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Abstract

Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a
fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of
gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA
output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of
valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations
in regulatory proteins is achieved by adjusting valves’ on/off settings. The topology of the lattice is designed by the
experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA
expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with
experimental data. This computational model provides a means to test the plausibility of transcription regulation models
derived from large genomic data sets.
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Introduction

The contribution of transcriptional regulatory proteins to the

expression of every gene in a genome depends upon the DNA

regulatory sequences present at each gene and the physiological

environment of the cell. One of the challenges in genomics,

systems biology, and the study of how genes are regulated is the

integration of the myriad of regulatory interactions into a

meaningful network [1]. Current intuitive approaches can handle

a small number of parameters, but become unwieldy as the

complex interrelationships of gene regulation are expanded.

Moreover, with the advent of microarray technologies that allow

the RNA output of thousands of genes to be monitored in a single

experiment, it becomes increasingly more difficult to interpret and

integrate thousands of output values and their changes, when the

system is perturbed in multiple distinct ways.

Biological networks have been thought of in at least three

categories. Genetic networks describe an unfolding cascade of

gene expression events in which one or more genes influence the

expression of other genes that go on to influence the expression of

more genes [2,3]. Protein networks describe the set of all

measurable protein-protein interactions within a cell. Biochemical

networks describe the flow of metabolites from one enzyme to

another [4,5,6]. Our goal here is to integrate parts of these

networks with respect to the biochemical assembly of the

transcription machinery at eukaryotic promoters, resulting in the

conversion of nucleotide substrates into RNA.

Genes represent the source code for the components of a cell.

When individual genes are ‘‘read’’, nucleotide substrates are

converted to an RNA polymer product. Using a fluidics analogy,

one can think of a pipe lattice in which a single fluid, mRNA, flows

at rates determined by properties of the pipes in the lattice and

subject to the influence of individual valves placed, by the

modeller, on selected pipes in the lattice. The single fluid enters/

exits the lattice from external nodes driven by a pressure head

whose value is part of the model specification. A valve on a pipe

controls the flow through that pipe, and in the fluidics analogy the

net effect of all valves in the lattice controls RNA output.

Biologically, the valves correspond to proteins that control the

assembly/disassembly of the transcription machinery at the

beginning of genes (promoters). Once assembled, the RNA

polymerase II component of the transcription machinery tran-

scribes the gene, in effect converting nucleotides to RNA.

Assembly of the transcription machinery involves a wide variety

of proteins, including both positive and negative regulators. Thus,

a piping analogy would include many valves. Our goal is to define

a pipe network analogy and its associated valves that properly

model RNA output at every modelled gene.

Flux simulators, which model the movement of substrates

through a reaction pathway using deterministic and/or stochastic

approaches [5,6,7], require explicit declarations of reaction steps,

rate constants, and reactant concentrations. As a result they may

be less suitable for modelling the assembly of the transcription

machinery, where such parameters are ill-defined. Rather, a

cruder approach may be needed to model less-defined systems

with the purpose of evaluating the plausibility of potential

regulatory mechanisms.
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Based upon a wide variety of biochemical, genetic, and genomic

experiments and conventional wisdom, we and others (see Ref.

[8], and references therein) devised a minimal framework for the

assembly of the transcription machinery through the TATA

binding protein (TBP) at all measurable promoters, using the

budding yeast Saccharomyces cerevisiae as a model system. Because the

transcription machinery is fundamentally conserved in the

eukaryotic lineage, this framework is potentially applicable to

higher eukaryotes including humans. In this framework, two

protein complexes, TFIID (transcription factor IID) and SAGA

(Spt Ada Gcn5 Acetyltransferase), compete to assemble the

transcription machinery via recruitment of TBP to promoters

(Figure 1). Consequently, they are functionally redundant, but

only partially redundant since each pathway potentially produces

quantitatively distinct outputs (i.e. different mRNA levels).

Therefore within this framework, TFIID and SAGA provide two

potential levels of control, one in which TFIID and SAGA

compete for promoter binding and a second where promoter-

bound TFIID or SAGA drives a quantitatively distinct mRNA

output. The combined action of the physiological milieu (protein

network) and promoter DNA regulatory elements further tweaks

these pathways to achieve gene-specific transcriptional control.

Previously, we utilized a set of mutations that eliminated or

reduced the individual contributions of TFIID and SAGA (as well

as other regulators) to monitor changes in gene expression on a

genome-wide scale in yeast [8,9]. In one of those studies, we

Figure 1. Pathways of transcription complex assembly. A, Simplified model of protein complex assembly on DNA. B, Two-branch model in
which TFIID (D) and SAGA (S) compete to load TBP (T) onto DNA, which then goes on to form a pre-initiation complex (PIC).
doi:10.1371/journal.pone.0003095.g001
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measured the effect of over 60 mutant combinations on ,6000

yeast genes. After clustering the genes into six groups based upon

similar responses to a set of mutations (i.e., co-regulation), there

were 360 (6066) summarized data points, all of which needed to

be reconciled in the context of a generalized gene regulation

model. Model plausibility was evaluated using a kinetic simulator

[7,10] that allowed us to define the transcription process in terms

of elementary steps that were relevant to the mutants under study.

