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S t l m m a l ' y  

Major histocompatibility complex (MHC) class II molecules are highly polymorphic and bind 
peptides for presentation to CD4 + T cells. Functional and adhesion assays have shown that CD4 
interacts with MHC class II molecules, leading to enhanced responses of CD4 + T cells after 
the activation of the CD4-associated tyrosine kinase p56 uk. We have addressed the possible con- 
tribution of allelic polymorphism in the interaction between CD4 and MHC class II molecules. 
Using mouse DAP-3-transfected cells expressing different isotypes and allelic forms of the HLA- 
DR molecule, we have shown in a functional assay that a hierarchy exists in the ability of class 
II molecules to interact with CD4. Also, the study of DR4 subtypes minimized the potential 
contribution of polymorphic residues of the peptide-binding groove in the interaction with CD4. 
Chimeras between the DR4 or DR1 molecules, which interact efficiently with CD4, and DRw53, 
which interacts poorly, allowed the mapping of polymorphic residues between positions 3180 
and 189 that can exert a dramatic influence on the interaction with CD4. 

M ature T lymphocytes are divided into two major 
subsets. CD8 + T cells recognize nominal antigens in 

the context of MHC class I molecules, while CD4 + T cells 
recognize antigen bound to the MHC dass II molecules (1-3). 
Experimental evidence obtained from a variety of functional 
systems has shown that the interaction between CD8 and 
MHC class I molecules or between CD4 and MHC class II 
molecules leads to significant enhancement of T cell activa- 
tion, probably by recruiting CD4- and CD8-associated tyro- 
sine kinase p56 ~ to the vicinity of the TCR complex (4, 
5). Adhesion assays have further confirmed the physical as- 
sociation of CD8 to MHC class I (6, 7) and CD4 to class 
II molecules (8). These assays have also been used to deter- 
mine the molecular features of the interactions between these 
molecules. Polymorphism in the c~3 domain of class I leads 
to severe perturbations of class I-restricted T cell responses 
(9), including positive and negative selection in the thymus 
(10). Mutagenesis analysis of class I further demonstrated that 
CD8 molecules interact with a highly conserved determinant 
in the a3 domain of MHC class I molecules (11). Similarly, 
CD4 interacts with a highly conserved region in the 32 do- 
main of MHC class II molecules (12). Interestingly, this do- 
main in class II bears significant homology with the above- 
mentioned domain in class I. However, very little is known 

about the effect of isotypic and allelic diversity of MHC class 
II molecules on their interaction with CD4. 

MHC class II molecules are highly polymorphic. The pres- 
ence of several dass II isotypes (DR, DP, and DQ) further 
increases their diversity. As previously mentioned, polymor- 
phism of MHC class I molecules affects their interaction with 
CD8. To evaluate the effect of MHC class II polymorphisms 
on the interaction with CD4, we have concentrated our efforts 
on HLA-DR molecules. These MHC class II molecules are 
all composed of the same monomorphic ot chain, but their 
3 chains can be encoded by four different isotypic genes, 
namely, the B1, B3, B4, and B5 genes (13). The DKB1 gene 
is the most polymorphic, while the products of the DRB3 
and DRB4 can be coexpressed with several DKB1 alleles. 
The DRB5 product is only coexpressed in individuals bearing 
the DR2 haplotype. While most of these DR molecules pres- 
ent Ag to CD4 + T cells, the majority of class II-restricted 
T cell responses has been shown to be restricted by products 
of the BI gene (14). However, peptides presented in the con- 
text of DR2 haplotype are predominantly restricted by the 
product of the B5 gene (15, 16). Such differences could be 
attributed to variations in the affinity of CD4 for these different 
MHC class II molecules. Indeed, MHC class I alleles that 
fail to interact with CD8 are inefficient in stimulating allo- 
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geneic and antigen-specific responses (9, 11). The possibility 
of such a hierarchy in the capacity of different HLA-DK mol- 
ecules to interact with CD4 was assessed in an assay that 
specifically isolates the CD4-dass II component in the inter- 
action between effector T ceUs and APC. This assay was pre- 
viously used to identify residues on CD4 that are involved 
in the interaction with MHC dass II molecules (17-19). Our 
results clearly indicate that aUdic polymorphism and isotypic 
diversity of HLA-DK molecules lead to variations in their 
capacity to interact with CD4. 

