
Metabolic Changes Following a 1-Year Diet and Exercise
Intervention in Patients With Type 2 Diabetes
Jeanine B. Albu,

1
Leonie K. Heilbronn,

2
David E. Kelley,

3
Steven R. Smith,

4
Koichiro Azuma,

3

Evan S. Berk,
1

F. Xavier Pi-Sunyer,
1

Eric Ravussin,
4

and the Look AHEAD Adipose Research Group

OBJECTIVE—To characterize the relationships among long-
term improvements in peripheral insulin sensitivity (glucose
disposal rate [GDR]), fasting glucose, and free fatty acids (FFAs)
and concomitant changes in weight and adipose tissue mass and
distribution induced by lifestyle intervention in obese individuals
with type 2 diabetes.

RESEARCH DESIGN AND METHODS—We measured GDR,
fasting glucose, and FFAs during a euglycemic clamp and adi-
pose tissue mass and distribution, organ fat, and adipocyte size
by dual-energy X-ray absorptiometry, CT scan, and adipose tissue
biopsy in 26 men and 32 women in the Look-AHEAD trial before
and after 1 year of diet and exercise aimed at weight loss.

RESULTS—Weight and fasting glucose decreased significantly
(P � 0.0001) and significantly more in men than in women (�12
vs. �8% and �16 vs. �7%, respectively; P � 0.05), while FFAs
during hyperinsulinemia decreased and GDR increased signifi-
cantly (P � 0.00001) and similarly in both sexes (�53 vs. �41%
and 63 vs. 43%; P � NS). Men achieved a more favorable fat
distribution by losing more from upper compared with lower and
from deeper compared with superficial adipose tissue depots
(P � 0.01). Decreases in weight and adipose tissue mass pre-
dicted improvements in GDR but not in fasting glucose or fasting
FFAs; however, decreases in FFAs during hyperinsulinemia
significantly determined GDR improvements. Hepatic fat was the
only regional fat measure whose change contributed indepen-
dently to changes in metabolic variables.

CONCLUSIONS—Patients with type 2 diabetes undergoing a
1-year lifestyle intervention had significant improvements in
GDR, fasting glucose, FFAs and adipose tissue distribution.
However, changes in overall weight (adipose tissue mass) and
hepatic fat were the most important determinants of metabolic
improvements. Diabetes 59:627–633, 2010

M
ost obese patients with type 2 diabetes have
an unfavorable adipose tissue distribution
compared with that of similarly obese men
and women without type 2 diabetes (1–2). We

have shown that they manifest proportionally less meta-
bolically protective adipose tissue (gluteo-femoral) and
more metabolically adverse fat depots such as abdominal

adipose tissue or hepatic fat (2). Such patterns correlate
with increased fasting glucose and decreased insulin sen-
sitivity (3–5) in cross-sectional studies. From the perspec-
tive of intervention, in type 2 diabetes, both caloric
restriction and relatively modest weight reduction result in
fasting glucose (6–10) as well as hepatic (7,9,11–13) and
peripheral insulin sensitivity (8–10,12–13) improvements.
However, not all studies reporting significant weight loss
or favorable fat distribution changes have observed a
concomitant improvement in peripheral insulin sensitivity
(11,14). Furthermore, there is a surprising paucity of data
regarding the relationship between sustained lifestyle inter-
vention–induced changes in fat mass and regional adipose
tissue distribution and parallel metabolic improvements.