While this strategy was effective in shaping an all-inclusive model,

it was primarily designed to model a forward pathway in which

input parameters were declared and the algorithm calculated the

output (mRNA production). The process was used interactively to

test whether a series of reaction steps and input parameters

defining assembly of the transcription machinery could accom-

modate the bulk of the data. This process, while effective, was

laborious because it lacked an iterative optimization routine. For

this reason we sought to develop a computational optimization

process by which measured mRNA output levels could be used to

derive input parameters that would model the output in a model-

specific manner.

TFIID and SAGA are but two of the many protein complexes

that control mRNA output (Figure 1A) [9,11,12,13,14]. The

ultimate goal is to create a linked biochemical network that

integrates all regulatory interactions. The magnitude of such a

problem is substantial if one considers that in yeast alone there are

,6000 genes potentially regulated by up to ,400 proteins,

thereby producing ,600062400 possible bound/unbound states.

Exhaustive experimental testing of such a theoretical network

would require the impractical construction of 2400 mutant strains

to produce each state. As a tractable, albeit limited, means of

elucidating parts of the network, we have focused on key

components (i.e., TFIID, SAGA, and several other proteins) with

the goal of creating a mathematical ‘‘fluidics’’ model that describes

the contribution of TFIID, SAGA, and other selected proteins to

genome-wide gene expression. The mathematical model is

intended to evaluate the plausibility of ad hoc conceptual models

of transcription regulation that explain changes in gene expression

in response to defects in the regulatory interactions under study.

The Fluidics Analogy Model
A biochemical network describing the assembly of the

transcription machinery at promoters can be thought of as a

series of reversible fluid-flows that dynamically move forward

(transcription machinery assembly) and backward (disassembly or

inhibition), with mRNA output being the net flux of these forward

and reverse flows. To model regulated mRNA production from a

gene, we developed a piping analogy (Figure 1B) in which a single

fluid, namely mRNA, flows through the pipe at a rate governed by

the pipe’s resistance and the pressure drop across the ends of the

pipe. In addition, a valve is deployed (on selected pipes in the

lattice) to represent a regulatory event such as TFIID binding to a

promoter. Since TFIID contributes to mRNA production [15], the

valve is considered ‘‘on’’ when TFIID is bound at the promoter.

When TFIID is experimentally removed by creating a mutation in

TFIID, the valve is then ‘‘off’’ and mRNA output is decreased.

Addition of SAGA to the system creates two inputs, or pipes, that

converge to produce a single mRNA output. In this work a set of

such pipes is referred to as a lattice, and is constructed by the user

to conceptualize experimental observations. In principle, the 6000

yeast genes can be modelled by 6000 individual lattices. However,

rather than creating a computationally unwieldy set of 6000

lattices, clusters of genes that behave similarly within experimental

error, when ‘‘valves’’ are turned on/off via mutation, are

approximated using a single lattice. In this paper, we describe

the modelling of six clusters with six lattices. An important aspect

of this model is that a valve is experimentally turned on by

mutating a negative regulator or turned off by mutating a positive

regulator.

Under the normal physiological state of the cell (i.e. wild type),

valves will have default settings ranging from zero (off) to some

maximal value (fully on). A valve in one lattice, representing a

given gene cluster, may have a different default (wild type) setting

than the same valve in a different lattice (representing a different

gene cluster). For example, lowly expressed genes might have

default valve settings for TFIID close to zero. Highly transcribed

genes might have the TFIID valve set to a high value. When

TFIID is mutated so as to turn off all TFIID valves, mRNA output

from the lowly expressed gene is relatively unaffected, whereas

mRNA output from highly transcribed genes might be severely

curtailed. In a two-pipe lattice involving TFIID and SAGA, the

change in mRNA output upon mutation of TFIID (or SAGA) will

depend upon the default valve settings for TFIID and SAGA.

Since complete elimination of certain regulatory proteins such as

TFIID is lethal to cells [14], we must either measure RNA output

soon after TFIID inactivation, or use TFIID mutants that are only

partially defective, thereby requiring the model to tolerate a

relatively high background level of RNA output when the TFIID

valve is turned ‘‘off’’. The first option is employed in modelling the

2-branch lattice below, and the latter when modelling the 4-

branch lattice; the 2- and 4-branch lattices are described in the

remainder of this paper. In either case, the effect of mutations, i.e.

changing on/off valves’ setting in our model, is measured as the

difference of the resulting mRNA outflow from the all-valves-off

state.