Materials and Methods 

Cells and Transfectants. The generation and characterization of 
the 3DT52.5.8 murine T cell hybridoma and of its variant expressing 
the human CD4 molecule (I1B-3) have been described (19-22). The 
I1B-3 T cell hybridoma is maintained in culture medium consisting 
of KPMI 1640 supplemented with 10% FCS, 10 ~M 2-ME, 2 mM 
r-glutamine, and 500 #g/ml of G-418 (GIBCO BILL, Gaithers- 
burg, MD). The B4.2.3 T cell hybridoma is H-2D d restricted and 
was generated by the fusion of BW1100 thymoma with lymph node 
cells of BALB/c mice immunized with p18 in complete Freund's 
adjuvant (23). The p18 peptide corresponds to residues 315-329 
of the gp160 protein of the HIV-1 strain IIIB (24). The B4.2.3 
T cell hybridoma is maintained in DMEM medium supplemented 
with 10% FCS, 10 #M 2-ME, and 2 mM of L-glutamine. The HLA- 
DK o~ chain is encoded by a full length eDNA (25). The HLA-DR 
B chain cDNAs correspond to the different alleles of HLA-DK 
previously described (26-32). The routine fibroblastic class II-nega- 
tive DAP-3 cell line was transfected using calcium phosphate as 
previously described (33). Briefly, DAP-3 cells (3 x 103) were 
transfected with 10 #g of ILSV.5 or KSV.3 plasmids (34) encoding 
the HLA-DR o~ and one of the different allelic or isotypic forms 
of the B chain, together with 5 #g of the plasmid containing the 
H-2D d gene. Neomycin (G-418) or mycophenolic acid (10/~g/ml) 
and xanthine (100 #g/ml) sdection were applied 48 h after trans- 
fection. Aseptic cell sorting using a FACStar Plus | (Becton Dick- 
inson & Co., Cockeysville, MD) was used to obtain homogeneous 
populations of cells expressing comparable levels of D a and the 
different HLA-DK alleles. 

FACS* Analysis. T cell hybridomas (I1B-3) were stained with 
either OKT4 (anti-human CD4) and with KJ12-98 (anti-murine 
TCK idiotype), followed by fluorescein-coupled goat anti-mouse 
Igs (Becton Dickinson & Co.). DAP-3 cell lines were stained with 
either 34.5.8 (anti-mouse class I H-2D a) or L-243 (mouse 
anti-human class II HLA-DR) antibody. Cells were analyzed on 
a FACScan | flow cytometer (Becton Dickinson & Co). Mean 
fluorescence values (M.F.V.) 1 are expressed in arbitrary units. For 
each fluorescence histogram, 10,000 live cells were analyzed, using 
a four-decade logarithmic scale. Dead ceUs were excluded by 
propidium iodide (0.5 mg/ml) gating. As a control, the cells were 
stained only with the FITC-goat anti-mouse Igs. 

HI.A-DR Nomer~lature. DPd-Dwl = DRB1 0101 (27); DK2B- 
Dw2 = DRB1 1501 (28); DR2A-Dw2 = DRB5 0101 (28); DKw6b 
III= DILB3 0201 (29); DKw53 ~ DILB4 0101 (30); DK4-Dw4 = 
DILB1 0401 (31); DK4-Dwl0 = DRB1 0402 01); DK4-Dw14 = 
DILB1 0404 (31); DR4-Dw15 = DKB1 0405 (31); DKw11.1 = 
DP.~I 1101 (32). 