In several weight loss studies conducted for up to 6
months, in type 2 diabetes favorable changes in fat distri-
bution and organ fat did not correlate with improved
peripheral insulin sensitivity independent of the changes
in body weight (11–14). Even fewer studies reported on
longer-term (of up to 1 year) effects of weight loss on fat
distribution and metabolic variables in type 2 diabetes
(10,15–16). In one study, while parallel 1-year improve-
ments were observed both in the fat distribution (mea-
sured by the waist-to-hip ratio) and in fasting glucose and
fasting insulin (15), the metabolic improvements did not
relate to the waist-to-hip ratio change but rather to the
overall amount of weight loss (15). One interpretation is
that loss of adipose tissue, regardless of depot, is the
predominant factor related to the metabolic improvement
in obese patients with type 2 diabetes, challenging the
tenet, built mostly from cross-sectional studies, that adi-
pose tissue distribution is a crucial and interactive deter-
minant of the improvement. Yet, it is not clear from these
studies whether the variability of the weight loss, the
sometime limited number of subjects, or incomplete adi-
pose tissue distribution measurements permitted robust
evaluation of the role of specific fat depots in the improve-
ments in metabolic control. In addition, changes in other
adipose tissue characteristics, such as fat cell sizes or
circulating free fatty acids (FFAs), have not been ac-
counted for in previous studies. Larger subcutaneous
abdominal fat cells predict insulin resistance and the
development of type 2 diabetes (17–19), while increased
circulating FFAs play an important role in the etiology of
insulin resistance and hyperglycemia in type 2 diabetes
(12,20–21). Whether regional fat loss contributes to im-
provements in FFAs during weight loss in type 2 diabetes
has not previously been reported.

The current study was therefore undertaken to examine
the importance of changes in adipose tissue distribution
and other closely related characteristics as determinants
of the improvements in metabolic fitness in response to
weight loss in type 2 diabetes. We tested the hypothesis
that simple measures of weight loss rather than various
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relative changes and permutations of adipose tissue dis-
tribution are the predominant determinant of metabolic
improvement induced by a 1-year lifestyle intervention in
obese patients with type 2 diabetes. Multiple aspects of
adipose tissue mass and its distribution were assessed,
including upper and lower adipose tissue mass (using
dual-energy X-ray absorptiometry [DEXA]), adipose tissue
subdivisions in the abdomen and lower extremity (using
computed tomography [CT] imaging), and estimations of
fat content in liver and muscle (using CT imaging). This
was performed along with an adipose tissue biopsy in
order to measure mean fat cell size within the abdominal
subcutaneous depot both at baseline and following the 1
year of lifestyle intervention.

RESEARCH DESIGN AND METHODS

This was an ancillary study of the Look AHEAD (Action For Health in
Diabetes) trial at 3 of the 16 participating sites (Pennington Biomedical
Research Center, Baton Rouge, LA; the University of Pittsburgh, Pittsburgh,
PA; and St. Luke’s–Roosevelt Hospital Center, New York, NY). The primary
goal of the Look AHEAD trial is to investigate the effects of a lifestyle
intervention of weight loss and physical activity (intensive lifestyle interven-
tion [ILI]) versus those of diabetes support and education on cardiovascular
morbidity and mortality (22–23). One-year results from the Look AHEAD trial
and other results of this ancillary study have previously been published
(24–28).
Research volunteers. Inclusion and exclusion criteria for Look AHEAD,
which include a confirmed diagnosis of type 2 diabetes, have previously been
described (22–23). This ancillary study included only participants randomized
to the ILI arm of the study (24–25). To simplify the potential impact of changes
in antidiabetes medications during intervention, those with fasting plasma
glucose �180 mg/dl and those on insulin or thiazolidinedione treatment were
excluded from the substudy. Fifty-eight volunteers with type 2 diabetes (43
non-Hispanic whites, 12 African Americans, and 3 Hispanics) were studied at
baseline (preintervention) and after 1 year of ILI. Twenty-six men (mean � SD
age 61.6 � 1.5 years) and 32 women (58.9 � 1.3 years) completed baseline and
1-year measurements. The sex distribution of volunteers at the three sites was
as follows: 12 female and 13 male participants at Pittsburgh, 13 female and 5
male participants at St Luke’s–Roosevelt, and 7 female and 8 male at
Pennington. At baseline, 6 women were pre- or perimenopausal and 26 were
postmenopausal (8 on hormone-replacement therapy). All participants signed
informed consent, and the project was approved by the institutional review
board of each institution and by the Look-AHEAD Steering Committee.
Lifestyle intervention and study protocol. As described elsewhere (22–
25), ILI was designed to achieve weight loss through decreased caloric intake
(�500 kcal/day) and increased physical activity (�175 min/week), with an
expected 1-year weight loss of �7% of initial value. Before and after 1 year of
ILI, our participants were admitted to clinical research facilities on the
afternoon preceding the metabolic studies and underwent DEXA and CT
imaging. After a standardized dinner (50% carbohydrate, 30% fat, and 20%
protein), participants were fasted overnight. The next morning, a metabolic
weight and a percutaneous adipose tissue biopsy were obtained; 1 h later, a
hyperinsulinemic-euglycemic clamp was performed.

