata, pons, and mid-

brain). Myelin-sensitive MT was reduced by 14% in

the spinal cord dorsal columns (x: 0, y: 250, z: 266,

z score 5 4.80, p 5 0.045, cluster extent 5 51, only

significant at peak voxel; Fig 3).

Association between Structural Changes and
Clinical Outcomes
ISNCSCI pinprick scores at 12 months were associated

with rate of cord area decrease (p 5 0.020, r2 5 0.76; Fig

4A). ISNCSCI pinprick scores at 12 months were associ-

ated with rate of volumetric changes in the right cerebel-

lum (x: 2, y: 247, z: 218, z score 5 5.80, p< 0.001,

cluster extent 5 197; x: 12, y: 262, z: 216, z score-

5 4.87, p 5 0.017, cluster extent 5 75; Fig 5A, B) and

ISNCSCI light touch scores with rate of volumetric

changes in the dorsal columns at the level of the medulla

FIGURE 2: Longitudinal volumetric decreases in subcortical and brainstem gray and white matter shown by tensor-based mor-
phometry. (A) Overlay of statistical parametric maps (uncorrected p < 0.001, for illustrative purposes) showing volumetric
decreases in gray and white matter. The color bar indicates the t score. (B) Illustration of progressive volumetric changes rela-
tive to baseline extracted from selected areas of interest. Vertical error bars show standard error (SE) for volumetric change in
selected area of interest, and horizontal error bars show SE for scan intervals. ACC 5 anterior cingulate cortex; S2 5 secondary
somatosensory cortex.
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oblongata (x: 14, y: 229, z: 242, z score 5 4.07,

p 5 0.023, cluster extent 5 31; x: 28, y: 36, z: 248, z

score 5 3.88, p 5 0.016, cluster extent 5 76; x: 5, y:

245, z: 263, z score 5 4.76, p 5 0.026, cluster exten-

t 5 76, latter cluster only significant at peak voxel; see

Fig 5A, C).

At 12 months, ISNCSCI pinprick scores were asso-

ciated with spinal cord MT (p 5 0.005, r2 5 0.82; see

Fig 4B).

Discussion

This study shows progressive volumetric decreases along

the sensory system from the earliest stage after SCI. The

evaluation of myelin-sensitive qMRI supports the

hypothesis that the observed volumetric changes relate to

changes in the underlying myeloarchitecture. From the

clinical perspective, the observed structural changes in

the cord and brain were related to the extent of sensory

outcome but were not related to neuropathic pain. Thus,

both the motor9 and sensory systems are susceptible to

atrophy early after injury. Therefore, the MRI changes

could be considered as complementing the clinical assess-

ment for monitoring sensory impairment and outcome

during the course of rehabilitation and treatment inter-

ventions following SCI.

Evolution of Structural Changes from the Spinal
Cord to the Brain
During the first year after traumatic SCI, the cord area

declines by 7%,9 with a reduction of up to 30% 15 years

postinjury.12,53 Besides the overall reduction of cord area,

morphometric changes may provide further insight into

tract-specific changes, as reductions of the APW have

been associated with sensory impairment and the LRW

with motor function in chronic SCI.12 Here, we assessed

FIGURE 3: Changes in microstructure at 12 months revealed by voxel-based quantification. Overlay of statistical parametric
maps (uncorrected p < 0.001, for illustrative purposes) shows reduced magnetization transfer saturation (MT; red) and longitu-
dinal relaxation rate (R1; yellow) in patients compared to controls at 12 months in thalamus, cerebellum with a cluster extend-
ing into the brainstem (ie, medulla oblongata, pons, and midbrain), and medulla oblongata (ie, dorsal column). These
reductions suggest microstructural changes in patients, because MT and R1 are both sensitive to myelin. L 5 left; R 5 right.

FIGURE 4: Correlations between structural changes in spinal
cord and sensory outcome. Correlation is shown between
pinprick score and change in cross-sectional spinal cord area
between baseline and 12 months (A) and magnetization
transfer saturation (MT) at 12 months (B). Note, for illustra-
tive purpose we used the unadjusted values of pin-prick
score and cord area change. [Color figure can be viewed in the
online issue, which is available at www.annalsofneurology.org.]
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the progressive shape changes of the cord (ie, APW and

LRW). In agreement with the observations in chronic

SCI patients,12 shape deformations occurred in both the

APW and LRW. The change in the APW might reflect

anterograde degeneration occurring along the dorsal col-

umns12,18,19 in parallel with retrograde degeneration of

the descending tracts (eg, corticospinal tracts) captured

by the LRW.12 The reductions of myelin-sensitive MT

and R1 parameters (at the same cord level) and of diffu-

sion tensor metrics in the chronic injured spinal cord11,54

may reflect ongoing changes of the myelin architecture

that in turn contribute to the shape changes.