1 Abbreviation used in this paper: M.F.V., mean fluorescence value. 

I1B3 Stimulation Assays. A fixed number of T cells (75 x 103) 
expressing the human wild-type CD4 molecule was cocultured with 
different DAP-3 target cells (75 x 103) expressing H-2D d and var- 
ious HLA-DK molecules. The CD4- 3DT52.5.8 T cell hy- 
bridoma was cocultured under the same conditions. The assay was 
performed in 200 #1 of complete medium for 18 h at 37~ 5% 
COs, in 96-well flat-bottom culture plates (Flow Laboratories, 
Inc., McLean, VA). Supernatants from the coculture were tested 
for the presence of IL-2 by their ability to support the proliferation 
of the Ib2-dependent cell line CTLL.2 using the hcxosaminidase 
colorimetric assay (18, 19). A calibration curve was performed in 
parallel to determine the IL-2 concentration (U/ml). In previous 
experiments, we had demonstrated that an anti-CD4 antibody 
(OKT4B or b68) could abrogate Ib2 production (19). 

Growth Inhibition Assay with B4.2.3. DAP-3 cell transfectants 
(104) expressing H-2D d alone, DKw53 alone, H-2D d and DKw53 
or H-2D a, and DR4-Dw4 were used as APCs. DAP cells were 
pretreated with 50 #g/ml of mitomycin (Sigma Chemical Co., St. 
Louis, MO) for 45 min and then washed five times with PBS. These 
APC were pulsed for 4 h with 0.004, 0.02, 0.1, and 0.5 #g/ml 
of the p18 peptide diluted in complete DMEM without FCS and 
then washed three times with PBS. B4.2.3. T cell hybridomas 
(104) were then cocultured with transfected DAP cells in complete 
DMEM containing 10% FCS for 18 h at 37~ 5% COs in 96- 
well culture plates. This T cell concentration does not allow an- 
tigen presentation between themselves. After 20 h, cells were pulsed 
with [3H]thymidine for 6 h and were then collected and counted. 

Results and Discussion 

Polymorphism in M H C  Class II Molecules Affects the Interac- 
tion with CD4. A T call hybridoma specific for the murine 
MHC class I molecule H-2D a and dependent on the CD4- 
class II interaction for high levels of IL-2 production was used 
in these experiments. As previously demonstrated, expres- 
sion of class II molecules in H-2D a+ APCs leads to a clear 
enhancement of IL-2 production by T cell hybridomas, when 
cffector cells also express CD4 molecule (18, 19, 22, 35). Cocul- 
tures were performed between the CD4 + murine T cell hy- 
bridoma (I1B-3) and transfected murine fibroblastic ceUs 
(DAP-3) expressing comparable levels of various aUdes and 
isotypes of DK molecules together with the TCK ligand D d 
(Fig. 1). DK molecules encoded by different DILB genes in- 
teract with CD4; the DKw6bIII, DKw53, and DP,2A-Dw2, 
which are products of the DtLB3, B4, and B5 genes, respec- 
tively, can trigger enhanced Ib2 production levels, as com- 
pared with DAP-3 cells expressing only H-2D a molecules 
(Fig. 2 A). Increase in IL-2 production ranged between 
3- and 17-fold (Fig. 2), when compared with control DAP-3 
that express only H-2D d. Results from Fig. 2 A indicate 
that DK4-Dw4 and DKw6B III molecules are more efficient 
than DKw53 and DR.2A in stimulating IL-2 production by 
the I1B-3 T cell hybridoma. Among DRBI alleles (Fig. 2 
B), DK4-Dw4 and DIL5 are capable of stimulating high levds 
of IL-2 production by the T cells (14-15-fold), as compared 
with cells expressing D a alone. However, coculture of CD4 § 
T cells with DAP-3 expressing DK2B-Dw2 or DK1 con- 
stantly yidded lower levels of II,2 (20-fold diff~ence). Similar 
differences were also obtained when cocultures were carried 
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Figure 1. FACS ~ analysis of the 3DT52.5.8 T cell hybridoma expressing 
human CD4 (IIB-3) and DAP-3 cell lines expressing murine class I and 
human MHC class II molecules. Cells were stained with mAb OKT4 (anti- 
CD4), 34.5.8 (anti H-2Dd), and L-243 (anti HLA-DR). 

