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Abstract: The point and interval estimations for the unknown parameters of an exponentiated
half-logistic distribution based on adaptive type II progressive censoring are obtained in this article.
At the beginning, the maximum likelihood estimators are derived. Afterward, the observed and
expected Fisher’s information matrix are obtained to construct the asymptotic confidence intervals.
Meanwhile, the percentile bootstrap method and the bootstrap-t method are put forward for the
establishment of confidence intervals. With respect to Bayesian estimation, the Lindley method
is used under three different loss functions. The importance sampling method is also applied to
calculate Bayesian estimates and construct corresponding highest posterior density (HPD) credible
intervals. Finally, numerous simulation studies are conducted on the basis of Markov Chain Monte
Carlo (MCMC) samples to contrast the performance of the estimations, and an authentic data set is
analyzed for exemplifying intention.

Keywords: adaptive type-II progressive censoring; exponentiated half-logistic distribution; maxi-
mum likelihood estimation; Bayesian estimation; importance sampling; Lindley method; bootstrap
method; Monte Carlo simulation

1. Introduction
1.1. Adaptive Type II Progressive Censoring Scheme

In this day and age, owing to the development of science and technology, industrial
products have become greatly reliable and as a result, getting sufficient failure time during
a life testing experiment for any statistical analysis purposes results in a sharp increase in
cost and time. Hence, the aim of reducing test time and saving the cost leads us into the
realm of censoring. With units removed before their failure time purposefully, the duration
and cost can be greatly reduced. Many statisticians have investigated various censoring
schemes. The two most commonly used censoring schemes are type I and type II censoring
schemes. In type I censoring, the life-testing experiment terminates at a predetermined
time while, under type II censoring, the life-testing test stops once the observed failure
units reach the predetermined number. For the sake of further reducing the experimental
cost and time, a concoction of these two schemes called hybrid censoring was put forward.
However, none of these schemes permits the survival units to be removed during the
experiment, which lacks flexibility. Accordingly, the concept of progressive censoring
was brought forward by [1] to increase the flexibility of removing units other than the
terminal experimental time. A concise presentation of the progressive type II censoring is
as follows. Assume that there are totally n identical units in the test. In addition, the failure
time of the units is defined as X = (X(1:m:n), X(2:m:n), · · · , X(m−1:m:n), X(m:m:n)), and the
censoring scheme denotes as R = (R1, R2, · · · , Rm−1, Rm), where n−m = ∑m

i=1 Ri. When
the first unit fails at X1, we remove R1 units from n− 1 units remained randomly. Then,
we remove Rj units from the n − j − ∑

j−1
i=1 Ri remaining units on the occurrence of the
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j-th failure in the same way. In addition, you can refer to [1,2] for further information in
progressive censoring.

However, one of the drawbacks of the scheme is that researchers can not control
the experiment time in practical terms. Recently, Ref. [3] proposed a new censoring
called adaptive type II progressive censoring scheme in the interest of saving the aggre-
gate time and improving the analysis efficiency. Based on progressive type II censoring,
the expected total experimental time T is also pre-fixed before the test. If T > X(m:m:n),
the experiment is implemented according to the progressive type II censoring scheme
with R = (R1, R2, · · · , Rm−1, Rm) and terminates at time X(m:m:n). However, once the
actual time runs over T, namely T < X(m:m:n), we do not stop the test at T but no longer
remove survival units after the prefixed time T. Suppose that the time runs over T right
after the occurrence of the J-th failure, namely J = max{j, T > X(j:m:n)}. Therefore,
once the concrete test time runs over T, the censoring scheme after time T becomes
RJ+1 = RJ+2 = · · · = Rm−1 = 0, Rm = n − m − ∑J

i=1 Ri. In particular, there are
two special situations with the change of T. If T = ∞, the scheme eventually turns into
progressive type II censoring. In addition, if the expected time T equals to 0, the scheme
changes into the common type II censoring scheme. Figure 1 presents adaptive type II
progressive censoring.
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Figure 1. Adaptive type II progressive censoring

Since the adaptive type II progressive censoring scheme was proposed, its good prop-
erty has attracted a great number of researchers to study this field. [4] further studied the
adaptive progressive type II censoring model. Under this censoring model, [5] also studied
the estimator of unknown parameters of Weibull distribution. The classical estimations
and the Bayesian estimations were both derived from the scheme. [6] collaborated the
adaptive type II progressive censoring with the exponential step-stress accelerated life-
testing model to derive confidence intervals. [7] extended this censoring scheme by taking
account of competing risks under two-Parameter Rayleigh Distribution and made classical
and Bayesian inference.