Addition or discontinuation of antihyperglycemic medications at the 1-year
testing compared with baseline was noted. Medications added were thiazo-
lidinedione and metformin (one man each). Medications discontinued were
�-glucosidase inhibitors (one woman), meglitinides and repaglinides (two
men and two women), and sulfonylureas (11 men and three women).
Metformin was reintroduced for a week prior to the 1-year testing at the same
dose as before the study if the patients were on it at baseline and were
discontinued during the intervention (six men and two women).
Body composition. Fat mass and fat-free mass (FFM) (including all nonfat
tissue, i.e., lean body mass and bone mineral content) were measured using
DEXA (Hologic QDR 4500A) according to the Manual of Procedures of the
Look AHEAD trial. All DEXA scans were analyzed using QDR for Windows,
version 11.1, software. Fat mass and FFM, gluteo-femoral fat, and trunk and
arms fat mass (upper-body fat) were measured by the standard default
analysis, in which the commercial computer-based algorithm separates the
mass of gluteo-femoral and upper-body fat by two oblique lines that pass
through the femoral neck (2). The coefficients of variation (CVs) for repeated
measures (n � 38; unpublished data) of FFM, fat mass, and percentage of
body fat were 0.6, 1.1, and 1.1%, respectively. Three cross-sectional CT scans,
1 cm in width, centered, respectively, on the T12–L1 and the L4–L5 disc space
and at the mid-thigh, were obtained to assess hepatic fat as well as abdominal

and thigh adipose tissue composition. All CT images were analyzed at the
University of Pittsburgh using image analysis software (SliceOmatic; Tomo-
vision, Montreal, Canada). To assess hepatic fat, CT liver and spleen attenu-
ations (Hounsfield units) were determined, and to assess adipose tissue
composition, the abdominal and thigh areas for bone, adipose tissue, and
skeletal muscle were measured as previously described (29). To determine
visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue
(SAT) areas, a separation line was drawn manually on the abdominal CT
images along abdominal wall musculature in continuity with the fascia of the
paraspinal muscles. Abdominal SAT was further divided into superficial and
deep SAT by manually tracing the circumferential superficial fascia as
previously described (30). On thigh CT images, fascia lata was used to
subdivide mid-thigh adipose tissue into SAT and subfascial adipose tissue (3).
Abdominal subcutaneous adipose tissue biopsy and adipocyte size. A
percutaneous biopsy of superficial abdominal SAT (�500 mg) was performed
�10 cm lateral to the umbilicus using a Bergstrom needle with suction.
Adipocyte size and number were determined at the Pennington Biomedical
Research Center using a Coulter Counter (Multisizer-3; Beckman Coulter,
Fullerton, CA) as previously described (26,28). Cell size is presented as the
geometric mean.
Hyperinsulinemic-euglycemic clamp. A primed continuous infusion of
insulin (80 mU/m2 per min) was used for at least 3 h, with the stipulation that
insulin be infused for at least 1 h after reaching a plasma glucose concentra-
tion of 100 mg/dl, as previously described (27). The mean rate of exogenous
glucose infusion during steady-state insulin infusion (last 30 min), glucose
disposal rate (GDR), was used to assess peripheral insulin sensitivity (31).
Oxygen consumption and CO2 production were measured using metabolic
carts (Sensor Medics Corporation, Anaheim CA) over the 40 min just
preceding and during the last 40 min of the insulin infusion; fuel oxidation
(carbohydrate and fat) was calculated for the last 30 min of each period (32).
Glucose storage was the difference between total GDR and glucose oxidation.
Glucose utilization rates were expressed per kilogram of FFM.
Blood analyses. Blood samples were immediately centrifuged, aliquoted, and
frozen at �70°C. Plasma glucose was analyzed using a glucose oxygen
electrode (Synchron CX7 Delta Systems; Beckman, Brea, CA). Plasma insulin
was measured by chemiluminescent immunoassays on the Immulite 2000
analyzer (Diagnostic Product, Los Angeles, CA). The intra- and interassay CVs
for insulin (at 50 �U/ml) were 1.75 and 3.6%, respectively. Plasma FFA
concentrations were measured on a Beckman Synchron CX5 analyzer using a
WAKO NEFA C kit (Denver, CO). All samples were analyzed in the Clinical
Chemistry Laboratory at the Pennington Biomedical Research Center.
Statistical analyses. Data were expressed and shown as means � SEM
unless otherwise indicated. For each variable, data were presented for
completed, valid measurements both at baseline and after 1 year. Data were
missing for men (out of 26) for liver, spleen, and muscle attenuations (1 man
each) and for adipose tissue cell size (2 men) and for women (out of 32) for
abdominal adipose tissue measurements (1 woman); thigh adipose tissue,
liver, spleen, and muscle attenuations (3 women each); and for adipose tissue
cell size (1 woman). Variables with significant deviation from normal distri-
bution were log transformed before analyses (insulin, FFAs, and their
changes). ANOVA with repeated measures was used to assess significant
changes over the 1 year of the intervention; interactions by sex were tested for
significance. General linear models were built according to a priori hypothe-
ses. Specifically, we tested the following: 1) whether changes in any of the
regional fat measures were predictors of the 1-year changes in metabolic
variables independent of the change in overall weight or fat mass; 2) whether
the change in clamp FFAs was a predictor of the changes in GDR or fasting
glucose, independent of changes in weight, fat mass, or any of the regional fat
measures; and 3) whether the change in GDR was a predictor of the change
in fasting glucose, independent of changes in weight, fat mass, or any of the
regional fat measures. P � 0.05 was considered significant. Statistica, version
6.0 (Statsoft, Tulsa, OK), was used for analyses.