out in the presence of 10-fold fewer DR4-Dw4 or DRw11.1 
target cells (data not shown). Altogether, our results from 
cocultures indicate that DR4-Dw4, DRw6BIII, DR2A-Dw2, 
and DRw11.1 were the most efficient DR molecules in in- 
teracting with CD4; DR1-Dwl and DR2B-Dw2 displayed 
a good reactivity; while the DRw53 isotype consistently dis- 
played the poorest capacity to interact with CD4. Indeed, 
DRw53 gives reproducibly the smallest enhancement of I1.-2 
production, even at the highest E /T  cell ratio (1:1). In all 
representative experiments performed, the enhancement of 
Ib2 production by the T cells, when stimulated with DAP 
D a DRw53, always varied between 10 and 30% of the re- 
sponse obtained when T cells were stimulated with DAP D d 
DR4-Dw4. 

Polymo~hism in the Peptide-binding Groove Does Not Affect 
the CD4-Class II Interaction. D R  alleles and isotypes share 
the same o~ chain, indicating that the differences described 
above are determined only by polymorphic residues in the 
3 chain. To determine whether polymorphism in the pep- 
tide groove of class II affects the interaction with CD4, DR4 
subtypes were tested. All of the differences between DR4- 
Dw4 and the other DR4 subtypes map to residues located 
on the floor and the ot helices of the peptide-binding groove 
(26). Results of a representative experiment illustrated in Fig. 
2 C indicate that the DR4 subtypes tested (Dw4, Dwl0, 
Dw14, and Dw15) were all very efficient in their interaction 
with CD4, as shown by their capacity to trigger comparable 
levels of IL-2 production by the T cells (14-17-fold enhance- 
ment). These results suggest that polymorphism in the 
antigen-binding groove of the/31 domain has little influence 
on the CD4-class II interaction. However, we cannot exclude 
at present the possible involvement of other residues of the 
81 domain. 

Differential Stimulation by APCs Is Not Due to Other Acces- 
sory Molecules. The differential capacity of target cells ex- 
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Figure 2. Polymorphism in HLA-DR affects the interaction with CD4. 
(A) IIB-3 T cell hybridomas were stimulated with APCs expressing 
H-2D a and different HLA-DR isotypes. Products of the DRB1 gene cor- 
respond to DR4-Dw4; DRB3, DRw6BIII; DRB4, DRw53; and DRB5, 
DR2A-Dw2. (B) Ability of DAP-3 cells expressing various DRB1 prod- 
ucts to stimulate CD4+ T cells. DR4-Dw4, DRw11.1, DR2B-Dw2, and 
DR1-Dwl. (C) Polymorphism in the peptide groove of the 31 domain 
of class II does not affect the CD4 binding�9 CD4 + T cells were cocul- 
tured 18 h at 37~ with various DR4 subtypes. Supernatants from the 
coculture were tested for the presence of 11.-2 by their ability to support 
the proliferation of the Ib2-dependent cell line CTLL.2.11B-3 was also 
cocultured with DAP-3 target cells expressing only class I H-2D d as in- 
ternal control (data not shown). Results are reported as levels of 1I.-2 
production�9 

pressing the DR alleles and isotypes to stimulate CD4 § T 
cells cannot be attributed to variations in the levels of class 
II or D d on their surfaces. Indeed, DR1-Dwl,  which is less 
efficient than DR4-Dw4, DRw11.1, or DRw6BIII in this 
assay, expresses the highest levels of class II and D a mole- 
cules on its surface (Fig. 1). Controls were then carried out 
to eliminate the possibility that the observed differences in 
Ib2 production were caused by the differential expression of 
H-2D d molecules or other costimulatory molecules by the 
APCs. The parental cell line 3DT52.5.8 (CD4-)  was cocul- 
tured with the same stimulator cells expressing H-2D a and 
the different HLA-DR alleles and isotypes (Fig. 3 A) previ- 
ously used to stimulate the CD4 + T cells (I1B-3 hybridoma). 