The resulting flow across a given valve has three possible states:

no-flow, flow in the forward direction, or flow in the reverse

direction depending (within the scope of the fluid-flow analogy of

this model) on the pressure drop across the pipe holding the valve

in question. The effect of the collective settings of all valves in a

given lattice on the resulting net-outflow (i.e., mRNA production)

has three possible states: increase, decrease, or no-change.

Experimentally, this corresponds to a positive, negative, or no

change, respectively, in mRNA levels for each gene (or gene

cluster) being measured. Only the on/off states of each valve are

controlled, and the corresponding net outflow is measured thereby

enabling a quantitative inference of the change in flow through all

valves.

Our previous study on the TFIID/SAGA assembly pathway

included a third non-productive transcription complex assembly

pathway [8]. This non-productive pathway loads TBP onto

promoters in a state that fails to direct proper assembly of the

transcription machinery. Promoter activation therefore requires

removal of this inactive TBP [16,17], which is catalyzed by the

potentially cooperative action of Mot1 (Modulator of transcription

1) and NC2 (Negative cofactor 2) [16,18,19,20,21]. In this model,

Mot1 and NC2 also remove TBP delivered by SAGA [8,9], but

not TBP delivered by TFIID [22]. The six clusters of co-regulated

genes derived from that study are the subject of four-branched

lattice modelling presented here.

A Two-branch Pipe Network
As a first step towards modelling complex lattices, we created a

simplified two-branch model representing the dual contributions

of TFIID and SAGA to mRNA production (Figure 1B) [9]. This

model is defined by 1) its connection scheme; 2) the pressure heads

at all external nodes, v0, v1, v2; 3) the resistance to flow along each

pipe link, r0, r1, r2; and 4) the on/off setting of valves s1, s2. Since

the flow depends only on pressure drops between the input and

Gene Expression Fluidics Model
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output pressure heads, all pressure heads in the model can be

specified relative to the output pressure head (v0) which, without

any loss of generality, is set to zero for convenience. The external

pressure heads and pipe resistances are fixed ‘‘model parameters’’

which are specific to each lattice. The measurable ‘‘output’’ of an

experiment is the single flow variable i0 that is analogous to the

production rate of mRNA for the given s1, s2 setting minus the

production rate of mRNA when both valves are closed; the latter is

termed the ‘‘background state’’. The internal pressure head (p0),

and all flow variables i0, i1, i2, are computed from the model

parameters consistent with a specific setting of the valves, and in

accordance with the standard fluidics model equations:

i0~
p0

r0
ð1Þ

i1~s1
v1{p0

r1
ð2Þ

i2~s2
v2{p0

r2
ð3Þ

where the constant si is assigned a value of 1 if valve si is open (i.e.

on), and a value 0 indicating that valve si is in its off position. In

addition, flow continuity at pipe connections requires:

i0~i1zi2 ð4Þ

The model parameter r0 defines a class of solutions under the

transformation:

r̂ri~
ri

r0
, v̂vi~

vi

r0
, i~1,2; p̂p0~

p0

r0
ð5Þ

Without any loss of generality, we arbitrarily set r0 = 1, recognizing

that a different setting of this model parameter will scale p0 and the

remaining model parameters according to Eq. (5) leaving all other

model variables, most importantly i0, invariant. Simultaneously

solving equations (1)–(4), with r0 set to 1, yields the expression for

the output flow i0

i0 s1,s2ð Þ~ s1r2v1zs2r1v2

s1r2zs2r1zr1r2
ð6Þ

The arguments (s1, s2) of i0 in Eq. (6) are intended to affirm the

dependence of the output flow on the valves setting. It is evident

from Eq. (6) that when both valves are closed i0 vanishes providing

the background case against which other valve-settings’ measured

outflow is compared. Hence in Eqs. (1)–(6) i0(s1, s2) denotes the

difference of the mRNA outflow for the valve setting (s1, s2) from

the mRNA outflow when both valves are closed, i.e. s1 = 0 = s2.

Optimal Solution of the Two-Branch Model for the Model
Parameters

With two valves in the two-branch model, each permitting two

states, on or off, there is a total of four possible valve-setting

combinations available, each yielding a model value of i0 that

correlates with a correspondingly measured value of mRNA

relative to the background. Labeling branches 1 and 2 in Figure 1B

as D and S, respectively, we designate the wild type state (i.e.