RESULTS

One-year changes in weight. Weight decreased signifi-
cantly (P � 0.00001) in both men and women (Table 1),
but there was a wide range of weight change (between
�26.5 and 3.5 kg in men and �27.3 and 0.9 kg in women).
Men lost a higher percentage of their initial weight than
women (�12.1 � 1.2 vs. �8.1 � 1.1%; P � 0.05). Higher
1-year weight loss was predicted by higher weight at
baseline in both sexes (� � �0.41; P � 0.01) but was not
related to baseline adipose tissue mass or distribution or
to fat cell size or metabolic variables.
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One-year changes in adipose tissue mass and dis-
tribution, organ fat infiltration, and mean abdomi-
nal subcutaneous fat cell size. Fat mass and FFM
decreased significantly by 27.7 � 2.6 and 5.5 � 0.8% and
by 14.0 � 2.1 and 3.8 � 0.7%, in men and women,
respectively (Table 1). The change in fat mass ranged
from �20.4 to 0.2 and from �19.5 to 0.8 kg, while the
change in FFM ranged from �9.9 to 3.3 and from �7.8 to
2.8 kg, in men and women, respectively, resulting in a
significant decrease in body fat percentage (Table 1).
There were a number of significant changes in various
regional adipose tissue depots (Table 1). Upper body
fat, VAT, and deep abdominal SAT decreased signifi-
cantly (Table 1) and significantly more in men than in
women, independent of baseline values (P � 0.01).
There were also significant decreases in superficial
abdominal SAT and gluteo-femoral fat and in the lower
extremity of the thigh, measured cross-sectionally for
both the subfascial and the superficial adipose tissue
depots, but without sex effect (Table 1).

Because of the differential of greater loss from the upper
compared with the lower body, the fat distribution as
measured by DEXA changed significantly (Fig. 1A) in both
sexes. In men, VAT decreased more than the superficial
abdominal SAT; this resulted in a significant change within
abdominal adipose tissue distribution (Fig. 1B). There was
a similar trend evident in women, although to a lesser
extent than in men (Fig. 1B). A similar pattern was noted
in the lower extremity: in men, the subfascial thigh adi-
pose tissue decreased more than the superficial thigh SAT,
resulting in a significant change in the thigh adipose tissue
distribution (Fig. 1C); a similar trend was observed in
women (Fig. 1C).