1.2. The Exponentiated Half-Logistic Distribution

The exponentiated half-logistic distribution (EHL) is extremely famous in numerous
applications particularly in parameter estimates. It has been applied in many areas, includ-
ing insurance, engineering, medicine, education, etc. [8] noted that the this distribution is
suitable for modeling lifetime data and is extremely parallel to the two-parameter family
of distributions. For example, the Gamma distribution is an important distribution in the
two-parameter family of distributions. But compared to the Gamma distribution, exponen-
tiated half-logistic distribution has a whip hand due to the closed form of its cumulative
distribution.

In this article, we focus on the exponentiated half-logistic distribution. The probability
density function (PDF) is written as :

Figure 1. Adaptive type II progressive censoring.

Since the adaptive type II progressive censoring scheme was proposed, its good
property has attracted a great number of researchers to study this field. The adaptive
progressive type II censoring model was further studied in Ref. [4]. Under this censoring
model, Ref. [5] also studied the estimator of unknown parameters of Weibull distribution.
The classical estimations and the Bayesian estimations were both derived from the scheme.
The adaptive type II progressive censoring was collaborated with the exponential step-
stress accelerated life-testing model to derive confidence intervals in Ref. [6]. Furthermore,
this censoring scheme was also extended by taking account of competing risks under two-
Parameter Rayleigh Distribution and making classical and Bayesian inference by Ref. [7].

1.2. The Exponentiated Half-Logistic Distribution

The exponentiated half-logistic distribution (EHL) is extremely famous in numerous
applications particularly in parameter estimates. It has been applied in many areas, in-
cluding insurance, engineering, medicine, education, etc. This distribution is suitable for
modeling lifetime data and is extremely parallel to the two-parameter family of distribu-
tions, which is noted in Ref. [8]. For example, the Gamma distribution is an important
distribution in the two-parameter family of distributions. However, compared to the
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Gamma distribution, exponentiated half-logistic distribution has a whip hand due to the
closed form of its cumulative distribution.

In this article, we focus on the exponentiated half-logistic distribution. The probability
density function (PDF) is written as:

f (x; λ, σ) =
λ

σ
(

1− e−
x
σ

1 + e−
x
σ
)λ−1 2e−

x
σ

(1 + e
−x
σ )2

, x > 0, λ, σ > 0, (1)

and the cumulative distribution function (CDF) is described as

F(x; λ, σ) = (
1− e−

x
σ

1 + e−
x
σ
)λ, x > 0, λ, σ > 0, (2)

where λ > 0 is the shape parameter and σ > 0 is the scale parameter. We denote this
distribution as EHI(λ,σ).

The corresponding reliability function is written as:

R(t) = 1− (
1− e−tσ

1 + e−tσ )
λ, t > 0, (3)

while the hazard rate function is:

h(t) =
2σλe−tσ

(1 + e−tσ)2[1− ( 1−e−tσ

1+e−tσ )λ]
(

1− e−tσ

1 + e−tσ )
λ−1, t > 0. (4)

From Figure 2, when λ
σ > 1, the PDF of the exponentiated half-logistic distribution is

unimodal. In addition, while λ
σ < 1, it becomes monotonically decreasing. When λ is fixed,

the smaller σ is, the more sharply the PDF decreases. As for the CDF of the distribution,
the growth of CDF becomes slow with σ increasing. Furthermore, smaller λ results in a
higher rising rate.
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Figure 2. CDF (left) and PDF (right) of exponentiated half-logistic distribution.

When λ = 1, the exponentiated half-logistic distribution degrades into the renowned
half logistic distribution. The half logistic distribution has extensive use particularly
employed in censored data in the area of survival analysis. This distribution has been
studied by some researchers. The order statistics of the half logistic distribution was
studied in Ref. [9]. On the basis of progressively type II censored data, Ref. [10] derived the
classical and Bayes estimators of the scale parameter of this distribution. In accordance
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with the study results of [10], analytic expressions were studied further for the biases of
the maximum likelihood estimators of the distribution in [11]. The generalized ranked-set
sampling technique was employed for obtaining parameters estimation of the half-logistic
distribution in [12].

The exponentiated half-logistic distribution has recently attracted a lot of researchers.
On the basis of progressive Type-II censored data, Ref. [13] derived the maximum likelihood
estimator of the scale parameter in an exponentiated half logistic distribution and proposed
some approximate maximum likelihood estimators as well. In addition to the MLE, Ref. [14]
focused on the moment estimators and entropy estimator in this distribution. For the
purpose of promoting practicability of the distribution, Ref. [15] extended the exponentiated
half-logistic distribution by putting forward the concept of the exponentiated half-logistic
family, which is a fresh generator of continuous distributions of two excess parameters.
Considering that the life test sometimes stops at a pre-determined time, Ref. [16] developed
acceptance sampling for the percentiles of this distribution. Meanwhile, not only the
operating characteristic values of the sampling plans but also the producer’s risk were
shown. Based on the distribution, Ref. [17] proposed an attribute control chart for time
truncated life tests with different shape parameters. Thus far, research associated with this
distribution has a great deal of space to explore.