unperturbed or starting state) as the experiment where the two valves

are set to the on position, and set the value of i0 to the differential

measured mRNA flow:

i0 1,1ð Þ~ r2v1zr1v2

r2zr1zr1r2
?m3{m0 ð7Þ

(Note that, for example, the subscript 3 on m3 is the integer

represented by the binary number 11 corresponding to the valves

setting for the corresponding state). In Eq. (7), m0 is the measured

value for the background type state defined above. All other three

states corresponding to the remaining settings of the valves are

experimentally altered states corresponding to differential measured

mRNA flows mi, i = 0,1,2:

i0 0,0ð Þ~0?m0{m0 ð8Þ

i0 1,0ð Þ~ v1

1zr1
?m1{m0 ð9Þ

i0 0,1ð Þ~ v2

1zr2
?m2{m0 ð10Þ

Table 1 lists these four experiments and their experimentally

measured mRNA outflow for 6 clusters of yeast genes. For each

cluster, within the scope of the two-branch model, there are four

measured values mi, i = 0,…,3, that can be substituted into the right

hand sides of Eqs. (7)–(10) and the resulting relations used to

determine the four model parameters: v1, v2, r1, r2. By design Eq. (8)

is automatically satisfied, hence it cannot be used in the process of

evaluating the model parameters. Consequently the system of

equations (7), (9), and (10) is underdetermined in its unknowns, the

four model parameters in this case. Thus values of the model

parameters are sought that best fit the model-computed values of i0
to their measured values. This defines an optimization procedure

and the optimal state was achieved by searching for the set of

model parameters that minimizes the following quantities:

i0 1,0ð Þ{ m1{m0ð Þ½ �2, i0 0,1ð Þ{ m2{m0ð Þ½ �2, i0 1,1ð Þ½
n

{ m3{m0ð Þ�2
o

ð11Þ

under the constraints: 1) i0$0; 2) ri$0; and 3) the sense of change

from the wild state is preserved, e.g. [i0(0,1)–i0(1,1)][m2–m3].0,

with an analogous constraint on Experiment 1. Within the analogy

Table 1. Four experiments available in the Two-Branch
Model: Model expressions and experimentally measured
values for 6 clusters.

Model
i0+m0

SD off S off D off Wild: All on

m0
v2

1zr2
zm0

v1

1zr1
zm0

r2v1zr1 v2

r2zr1zr1 r2
zm0

Cluster 3 0.89 2.97 1.99 2.90

Cluster 4 0.19 0.54 0.42 0.80

Cluster 5 0.54 1.87 1.68 2.30

Cluster 7 0.51 1.95 1.80 2.60

Cluster 8 0.77 2.85 2.07 3.75

Cluster 9 1.69 6.89 4.91 8.10

doi:10.1371/journal.pone.0003095.t001
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to pipe lattices it is physically acceptable to have negative pressure

heads, vi, and flows, i1 and i2, but not resistances, ri. A negative

resistance would imply flow from low to high pressure, an

unsustainable proposition in view of the intended analogy.

The optimization problem is formulated as a constrained

nonlinear programming (NLP) problem where the objective is the

minimization of the squared difference between the experimental

and predicted differential outflow (from the background state’s

outflow) for all the included experiments. The resulting model is

implemented using the General Algebraic Modelling System

(GAMS) [23] which is a high-level language for the compact

representation of mathematical programming models. Subse-

quently, the model is solved using the CONOPT3 solver which

implements the Generalized Reduced Gradient (GRG) algorithm

[24,25]. Search procedures perform the minimization locally so as

to reduce computational demand. Hence, they do not guarantee a

global minimum.

Applying the GAMS [23] optimization procedure to the

measured mRNA output values presented in Table 1 yields the

model parameters shown in Table 2. These values correspond to

the constrained minimum error stated in equation (11) obtained in

1,000 iterations designed to explore a wider region in model-

parameter space thus improving the chance of approaching the

global minimum at a reasonable computational cost. Each

iteration is comprised of a complete minimization sequence, with

the various iterations differing from one another by the values

assigned as initial guess to the model parameters and variables. For

example the optimal model parameters presented in Table 2 were

obtained by randomly selecting an initial guess as follows:

vi[ {100,100½ �, i~1,2;

i0,ri[ 0,10½ �, i~1,2;

ii[ {10,10½ �, i~1,2:

ð12Þ

These model parameters are physically acceptable in that no

negative resistances appear. These optimal model parameters

reproduced, within experimental error, the measured experimen-

tal output of mRNA [9] for each of the modeled six clusters [8]

under each permutation of the wild type and mutant (TFIID and

SAGA mutants) states (Table 3). The C:E error is defined as the

ratio of the computed value of i0 for a given valve setting to its

measured value corresponding to wild/altered-type yeast minus

one. The error is the maximum of |C:E–1| over all valve settings

for a given cluster. Table 3 shows that the error for all clusters is

below 8.1%, well within the experimental variability. This

modeling involves experimental data generated 45 min. after

complete inactivation of TFIID via a temperature-shift in the

mutant strain taf1-2.