of this experiment are illustrated in Fig. 3 B and show a similar 
ability of DaDRw53 and DdDR4-Dw4 to inhibit B4.2.3 
growth when pulsed with the p18 peptide. This further 
confirms that the variations in IL-2 production induced by 
the different APCs are more likely to depend on the ability 
of these various DR alleles and isotypes to interact with the 
CD4 molecule. 

Polymorphisms in the COOH-terminal End of the HLA-DR 
Chain Affect the CD4-Class II Interaction. A highly conserved 
sequence (136QEEK139), analogous to the CD8-binding site 
on class I (11), is found in the 32 domain of the class II 
chain; this motif is part of a loop that was shown to be in- 
volved in the CD4-class II interaction (12, 36). This sequence, 
which is conserved amongst all class II alleles and isotypes 
tested in these experiments, does not explain the variations 
described above. Our results suggest that other residues, prob- 
ably outside this loop, affect the CD4-class II interaction (Fig. 
4 a). To identify such residues, chimeric class II mole- 
cules were generated between the 3 chain of DR1-Dwl (an 
intermediate responder) and DRw53 (the poorest responder), 
or the 3 chain of DR4-Dw4 (a very good responder) and 
DRw53 (Fig. 4 B). Each chimera contained the first 146 
residues of the DR1-Dwl (DR1/DRw53) or DR4-Dw4 
(DR4/DRw53) 3 chain, including the highly conserved 
136QEEK139 motif, with the COOH-terminal 91 amino 

Figure 3. (A) Control experiments to evaluate the influence of varia- 
tion in class I expression on DAP cells used to stimulate I1B-3 hybridoma. 
3DT52.5.8 (CD4-) T cell hybridomas were cocultured with APCs ex- 
pressing H-2D d and different HLA-DR products. Results are reported as 
levels of IL-2 production as measured in the CTLL.2 assay. (B) Dose re- 
sponse of the B4.2.3 hybridoma to p18 peptide. The H-2Da-restricted, 
p18-specific T cell hybridoma B4.2.3 cocuhured with APCs responded 
with inhibition of its growth to APCs expressing H-2D d pulsed with p18. 
Growth inhibition was measured by [3H]thymidine incorporation in the 
B4.2.3 T cell hybridomas. 

Results of a representative experiment are illustrated in Fig. 
3 A and show only a 1-2.5-fold increase in the IL-2 response 
for CD4- T cells (3DT52.5.8), when incubated in the pres- 
ence of the different APCs. These results suggest that the 
high IL-2 ratio obtained with the CD4 § T cell is due 
specifically to the CD4-class II interaction and not to varia- 
tions in class I expression or other costimulatory molecules. 
Another control experiment was also performed to determine 
the influence of class I expression and other costimulatory 
molecules on APCs used in the stimulation of I1Bo3. The 
B4.2.3 T cell hybridoma, which is specific for the HIV p18 
peptide (derived from the gp160) and H-2D a restricted, was 
used. The response of this T cell hybridoma is monitored 
by the inhibition of its growth when cocultured with APCs 
expressing H-2D a and pulsed with the p18 peptide. Two 
stimulator cells were tested, one that gives a very high II.-2 
enhancement (DdDR4-Dw4) and the APC that induces the 
poorest II~2 enhancement (DaDRw53) (Fig. 2 A). Results 
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Figure 4. (A) Sequence comparison between the DRB alleles in the 
COOH-terminal portion of the second domain. This region (179-191) 
bears all the differences between DR1-Dwl and DRw53 in the last 91 
amino acids. Numbers refer to the mature peptides, and dashed lines rep- 
resent conserved residues. The one-letter code for amino acids was used. 
(B) Schematic representation of the chimeric molecules constructed by 
recombination of the cDNAs encoding for the different MHC class II 
molecules. These constructions were transfected into DAP D d cells and 
sorted using anti-human class II mAb L-243. 