At the level of the brain, we found progressive vol-

umetric decreases in areas involved in sensory processing

(eg, brainstem, thalamus, ACC, S2, and insula) between

baseline and 12 months. Alterations in structure and

function in these areas14,18,55,56 have been associated

with impaired sensory processing and sensory discomfort

in patients with SCI.22 Similar to findings in the spinal

cord, myelin-sensitive R1 and MT paralleled the volu-

metric changes observed in the thalamus, cerebellum,

and medulla oblongata comprising the dorsal columns.

The bilateral decrease of both volume and myelin-

sensitive MR parameters within the same cortical areas is

suggestive of ongoing structural changes responding to

the SCI that in the present SCI cohort caused equally

severe impairments on either side of the body. These

changes are likely to involve changes at the level of cellu-

lar metabolism, blood flow, and functional depression,

inducing a state of hypoactivity and shrinkage of sensory

neurons and their axons.57 In accordance with motor sys-

tem atrophy during the first year after injury,9 the mag-

nitude of atrophy within the sensory system was evident

in both incomplete and complete paraplegic and tetraple-

gic patients. This finding is of interest, as patients with a

very chronic SCI show level-dependent spinal atrophy,

with more pronounced atrophic changes in those patients

with higher lesion levels.12 Thus, level-dependent atrophy

(ie, lesions in the cervical cord impact the structural

integrity of a greater number of fibers and neurons than

a comparable thoracic lesion) may only become distin-

guishable at later disease stages of SCI. However, we are

aware that the sample size of our study is rather small

and weak effects might not have been detected. To detect

the full spectrum of potential changes, future multicenter

studies with the advantage of collecting large sample sizes

are required. Our results provide the necessary motiva-

tion and evidence for conducting such expensive studies.

Clinical Associations with Structural Changes
Crucially, the rate of volume change and the reduction

of myelin-sensitive structural measures in the cord and

volume changes in the brain related quantitatively to sen-

sory deficits. In other words, faster atrophy and greater

decreases in myelin-sensitive markers were seen in

ascending spinal pathways and sensory-specific brain

areas in patients with greater loss of pain (pinprick) and

light touch (brush) sensation. At the cervical cord and

the medulla oblongata level, long-distance Wallerian

degeneration of primary afferents within the spinotha-

lamic tracts as wells as dorsal columns is a likely patho-

physiological substrate underlying the clinicopathological

associations of pinprick and light touch.58,59 Within the

brainstem and cerebellum (both receivers of afferent spi-

nal inputs18,48), the interpretation of the association

between trauma-induced atrophy rate and light touch

and pinprick outcome is more complex. In addition to

Wallerian degeneration of ascending fiber pathways that

FIGURE 5: Correlation between progressive volumetric changes in the brain and sensory outcome. (A) Overlay of statistical
parametric maps (uncorrected p < 0.001, for illustrative purposes) shows a correlation between cerebellum and pinprick (PP)
score at 12 months (yellow, data of peak voxel plotted in B) and between the medulla oblongata and light touch (LT) score at
12 months (red, data of peak voxel plotted in C). The color bars indicate the corresponding t scores. (B) Greater volumetric
decreases over time in patients with lower pinprick outcome at 12 months. (C) No difference in volumetric decreases over
time in patients with lower light touch outcome at 12 months. Vertical error bars show standard error (SE) for volumetric
change in selected area of interest, and horizontal error bars show SE for scan intervals. An arbitrary threshold for clinical out-
come at 12 months was set to 70 (for illustrative purposes).
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arise from the spinal cord, transsynaptic changes affecting