Effectively this optimization procedure amounts to solving the

inverse problem, whereby the measured mRNA output is known

and attempts are made to infer the model parameters that most

closely reproduce that output. Importantly, perturbations to the

experimental system via mutation are used to alter the

corresponding valve setting(s). While the under-determined nature

of the two-branch model is unlikely to repeat in more complex

models with more branches, the optimization procedure applied to

this two-branch model is equally applicable to over-determined

systems. This is further illustrated for the four-branch model

below.

The construction of a mathematical model governing transcrip-

tion complex assembly amounts to determining all model

parameters that when deployed in the pipe-lattice model will

Table 2. Two-Branch Model parameters.

v1 v2 r1 r2

Cluster 3 1.93 17.13 0.74 7.12

Cluster 4 735.77 758.61 3480.6 2139.60

Cluster 5 2.48 7.43 1.28 4.72

Cluster 6 3.61 18.71 2.02 12.44

Cluster 8 21.01 89.96 17.48 43.44

Cluster 9 10.83 43.39 2.84 7.62

Parameters were obtained by minimizing the residual of equations (7), (9), and
(10) using the 6 clusters experimentally measured values shown in Table 1.
doi:10.1371/journal.pone.0003095.t002

Table 3. Modeling a two-branch pipe lattice.

Experiment 0 1 2 3

s1 (S) off off on on

s2 (D) off on off on Error

Mutant SD S D (WT)

Cluster 3

Measured i0 0.89 1.99 2.97 2.90

Calculated i0 0.89 2.00 3.00 2.90 0.011

C:E–1 0.000 0.004 0.011 0.000

Cluster 4

Measured i0 0.19 0.42 0.54 0.80

Calculated i0 0.19 0.40 0.54 0.76 0.056

C:E–1 0.000 20.040 0.001 20.056

Cluster 5

Measured i0 0.54 1.68 1.87 2.30

Calculated i0 0.54 1.63 1.84 2.30 0.035

C:E–1 0.000 20.034 20.020 0.000

Cluster 6

Measured i0 0.51 1.80 1.95 2.60

Calculated i0 0.51 1.71 1.90 2.60 0.051

C:E–1 0.000 20.051 20.022 0.000

Cluster 8

Measured i0 0.77 2.07 2.85 3.75

Calculated i0 0.77 1.91 2.79 3.80 0.079

C:E–1 0.000 20.078 20.020 0.013

Cluster 9

Measured i0 1.69 4.91 6.89 8.10

Calculated i0 1.69 4.51 6.73 8.10 0.081

C:E–1 0.006 20.081 20.024 0.000

*See Figure 1B for lattice arrangement. Valve settings are denoted by s. Mutant
status is indicated by S (spt3D) and D (taf1-2) [9]. Error is defined as the
maximum absolute value of the error obtained between the measured [9] and
calculated i0 values. Measured i0 for WT (experiment 3) corresponds to the
average transcription frequency (mRNA/hr) using the data of Holstege [26] for
the indicated clusters of genes (3, 4, 5, 6, 8, and 9) defined in Huisinga et al. [8].
Measured i0 for experiments 0–2 is the result of the following calculation:
Transcription frequencies from experiment 3 (WT), for individual clusters, were
multiplied by the fold changes in transcription (linear scale) measured
previously with mutants spt3D and taf1-2 by Huisinga et al. [9]. ‘‘C:E–1’’ error is
defined in the text.

doi:10.1371/journal.pone.0003095.t003
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approximately produce the correct outflow i0 for all possible valve

patterns (mutant states) in a given cluster. Several considerations

place limits on the accuracy of this approach: 1) Inherent variance

of gene expression within a cluster, 2) experimental error

associated with the measured results, 3) uncertainty of the

appropriate lattice connections, and 4) a ‘‘ripple’’ effect, whereby

the effect of the primary perturbation (mutation) to the

experimental system creates other perturbations that affect net

mRNA output.

A Four-Branch Model
Next we constructed a more complex multi-branch lattice

reflecting contributions of the transcriptional regulators Mot1 and

NC2 to the two-branch model involving TFIID and SAGA

(Figure 2). The four-branch model’s construction is based upon

evidence of these interactions presented elsewhere [9]. The

number of control valves was set to the number of individual

mutations being modelled. Six identical lattices were constructed,

each modelling one of the six previously defined clusters of co-

Figure 2. A four-branch model. A, In this pathway two inhibitory proteins NC2 (N) and Mot1 (M) inhibit the SAGA pathway and inhibit a non-
productive TBP assembly pathway. In the latter case NC2 and Mot1 would act positively. B, Simple pipe lattice for illustration of the computational
model parameters and variables.
doi:10.1371/journal.pone.0003095.g002
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regulated genes [9]. Each lattice was tailored by allowing its model

parameters, namely the external pressure head (v) at each external

node and the resistance of each pipe link, to vary from one cluster

to the other. In addition, the model variables, flow currents (i) and

internal pressure heads at pipe intersections (p) vary across clusters

and with varying valves settings.