acids of DRw53. Reciprocal chimeras were generated by in- 
troducing the NH2-terminal domain of DRw53 (1-146) into 
the membrane-proximal domain of DR1 (DRwS3/DR1) or 
of DR4 (DRw53/DR4). These different chimeric molecules 
were then transfected into DAP-3 D a+ cells. Populations ex- 
pressing homogenous levels of D d and of DR molecules 
were then tested (Fig. 5). 

Insertion of the COOH-terminal residues of DRw53 into 
the DR1 molecule led to a total loss of the capacity of DR1 
to enhance IL-2 production by the CD4 + T cell hybridoma 
(Fig. 5 A). The DR1/DRw53 chimeric 8 chain was very 
inefficient in its interaction with CD4. In contrast, the 
DRw53/DR1 chimera molecule was as efficient as DR1 (Fig. 
5 A), indicating that polymorphisms in the last 91 amino 
acids of the 8 chain are responsible for the differences ob- 
served between DRw53 and DR1-Dwl. Similar conclusions 
were obtained with DR4/DRw53 and DRw53/DR4 chi- 
meric molecules. Substitution of the first 146 amino acids 
of DRw53 by the corresponding DR4 residues was not 
sufficient to support the enhancement of Ib2 production by 

Figure 5. Polymorphism itrthe COOH-terminal domain of the 82 do- 
main of class II molecules affects CD4 binding. (A) IIB-3 was cocultured 
18 h at 37~ with APCs expressing H-2D d and class II chimera mole- 
cules DR1/DRw53 or DRw53/DR1. APCs expressing the wild-type DR1 
or DRw53 with H-2D d were used as controls. (B) I1B-3 was cocultured 
as previously described with APCs expressing H-2D a and chimera mole- 
cules DR4/DRw53 or DRw53/DR4. DAP-3 cells expressing H-2,D d and 
DRw53 or DR4-Dw4 were used as controls. Results are reported as levels 
of IL-2 production. Numbers that appear at the top of each bar histogram 
correspond to the M.F.V. for class I D a (upper number) and class II expres- 
sion (lower number). Cell surface expression of class I was determined with 
34.5.8 mAb and class II with 1,-243 mAb. 
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I1B-3 (Fig. 5 B). On the other hand, introducing the carboxy- 
terminal residues of DR4 into DRw53 fully restored the ca- 
pacity of DRw53 to interact with CD4. Results obtained 
with both chimeric molecules indicate that polymorphic 
residues located in the last 91 amino acids of the B chain of 
class II molecule play a role in the CD4 interaction. Sequence 
alignments of the 91 COOH-terminal residues indicate the 
presence of only four polymorphic amino acids between DR4- 
Dw4, DR1-Dwl, and DRw53. These residues are located 
between positions 179 and 191 of the 8 chain (Fig. 4 A). 
The differences in DRw53 include two methionines, which 
replace the highly conserved valine and threonine residues 
at positions 180 and 181. However, the DR4-Dw4 has a leu- 
cine instead ofa valine, which is a very conservative substitu- 
tion. Two highly conserved charged residues in DR and other 
class II molecules, glutamic acid 187 (E187) and arginine 189 
(R189), are substituted by glutamine and serine residues, 
respectively, in DRw53. However, the amino acid $189 is 
also present in DRw6blII, which inferacts efficiently with 
CD4 in the assay described above. There are other differences 
in the amino acid sequences between DR molecules. How- 
ever, sequence alignments between DRw53 (poor responder) 
and DR4 (good responder) did not show any other differ- 
ences outside of this region. This observation limits the con- 
tribution of the polymorphism to the three residues M180, 
M181, and Q187. 