The ratio of the liver-to-spleen attenuation increased,
indicating a significant decrease in hepatic fat (P �

0.00001) (Table 1) in both men (�18 � 5%) and women
(�18 � 4%). The thigh muscle attenuation, a surrogate for
intramuscular fat, did not change significantly (P � 0.36)
(Table 1). The thigh muscle area decreased on average by
4.6%; this decrease was similar in magnitude to the average
decrease in FFM (4.6%).

Mean size of abdominal subcutaneous fat cells de-
creased in both men and women (Table 1). Lipid content
per unit of adipose tissue together with the mean fat cell
size was used to estimate the number of fat cells per unit
of adipose tissue (see RESEARCH DESIGN AND METHODS). The
calculated number of fat cells per unit of abdominal SAT
increased in both sexes (Table 1), despite an average
decrease in the overall size of the depot by �17%.
One-year changes in fasting glucose, FFAs, and GDR.

Fasting glucose decreased significantly in both men and
women (Table 2) and significantly more in men than in
women (�16.2 � 2.8 vs. �6.8 � 3.5%; P � 0.05). The
clamped glucose levels were not different after than before
the intervention (Table 2). Fasting insulin decreased sig-
nificantly and equally in both sexes (Table 2), while insulin
levels at steady state during the clamp were lower after
intervention in women only (interaction term P � 0.05).
Fasting FFAs were significantly decreased (Table 2) and
were suppressed by insulin to a significantly greater extent
(P � 0.00001) after (by 98 � 0.5 and 97 � 0.5% in men and
women, respectively) than before (by 95 � 1 and 94 � 1%)
the weight loss. Therefore, FFA levels at steady state of
the clamp were significantly decreased after weight loss
(Table 2) similarly in men and women (�54.9 � 8.5 vs.
�41.2 � 15.7%). GDR increased significantly (Table 2)
similarly in men and women (63.3 � 8.1 vs. 43.1 � 8.6%),
with improvement of both glucose oxidation and storage
(Table 2).

TABLE 1
Weight, adipose tissue mass and distribution, organ fat, and abdominal subcutaneous fat cell size before and after 1-year lifestyle
intervention

Men (n � 26)* Women (n � 32)†
Baseline 1 year Baseline 1 year

Weight (kg)‡ 101.2 � 1.9 88.8 � 1.8 91.4 � 1.7 83.9 � 1.7
BMI (kg/m2)‡ 32.4 � 0.5 28.4 � 0.5 34.8 � 0.6 32.0 � 0.6
FFM (kg)‡ 70.9 � 1.1 66.9 � 1.0 54.2 � 1.0 52.1 � 0.9
Fat mass (Kg)‡ 30.3 � 1.2 22.0 � 1.2 37.1 � 1.1 31.8 � 1.1
Percent fat mass (of weight)‡ 29.8 � 0.8 24.5 � 0.9 40.4 � 0.7 37.5 � 0.8
Upper-body fat (kg)‡ 21.4 � 0.9 15.1 � 0.9 24.4 � 0.9 20.7 � 0.8
Gluteo-femoral fat (kg)§ 8.2 � 0.3 6.2 � 0.3 12.1 � 0.6 10.6 � 0.5
VAT (cm2)‡ 311.7 � 18.3 216.5 � 18.3 259.5 � 16.8 213.3 � 16.7
Deep abdominal SAT (cm2)‡ 170.9 � 11.6 120.4 � 10.2 148.2 � 10.6 130.6 � 9.3
Superficial abdominal SAT (cm2)§ 120.9 � 11.5 92.0 � 10.6 237.1 � 10.6 206.8 � 9.7
Subfascial thigh AT (cm2)(one leg)§ 18.1 � 1.5 12.9 � 1.1 22.7 � 1.5 18.1 � 1.1
Superficial thigh SAT (cm2) (one leg)§ 84.7 � 7.9 66.8 � 7.5 156.5 � 7.5 138.4 � 7.1
Liver attenuation (HU)§ 51.2 � 2.1 59.7 � 1.8 46.5 � 1.9 54.6 � 1.7
Spleen attenuation (HU)§ 50.4 � 0.8 51.3 � 0.8 47.6 � 0.8 48.8 � 0.7
L/S attenuation ratio§ 1.01 � 0.04 1.17 � 0.04 0.99 � 0.04 1.13 � 0.04
Muscle area (cm2) (both legs)‡ 311.5 � 6.8 292.7 � 6.9 223.4 � 6.3 215.2 � 6.4
Muscle attenuation (HU) 46.8 � 0.9 47.4 � 0.8 45.0 � 0.8 45.1 � 0.7
Fat cell size§ 0.73 � 0.05 0.50 � 0.04 0.96 � 0.04 0.76 � 0.03
Fat cell number§ 3,756 � 271 4,897 � 370 2,982 � 239 3,345 � 325