The data set used for the four-branch model is different from

that used for the two-branch model. In particular, TFIID was only

partially inactivated using the taf1(DTAND) mutation, and all

mutant states were constitutive (i.e. not induced by a temperature

shift, as in the previous example). Consequently, in the all-off

background state, a relatively high level of background mRNA

remains.

The four-branch model is ‘‘over-determined’’ in that there are

more conditions to satisfy (measured output from experiment) than

model parameters to compute. This feature derives from the fact

that the number of model parameters (i.e. number of pipes and

external nodes) increases linearly with lattice complexity, while the

number of valve-setting combinations increases exponentially, i.e.

2K, with the number of valves, K. An optimal set of model

parameters is sought that minimizes the deviation of the computed

values of i0 under various valve settings from their corresponding

experimentally measured values. Additional constraints placed on

the optimization procedure are described below.

This optimization procedure permits multiple optimal states

and does not guarantee a global minimum in a reasonable amount

of computational time. Hence, the results of this procedure, i.e. the

determined model parameters, are understood to be neither

unique nor physical, measurable quantities. Rather, the ‘‘optimal’’

set comprises one possible fully specified lattice (connection

scheme and model parameters) that is capable of replicating a

corresponding set of experiments to within the observed

discrepancy. Different choices of the model parameters might

produce equally good, or even better, agreement between model

and experiment depending on the computational effort expended

in their computation. Thus, the procedure is intended to provide a

means of assessing the plausibility of a model by bringing to light

internal inconsistencies or conflicts. In such event, the user could

then alter the lattice connections and rerun the algorithm for all

clusters to assess whether alternative lattice arrangements provide

a better fit to the experimental data (Figure 3).

The four-branch pipe-lattice model representing TFIID,

SAGA, Mot1, and NC2 (Figure 2B) comprises 10 equations for

each valve-setting state. Three equations define the flow continuity

conditions at the pipe intersections where the pressure head is

denoted pi, i = 0,1,2:

i0~i2zi5

i5~i1zi6

i6~i3zi4

ð13Þ

Two equations define the pressure-head drop relations across the

pipes whose resistances are denoted r5 and r6:

i5~
p1{p0

r5

i6~
p2{p1

r6

ð14Þ

Five equations define the pressure-head drop relations across the

pipes whose resistances are denoted ri, i = 0,…,4:

i0~
p0

r0

i1~s1
v1{p1

r1

i2~s2
v2{p0

r2

i3~s3
v3{p2

r3

i4~s4
v4{p2

r4

ð15Þ

Here too i0(s1, s2, s3, s4) denotes the difference of the mRNA

outflow for the valve setting (s1, s2, s3, s4) and the mRNA outflow

with all valves closed.

Optimal Solution of the Four-Branch Model for the Model
Parameters

Like the two-branch model, the model parameter r0 defines a

class of solutions realized by scaling the values of vi, qi, and ri with

r0; hence, without any loss of generality, we arbitrarily set the value

of r0 to 1. Using any real, positive value of r0 will produce

effectively the same flow in the lattice by the corresponding scaling

of the model parameters and internal pressure drops. This model

permits a total of 24 = 16 states corresponding to the combination

of on/off settings of the four valves si, i = 1,…,4. However, in

contrast to the two-branch model, here the model is overdeter-

mined in the sense that there are 15 non-background experimental

values of i0 (the difference of mRNA outflow for a given state

minus mRNA for the background state) that must be replicated by

the model via adjustment of only ten model parameters vi,

i = 1,…,4, and ri, i = 1,…,6.

Equations 13–15 permit an analytical solution for i0 in terms of

the model parameters and the valve settings. The resulting

expression is supplied to the optimization package, GAMS,

requiring that the optimal set of model parameters vi, i = 1,…,4,

and ri, i = 1,…6, satisfy the following conditions: 1) The difference

between i0 and the experimentally measured mRNA in excess of

its background value for the corresponding valves-setting is

minimized in the L‘ norm (the maximum absolute value over all

experiments in a cluster); 2) All model resistances are non-

negative: ri$0, i = 1,…6; 3) The sense of change (increase/

decrease) relative to the all-valves-on state (Experiment 15) is

preserved.

In the pipe-lattice model, the default (wild type) setting for each

valve is either on or off, reflecting whether the modelled biological

interaction represents a facilitating or inhibiting interaction,

respectively. As such, the lowest measured mRNA output in each

cluster is assigned to the ‘‘all off’’ state (Experiment 0 in Table 4),

regardless of the mutant status and is representative of the

background mRNA level. If multiple states possess values that are

experimentally indistinguishable from this smallest value, e.g.