the structure and function of sensory relay nuclei in the

brainstem and neurons within the cerebellum (eg, Pur-

kinje cells) occur as a consequence of deafferenta-

tion.18,21,60 The relationship between greater cerebellar

atrophy rate and worse pinprick outcome is therefore

interesting, as the cerebellum may also be involved in

trauma-induced maladaptive processing of afferent sen-

sory inputs (eg, nociception)61 alongside its role as a

comparator for errors in somatosensory processing62

resulting in motor impairment.48 Thus, a trauma-

dependent altered structure function relationship due to

deafferentation could explain why patients with greater

sensory dysfunction (ie, worse protopathic sensation)

show more severe atrophy. The shape changes (APW,

LRW) of the cord could not be associated with specific

sensory outcomes. Therefore, the rather gross geometrical

changes (APW, LRW) along the axis might only become

responsive to sensory impairment in the very chronic

phase of injury.12

The clinical standard to determine the degree of

sensory disability—that is, epicritic and protopathic sen-

sation—after spinal cord damage is the testing of light

touch and pinprick sensation, respectively. Somatosen-

sory63 and contact heat evoked potentials64 have been

shown to provide complementary insights into the patho-

physiology underlying sensory deficits, as they reveal sub-

clinical afferent sparing beyond pinprick and light touch

sensation. Thus, future serial studies will integrate these

complementary measures as they have the potential to

reveal pathology to anatomically distinct pathways with

greater resolution (ie, dorsal columns and spinothalamic

tract).65

Although neuropathic pain developed in this

patient group over time, neither the onset nor the inten-

sity of neuropathic pain was linked to neurodegeneration

(eg, reduction in volume decline and myelin) during the

first year of injury. Whereas loss of sensory input is gen-

erally induced by neural damage and disconnection

within ascending sensory pathways,18,19 most important

mechanisms underlying neuropathic pain in the subacute

phase of injury originate in the brain with complex inter-

actions of the spinal and supraspinal neuronal cir-

cuits.15,66,67 Studies focusing on the chronic phase were

able to associate structural changes in brain regions with

nociceptive processing (ie, thalamus, prefrontal cortex,

insular cortex, amygdala, and premotor cortex), although

the ultimate mechanisms remain unclear.67 Future multi-

modal studies integrating serial structural and functional

MRI and electrophysiological assessments of pain are

needed to address this issue further.

Limitations
Our study had some limitations. First, controls were on

average 12 years younger than patients. We included age

as a covariate in all statistical analyses to exclude any (lin-

ear) age-related effects, although the relationship between

age and cord area is not significant.52 Moreover, our

analysis revealed that the brain volume trajectories were

not significantly associated with age nor did the adjust-

ment of age influence the latter significantly. However,

the validity of the adjustment can only be asserted confi-

dently for patients and controls younger than 55 years,

because there were no controls older than 55 years. Sec-

ond, although computational morphometry can reveal

disease-specific changes over time, it is not biologically

specific. In this study, these morphometric changes were

paralleled by changes in qMRI metrics that are sensitive

to underlying tissue microstructure. Measures of MT

provide information about the macromolecular content

of the microstructural environment. Although not a

direct measure of myelin, postmortem validation has

shown high correspondence between MT-based measures

and myelin staining,68,69 indicating that myelin is a sig-

nificant contributor to this measure. Even though there

are multiple contributors to the measured R1, including

water and iron content, the contribution from macromo-

lecular components has been shown to dominate.31,70

Therefore, we interpret the changes observed in this

study as being consistent with axonal demyelination that

contributes to volumetric changes within the sensory sys-

tem. Third, defining compartments of the spinal cord to

distinguish ascending and descending pathways is not

completely accurate, as tracts located laterally also trans-

mit ascending information (eg, spinocerebellar and spino-

thalamic tracts). Finally, the mean intervals between the

MRIs in patients during follow-up varied, but impor-

tantly as a result the dropout rate was minimal (compli-

ance of 95%). We note that we accounted for this

variability in the linear trajectory analyses of cord and

brain MRI parameters by explicitly modeling the timing

of the MRI acquisitions for all subjects.

Conclusion
The neuroimaging biomarkers applied for the first time

were sensitive to dynamic volumetric changes of the sen-

sory system at both the spinal cord and supraspinal level

that are likely to be associated with changes in myelin

architecture. Importantly, slower rates of atrophy were

associated with less severe sensory disturbance. These

findings indicate that not only the motor but also the

sensory system undergoes remote (spinal and supraspinal)

changes that complement clinical measures of recovery,
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although the underlying pathophysiological mechanisms

are yet to be elucidated.
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