Data are unadjusted means � SE. FFM, FM, upper body fat, and gluteo-femoral fat measured by DEXA; VAT, SAT, abdominal and thigh SAT
subcompartments, and organ (liver, spleen, muscle) attenuation measured by CT scan. *Missing data for men (out of 26) for organ
attenuations (1 man each) and fat cell size (2 men). †Missing data for women (out of 32) for abdominal adipose tissue measurements (1
woman), thigh adipose tissue and organ attenuations (3 women each), and fat cell size (1 woman). ‡Significant change in both men and
women (P range �0.05 to 0.00001), with significant interaction by sex (P range �0.05 to 0.001 for the interaction term). §Significant change
in both men and women (P range �0.05 to 0.00001), with no significant interaction by sex.
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Determinants of 1-year changes in metabolic vari-
ables (GDR, fasting glucose, and clamp FFAs). The
1-year improvement in insulin sensitivity (	GDR or as a
percentage of baseline value [%	GDR]) did not relate to
any baseline variables but was significantly related to the
decrease in weight (%	weight; r � �0.65; P � 0.000002
[Fig. 2A]) and fat mass (%	FM; r � �0.71; P � 0.00004). It
was also significantly related to the decreases in all
regional fat depots (r range �0.65 to �0.50; P � 0.01 for
all) and in mean abdominal fat cell size (r � �0.27; P �
0.05) as well as to the increase in the relative proportion of
the superficial abdominal SAT (r � 0.34; P � 0.01).
However, none of these relationships were independent of
the changes in weight or fat mass. In multiple regression
analyses, the best predictive model for 	GDR included
%	fat mass and %	clamp FFA (overall R2 � 0.48; P �

0.000049) and for %	GDR included independent contribu-
tions from the %	weight, %	L/S ratio (ratio of the CT
attenuation value of the liver to that of the spleen), and
%	clamp FFA (overall R2 � 0.52; P � 0.000027).

Similar analyses were performed for the 1-year improve-
ment in fasting glucose and decreases in clamp FFAs.
Neither was related to the changes in weight or fat mass.
Among regional fat measures, 	fasting glucose was only
significantly related to the 	L/S ratio (r � �0.37; P �
0.006) and %	fasting glucose to the %	VAT (r � 0.31; P �
0.03). While 	fasting glucose was also related to the
decrease in clamp FFAs (P � 0.05), in multiple regression
analysis the best predictive model for 	fasting glucose
included independent contributions from the 	L/S ratio
and 	GDR (overall R2 � 0.32; P � 0.009) and for %	fasting
glucose included independent contributions from the
%	GDR (R2 � 0.31; P � 0.005) (Fig. 2B). The 1-year
decrease in clamp FFA was only related to 	L/S ratio or
%	L/S ratio (r � �0.33, P � 0.014, or r � �0.39, P � 0.01,
respectively) (Fig. 2C), independently of changes in weight
or fat mass.

DISCUSSION

After 1 year of Look AHEAD ILI (22), participants with
type 2 diabetes had greatly improved levels of peripheral
insulin sensitivity, fasting glucose, and FFAs in parallel to
significant weight and fat loss, improvement in adipose
tissue distribution, and decrease in hepatic fat. The
changes in the peripheral insulin sensitivity were best
predicted by the overall change in weight and fat mass; the
only regional fat measure independently predicting meta-
bolic improvements was the decrease in hepatic fat.