Cluster 8 discussed below, we arbitrarily select one of them to

correspond to the background state. The effect of turning on one

or more valves is computed as the difference of the resulting

mRNA outflow from this background value. The mutant status for

the ‘‘all-off’’ experiment is then directly linked to these valve

settings. For example, in cluster 4 the off state of valve s1 is

represented by the SAGA mutant spt3D (S), the off state of s2 is

represented by the TFIID mutant taf1(DTAND) (D), the off state of

s3 is represented by wild type MOT1, and the off state of s4 is

represented by wild type BUR6 (NC2).
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Next, each valve is turned on, one at a time (experiments 1–15),

and assigned to the appropriate mutant status. Thus, in cluster 4

experiment 1, s1 is turned on (wild type SAGA) while all other

valves (s2, s3, s4) remain off (mutant TFIID, wild type Mot1, and

wild type NC2). When all valves are turned on TFIID and SAGA

are in the wild type state and Mot1 (M) and NC2 (N) are mutant

(experiment 15). This process is applied independently to each

cluster, then using the GAMS optimization procedure described

above, the model parameters shown in Table 5 are computed.

The modelled mRNA output (i0+background mRNA) computed

using these parameters is compared to the measured output in

Table 4.

Figure 3. Alternative lattice arrangements. Species ‘‘D’’ and ‘‘M’’ in the upper panel and species ‘‘D’’ and ‘‘S’’ in the middle panel have been
switched from that shown in Figure 2B, and in the lower panel the parallel-connected ‘‘M’’ and ‘‘N’’ branches are connected serially to the ‘‘S’’ branch.
doi:10.1371/journal.pone.0003095.g003
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Table 4. Modeling a four-branch lattice*.

Experiment 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s1 (S) off on off on off on off on off on off on off on off on

s2 (D) off off on on off off on on off off on on off off on on

s3 (M) off off off off on on on on off off off off on on on on

s4 (N) off off off off off off off off on on on on on on on on Error

Cluster 3

Mutant S D DS N SN DN DSN M SM DM DSM MN SMN DMN DSMN

Measured i0 2.90 3.46 3.16 3.26 4.76 4.55 4.89 4.31 3.36 4.24 3.99 4.19 4.51 4.30 4.61 4.31

Calculated i0 2.90 3.49 3.02 3.54 4.60 4.58 4.61 4.59 3.64 3.96 3.71 4.00 4.58 4.57 4.59 4.58 0.086

C:E–1 0.00 0.01 20.04 0.09 20.04 0.01 20.06 0.06 0.08 20.07 20.07 20.05 0.02 0.06 0.00 0.06

Cluster 4

Mutant DS D S DSN DN SN N DSM DM SM M DSMN DMN SMN MN

Measured i0 0.65 0.75 0.66 0.80 0.75 0.83 0.76 0.90 0.76 0.80 0.79 0.79 0.73 0.78 0.81 0.91

Calculated i0 0.65 0.71 0.70 0.76 0.75 0.81 0.80 0.86 0.72 0.78 0.77 0.83 0.76 0.82 0.81 0.87 0.059

C:E–1 0.00 20.06 0.06 20.05 0.00 20.03 0.05 20.04 20.05 20.03 20.02 0.05 0.04 0.05 0.00 20.05

Cluster 5

Mutant DS D S DSN DN SN N DSM DM SM M DSMN DMN SMN MN

Measured i0 1.64 2.49 1.77 2.30 2.31 3.64 2.33 3.86 2.21 2.82 2.32 2.58 2.18 3.22 2.34 3.40

Calculated i0 1.64 2.58 1.66 2.60 2.61 3.54 2.63 3.56 2.01 2.86 2.02 2.88 2.48 3.33 2.49 3.35 0.135

C:E–1 0.00 0.04 20.06 0.13 0.13 20.03 0.13 20.08 20.09 0.01 20.13 0.12 0.14 0.03 0.07 20.01

Cluster 6

Mutant DS D S DSN DN SN N DSM DM SM M DSMN DMN SMN MN

Measured i0 1.36 2.59 1.55 2.60 1.79 2.81 1.75 3.18 1.66 2.40 1.82 2.61 1.62 2.51 1.78 2.97

Calculated i0 1.36 2.53 1.56 2.73 1.68 2.84 1.88 3.05 1.53 2.53 1.73 2.73 1.64 2.64 1.84 2.84 0.079

C:E–1 0.00 20.02 0.01 0.05 20.06 0.01 0.08 20.04 20.08 0.06 20.05 0.05 0.01 0.05 0.03 20.04

Cluster 8

Mutant DS D S DSN DN SN N DSM DM SM M DSMN DMN SMN MN

Measured i0 2.63 3.50 3.00 3.75 2.77 2.99 2.83 3.18 2.68 2.99 2.86 3.39 2.64 2.88 2.68 3.14