According to the DR1 class II structure (37), the stretch 
of residues that includes the highly conserved 136QEEK139 

motif on the 82 domain of the 8 chain is contained in a loop 
between two 8 strands. Several of these residues are highly 
exposed to solvent. Moreover, localization on the class II struc- 
ture of the two methionines at positions 180 and 181 in 
DRw53 (Fig. 6, A and C) mapped to a loop adjacent to 
the highly conserved QEEK motif. These two methionines 
are not located on the same side of the 82 domain as the 
136QEEKI39 motif or the CD4-binding site on class II 
(residues B 137-148), but rather on the opposite side of the 
82 domain of MHC class II molecules (Fig. 6). Residue 181, 
however, is highly conserved amongst other DR alleles (Fig. 
4 A) and is highly exposed to solvent (Fig. 6). 

How do residues 180 and/or 181 contribute in CD4 
binding? In Fig. 6, we can see that only residue 181 has a 
prominent side chain (Fig. 6 A, pink residue on left side) and 
pointing out and that is ,x,20 A further up (diagonal angle) 
from the side chain of residue 137. Residue 180 shows a side 
chain pointing inside the class II, suggesting that it is most 
likely unable to interact with CD4. Based on these observa- 
tions, we can postulate that CD4 might contact a single het- 
erodimer class II through residue 181 on one side of the 82 
domain and residues from the loop 136-148 on the other side 
(see models in Fig. 7). However, if we consider residues that 
are in the same plan as residues 181, only residues 136-139 
are properly located. This leads us to postulate that CD4 prob- 
ably interacts with residues 181 and the loop 136-139 (Fig. 
6). The possibility that two CD4 molecules interact with 
one class II molecule also exists. One CD4 molecule would 
interact with residue 181, and another CD4 would interact 
with the loop 136-148. The DR1 class II molecules have been 



Figure 6. HLA-DR1 structure showing the two major regions of class 
II affecting the CD4 interaction. (A) Side view of an heterodimer HLA- 
DR1 showing in yellow the CD4 binding site (residues 136-147) on the 

chain and the corresponding position of the two methionines at posi- 
tions 180 and 181 in DRw53. The c~ chain of DR1 is illustrated in green, 
while the B chain is illustrated in red. (B) Side view of a superdimer of 
HLA-DR1 showing in pink the CD4-binding site located between two 
class II molecules (residues 136-147) and polymorphic residues 180-181. 
The/3 chain is illustrated here in yellow. (C) Top view of an HLA-DR1 
superdimer showing residues 136-147 and residues 180-181 in pink on 
one heterodimer. In C, residues 144-147 appear to be buried into the su- 
perdimer interface. MHC class II coordinates were obtained from J. H. 
Brown (37) and displayed using a Quanta CHARM program (Molecular 
Simulations, Inc., Sunnyvale, CA). An IRIS Indigo computer (Silicon 
Graphics, Mountain View, CA) was used as a graphic station to generate 
class II pictures. 

shown by Brown et al. to crystallize as a dimer of heterodi- 
mers (superdimer) (37). In this context, there are two CD4- 
binding sites per class II superdimer. However, in the super- 
dimer structure, not all residues from the stretch 136-148 
are accessible to CD4 (Fig. 6 B). In fact, residues 144-148 