Several studies have examined the effect of weight loss
on adipose tissue distribution and organ fat infiltration in
type 2 diabetes (11–14,33). These studies varied in dura-
tion from a few weeks to up to 6 months and reported
variable changes in adipose tissue distribution and organ
fat depending on the measurements done and the nature of
the intervention leading to the weight loss. Our study is
unique in that we have studied the subjects after a 1-year
intervention, have measured all aspects of adipose tissue
distribution and organ fat infiltration, and enrolled a
number of subjects sufficient for reporting results sepa-
rately for both men and women. In general, significant loss
of visceral and hepatic fat has consistently been reported,
whereas a decrease in muscle fat has not been consistently
observed (11–14, 33). In our study, muscle fat infiltration
did not change; this could have been due to the CT
measurement technique, which is less sensitive than in-
tramyocellular lipid measurement by nuclear magnetic
resonance (NMR) spectroscopy (magnetic resonance
spectroscopy [MRS]), as well as to the duration and nature
of the intervention. Previous studies have suggested that
exercise may prevent the loss of intramyocellular lipid
during weight loss induced by caloric restriction (13, 34).
Thus, the exercise component of our intervention could
have had a similar effect over the 1-year period.

We also found that men in our study, and to a lesser
degree women, had favorable changes in adipose tissue
distribution from the upper to the lower and from the
deeper to the more superficial depots. Such changes have
not previously been reported during weight loss by dieting
in type 2 diabetes; the exercise component of the ILI could
have played a role (35–36). Changes in adipose tissue
distribution could accompany significant improvements in
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the components of the metabolic syndrome in individuals
with type 2 diabetes (35–36); however, we did not find that
the relationships specifically between improvements in the
adipose tissue distribution and improvements in the pe-
ripheral insulin sensitivity were independent of the change
in overall weight and adipose tissue mass. We therefore
confirmed our original hypothesis that, with the exception
of the decrease in hepatic fat, weight loss and overall
adipose tissue mass reduction better predicted the im-
provement in peripheral insulin sensitivity than improve-
ments in adipose tissue distribution. This finding is also in
agreement with previous reports, of shorter duration, with
smaller sample sizes and more homogenous weight loss
(12–13).

The decrease in insulin-suppressed FFA levels and the
decrease in hepatic fat were also independent determi-
nants of improved peripheral insulin sensitivity. The latter
finding is new for type 2 diabetes to the best of our
knowledge, although cross-sectional independent associa-
tions between hepatic fat and insulin sensitivity have
previously been described (2,37). The causative direction
and the underlying pathophysiology of this association
could not be determined from the present study. Changes
in insulin, glucose, and FFA levels could all be potential
mediators. The association between the decrease in the
insulin-suppressed FFA levels and the improvement in
peripheral insulin sensitivity has previously been de-
scribed (12), and the role of FFAs in the etiology of insulin
resistance in type 2 diabetes has been stressed in both
cross-sectional (4) and weight loss (12) studies. Both
glucose phosphorylation and glucose transport in skeletal
muscle are known to be affected by circulating FFA levels
(21,38) and, in turn, improve with weight loss in type 2
diabetes (39). We also found that the change in peripheral
insulin sensitivity was related to the relative improvement
in superficial adipose tissue distribution and the decrease
in this depot’s mean fat cell size. These relationships were
not independent of the change in body weight but are
significant in that they point to the importance of the
subcutaneous fat characteristics in the etiology of insulin
resistance in type 2 diabetes (18–19).

With regard to fasting glucose, our results are similar to
those previously published (12) in that the best predictor
for the improvement in fasting glucose was the improve-
ment in insulin sensitivity (GDR). The changes in VAT and
hepatic fat were associated with the improvement in
fasting glucose independent of changes in overall adipose

tissue mass, but only the change in hepatic fat was related
to the change in fasting glucose, independent of the
change in GDR. We also report for the first time that
the changes in insulin-suppressed FFAs were related to
the change in hepatic fat. The importance of hepatic fat as
a determinant of metabolic parameters in type 2 diabetes
has been underscored by cross-sectional associations with
hepatic insulin resistance (12) and by associations with
insulin requirements during insulin therapy in type 2
diabetes, independent of measured insulin action and FFA
levels (40). In our study, a decrease in hepatic fat was
associated with improvements in all three key metabolic
variables studied. The exact mechanism is not known;
among other possibilities is improved insulin clearance
after weight loss (8), which in addition to the improved
�-cell function, could result in a more physiologic insulin
pattern and lower both plasma glucose and FFAs (7,41).
Thus, we conclude that changes in hepatic fat play a key
role in the improvement of metabolic parameters with
weight loss in type 2 diabetes.