Calculated i0 2.63 3.49 2.99 3.85 2.67 3.09 2.84 3.27 2.63 3.09 2.82 3.29 2.66 2.97 2.78 3.09 0.038

C:E–1 0.00 0.00 0.00 0.03 20.04 0.04 0.00 0.03 20.02 0.04 20.01 20.03 0.01 0.03 0.04 20.02

Cluster 9

Mutant DM DSM M SM DMN DSMN MN SMN D DS S DN DSN N SN

Measured i0 7.21 7.76 8.24 8.37 8.05 8.13 7.99 8.15 8.27 7.45 8.10 8.26 8.54 8.47 8.59 8.84

Calculated i0 7.21 7.34 7.87 7.95 8.10 8.10 8.41 8.41 7.85 7.87 8.26 8.27 8.12 8.12 8.42 8.42 0.056

C:E–1 0.00 20.05 20.04 20.05 0.01 0.00 0.05 0.03 20.05 0.06 0.02 0.00 20.05 20.04 20.02 20.05

*Similar to Table 3, except that the four-branch lattice in Figure 2B was modeled, data sets were from Huisinga et al. [8], and the valve-settings were adjusted such that
‘‘all off’’ (experiment 0) corresponded to the lowest mRNA output for each cluster.

doi:10.1371/journal.pone.0003095.t004

Table 5. Four-Branch Model parameters*.

Cluster v1 v2 v3 v4 r1 r2 r3 r4 r5 r6

3 1.65 1.96 8178.61 4471.41 1.81 15.85 30.18 1258.90 0.00 4792.37

4 283.88 401.66 368.35 363.25 4724.09 8029.60 1149.90 2657.79 0.00 2531.68

5 1.6E+05 208.31 4.0E+04 4.11 1.8E+05 1.0E+04 4.1E+04 5.49 0.00 4.76

6 1.2E+07 8.4E+06 1.4E+06 231.91 9.9E+06 4.1E+07 4.3E+06 476.25 193.17 704.11

8 1286.68 4.0E+04 0.07 0.00 1486.84 1.1E+05 0.92 1.10 0.00 0.06

9 6459.20 1.67 2.6E+06 6544.99 4.1E+04 1.52 2.9E+06 3101.71 7071.16 0.00

*Model parameters were obtained by minimizing the relative error between the measured and model values of mRNA.
doi:10.1371/journal.pone.0003095.t005
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With the exception of cluster 5, the error in the modelled output

is well below 10%. This value provides a measure of uncertainty

with regards to plausibility of the model in Figure 2B to represent

the microarray expression data. The higher error associated with

cluster 5 indicates that additional regulatory complexity may be

associated with this cluster of genes that is not captured by the

model. A similar conclusion was drawn regarding the overall

validity of the model and the exception of cluster 5 using a

different modelling paradigm [9].

Finally, we applied this tool to assess arbitrary alternative

arrangements of the lattice model (Figure 3). These alternative

arrangements produced larger error when used to model all

clusters (Table 6), suggesting that they are poorer models of the

underlying transcription mechanism.

Discussion

The approach described here provides a tool to help interpret

large genomic data sets in the context of a model for transcription

complex assembly that has ill-defined reaction steps, rate

constants, and reactant concentrations. We applied this fluidics

model to a large genome-wide microarray expression profile

derived through the perturbation of one central aspect of

transcription complex assembly (regulation of the TATA binding

protein). The approach provided a measure of plausibility of the

proposed model by demonstrating that within experimental error

the four-branch model adequately represents the data. The results

also illustrate the advantages and limitations of our new model in

distinguishing good from poor pipe-lattice connection schemes.

This modelling tool is not intended to prove that any particular

model is correct, nor is it intended to derive a model for assembly.

Rather, it provides a computationally expedient means to assess

whether a conceptual model of the system that is grounded in

conventional wisdom is inherently consistent with, or contradic-

tory to, genomic microarray data.

Materials and Methods

Microarray expression data were obtained from public sources

[8,9,26]. Model parameters were determined via GAMS optimi-

zation as described in the text.
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Table 6. Maximum error associated with the indicated lattice
configuration.

Cluster Lattice*

MNSD DNSM MNDS MN-Serial-S

3 0.086 0.098 0.086 0.407

4 0.059 0.067 0.082 0.184

5 0.135 0.146 0.129 0.341

6 0.079 0.086 0.081 0.475

8 0.038 0.043 0.152 0.299

9 0.056 0.078 0.057 0.166

Total 0.453 0.518 0.587 1.872

*Lattice configuration is designated by the arrangement of pipes from left to
right in Figure 2B (MNSD represents the lattice shown in Figure 2B).

doi:10.1371/journal.pone.0003095.t006
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