are buried between two class II molecules, leaving only residues 
136-143 accessible to CD4. Konig et al. have reported that 
residues 137 and 140 of the class II ~5 chain are the most crit- 
ical for the interaction with CD4 (12). The importance of 
E137 was further confirmed by Cammarrota et al. (36), who 
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Figure 7. Possible interactions between CD4 and class II molecules. 
(A) One face of the CD4 molecules is engaged with two binding sites 
on the B2 domain of a class II molecule. These binding sites might involve 
residues 181, 136, and 137 because they are on the same plan. In this model, 
residues 138-148 are not in the same plan as residue 181. (B) One CD4 
molecule makes contact through one of its rices with residue 181, while 
another CD4 molecule binds to the loop 136-144 through its opposite 
face. Only residues 136-139 are illustrated. (C) CD4 binds to the loop 
formed of residues 136-144 of the/32 domain of class II but comes in 
close proximity to residue 181, whose side chain could modulate CD4 
docking. (D) In the superdimer, among residues 136-148 from the CD4- 
binding site on the B2 domain of class II, only residues 136-144 are easily 
accessible to CD4. Residues 145-148 are buried inside the superdimer struc- 
ture. CD4 would bind to the loop 136-144, and the side chain of residue 
181 could affect CD4 binding. (E) Two CD4 molecules would bind on 
each side of the superdimer. One CD4 is engaged with the loop 136-144, 
and the other CD4 contacts a second binding site on the B that includes 
residue 181. 

showed that a peptide spanning residues 138-152 is severely 
impaired in its capacity to bind soluble CD4. In the super- 
dimer, amino acid T181 on DR1 is still very exposed to sol- 
vent (Fig. 6, B and C). A single CD4 molecule can still in- 
teract with residue 181 and the loop 136-139. However, we 
do not know if CD4 establishes contact with these two 

binding sites through the same face. Alternatively, it is pos- 
sible that two CD4 molecules could interact with each class 
II molecule. Several reports in the literature have suggested 
the presence of two class II-binding sites on CD4 (19, 38, 39). 

According to the observations described above, it is more 
likely that the CD4-binding site on class II would implicate 
residues 181 and some residues of the loop 136-143, most 
likely E137 and V140 (12). A single CD4 molecule can ac- 
comodate this surface area, but residues extending farther than 
position 139 can hardly make contact with CD4. It is also 
possible that residues 180-181 are not directly implicated in 
CD4 binding, but may rather influence the docking between 
CD4 and MHC class II molecules, thereby influencing the 
affinity of CD4 for its ligand. The two methionines at posi- 
tions 180 and 181 in DRw53 instead of a valine and a threo- 
nine might have an effect on CD4 binding because of the 
presence of a longer side chain. The introduction by muta- 
genesis of residues with short nonpolar side chains at these 
positions might help to determine the real contribution of 
residues 180 and 181 in CD4 binding. Finally, it is possible 
that the orientation of these residues could differ from one 
DR structure to another. Mutation on residue 187 should 
also help to answer this question. Unfortunately, the class 
II crystal structure does not include residue 187. It would 
have been interesting to see whether it maps to the same face 
as residues 180-181 and loop 136-147. 

Our experiments clearly demonstrate important differences 
between alleles and isotypes of DR molecules in their ability 
to interact functionally with the CD4 molecule. Results have 
been obtained with natural MHC class II molecules known 
to be efficiently expressed at the cell surface and to present 
Ag to T cells. An important region of the DR/3 chain im- 
plicated in the interaction with CD4 has been identified be- 
tween residues 179 and 190. Other polymorphic residues in 
DR/3  chains can affect the interaction with CD4. Indeed, 
the low response of DR2B-Dw2 might be explained by R133L 
or V142M substitutions, since R133 and V142 are highly con- 
served in all other DR alleles. Efficient interaction with CD4 
could thus contribute to the predominance of certain DR 
alleles or isotypes in antigen-restricted responses. Interest- 
ingly, such a correlation exists for DR2A and DR2B. The 
DR2A molecule, which interacts better than DR.2B with 
CD4 (Fig. 2, A and B), predominates over DR2B in presen- 
tation of natural antigens to T cells (16). The effect of such 
polymorphism on the selection of the T cell repertoire re- 
mains to be determined. 
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