The changes in the oral hypoglycemic agents that oc-
curred over the 1-year intervention are a potential limita-
tion for our study. We performed separate analyses
excluding the two subjects who were on insulin-sensitizing
agents at the 1-year testing and not at baseline and adding
discontinuation of any oral agents at 1 year compared with
baseline (yes or no) as a factor. Results were essentially
unchanged with a notable exception: the sex differences in
the overall weight or fat loss (Table 1) were not significant
anymore once the discontinuation of the oral agents was
accounted for. The peripheral insulin sensitivity changes
(Table 2) and the adipose tissue distribution changes
presented in Fig. 1 were not affected. Therefore, we
speculate that, since more men discontinued oral agents
than women, this may have accounted for the sex differ-
ences in the overall weight and fat loss. The baseline
menopausal status of our women and its change over time
could also have potentially influenced our results. Four
women changed menopausal status over the course of the
study; none changed hormone-replacement therapy. Al-
though we did not find interactions by menopausal status in
our analyses (results not shown), the number of women in
the different categories is too small to exclude a possible
influence of baseline menopausal status on adipose tissue
distribution changes over the 1 year of the study.

Finally, the Look-AHEAD trial participants had mea-
surements of fitness at baseline and then yearly through-

TABLE 2
Metabolic parameters during the euglycemic-hyperinsulinemic clamp before and after 1-year lifestyle intervention

Men (n � 26) Women (n � 32)
Baseline 1 year Baseline 1 year

Postabsorptive state
Glucose (�mol/l)* 8.2 � 0.4 6.7 � 0.3 7.8 � 0.3 7.3 � 0.3
Insulin (pmol/l)* 71.1 � 7.2 52.5 � 8.9 91.5 � 6.5 80.0 � 8.0
FFAs (mmol/l)* 0.56 � 0.02 0.45 � 0.03 0.79 � 0.03 0.63 � 0.02

Steady state during clamp
Glucose (�mol/l) 5.7 � 0.1 5.7 � 0.1 5.8 � 0.1 5.8 � 0.1
Insulin (pmol/l)† 834.3 � 49.1 820.1 � 39.2 982.9 � 44.2 859.5 � 35.3
FFAs (mmol/l)* 0.03 � 0.01 0.01 � 0.00 0.05 � 0.06 0.02 � 0.003
GDR (mg � kg FFM�1 � min�1)* 5.7 � 0.4 8.9 � 0.5 6.2 � 0.4 8.4 � 0.5
Glucose oxidation (mg � kg FFM�1 � min�1)*‡ 2.7 � 0.1 3.4 � 0.2 3.1 � 0.2 3.8 � 0.2
Glucose storage (mg � kg FFM�1 � min�1)*‡ 3.0 � 0.3 5.5 � 0.4 2.9 � 0.4 4.4 � 0.5

Values are unadjusted means � SE. *Significant change in both men and women (P range �0.05 to 0.00001), with no significant interaction
by sex. †Significant change in women only (P � 0.05). ‡Men, n � 26; women, n � 30.
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out the ILI, as previously described (24–25). In our cohort,
fitness improved by 40 � 8 and by 31 � 7% in men and
women, respectively (P � 0.0001). The difference in mag-
nitude compared with the fitness improvement of the
entire ILI arm (25 and 18% in men and women, respec-
tively) (25) could be due to the special selection criteria of
our study. Just for the entire ILI group (25), in our study
the fitness improvement was significantly correlated with
the degree of weight loss; in addition, it was significantly
correlated with changes in FM, percent body fat, and GDR
but not with changes in fasting glucose or FFA. The fitness
improvement, however, did not predict changes in GDR
independent of the overall weight or fat loss, which is
consistent with results from other studies (42).

In conclusion, patients with type 2 diabetes undergoing
a 1-year lifestyle intervention of diet and exercise had
significant improvements in adipose tissue distribution,
insulin sensitivity, fasting glucose, and circulating FFAs.
Changes in overall weight, adipose mass, and hepatic fat
were the most important associates of metabolic
improvements.
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