In this article, the problem of the point and interval estimation of the parameters for
exponentiated half logistic distribution under adaptive type II progressive censored data
are considered. We organize the remainder paper as follows. In Section 2, the maximum
likelihood estimates are derived and computed. Meanwhile, the observed and expected
Fisher information matrix is acquired and then the asymptotic confidence intervals are
established. We employ the bootstrap resampling method to build two bootstrap confidence
intervals in Section 3. As for Section 4, Bayesian estimations under several loss functions
are carried out by utilizing the Lindley method. The importance sampling method is also
used to calculate the Bayesian estimates and construct the highest posterior density (HPD)
credible intervals. Simulations are conducted and the behaviors of estimators obtained
with the diverse methods are evaluated and compared in Section 5. An authentic data set is
studied to illustrate the effectiveness of estimation means in the above sections in Section 6.
In the end, the conclusions of point and interval estimations are drawn in Section 7.

2. Maximum Likelihood Estimation
2.1. Point Estimation

In this section, maximum likelihood estimation is used to estimate the unknown
parameters on the basis of the adaptive type II progressive censored data. Assume that
the adaptive type II progressive censored data come from an exponentiated half-logistic
distribution. Let x(i:m:n) denote the i−th observation, thus we know x(1:m:n) < x(2:m:n) . . . <
x(m:m:n). In addition, T represents the expected experimental time and J denotes the index
of the last failure before time T.

For the sake of simplicity, let x = (x1, x2, · · · , xm) denote (x(1:m:n), x(2:m:n), · · · , x(m:m:n)).
The likelihood function turns to be

L(λ, σ|x) = DJ [1− F(xm)]
n−m−∑J

i=1 Ri
J

∏
i=1

[1− F(xi)]
Ri

m

∏
i=1

f (xi), (5)

where

DJ =
m

∏
i=1

(n + 1− i−
min {J,i−1}

∑
k=1

Rk).
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The corresponding likelihood function is derived as

L(λ, σ|x) = DJσ
−mλme

−λ ∑m
i=1 ln 1+e−

xi
σ

1−e−
xi
σ

− 1
σ ∑m

i=1 xi m

∏
i=1

1

1− e−
2xi
σ

×
J

∏
i=1

[1− (
1− e−

xi
σ

1 + e−
xi
σ

)λ]Ri [1− (
1− e−

xm
σ

1 + e−
xm
σ

)λ]n−m−∑J
i=1 Ri . (6)

Therefore, the log-likelihood function can be obtained by

l(λ, σ|x) = D + m ln λ−m ln σ− ∑m
i=1 xi

σ
− λ

m

∑
i=1

ln
1 + e−

xi
σ

1− e−
xi
σ

+
m

∑
i=1

ln
1

1− e
−2xi

σ

+
J

∑
i=1

Ri ln(1− F(xi)) + (n−m−
J

∑
i=1

Ri) ln(1− F(xm)), (7)

where D is a constant.
Finding the partial derivatives involving σ and λ separately and letting them equal

zero, the equations correspond to

∂l
∂σ

= − 1
σ

[
m + (1− 1

λ
)

m

∑
i=1

ζixi −
1
σ

m

∑
i=1

(F(xi))
1
λ xi −

J

∑
i=1

Riηixi − (n−m−
J

∑
i=1

)ηmxm

]
= 0, (8)

∂l
∂λ

=
1
λ

[
m +

m

∑
i=1

ln F(xi)−
J

∑
i=1

RiGiF(xi)− (n−m−
J

∑
i=1

Ri)GmF(xm)

]
= 0, (9)

where ζi =
f (xi)
F(xi)

, ηi =
f (xi)

1−F(xi)
, Gi =

ln F(xi)
1−F(xi)

.

The roots of the equations correspond to the MLEs. However, owing to the nonlinearity
of the equations, obviously we can not obtain the explicit expressions. Thus, the Newton–
Raphson method is employed to solve this problem. The Newton–Raphson method is an
important method to find the roots of equations by employing the Taylor series method.
Thus, the Newton–Raphson method is employed to acquire the MLEs, written as σ̂ and λ̂.

2.2. Asymptotic Confidence Interval

In this subsection, the asymptotic confidence intervals for σ and λ are established by
employing Var(σ̂) and Var(λ̂). We acquire the asymptotic confidence intervals for σ and λ
from the variance–covariance matrix, which is also known as the inverse Fisher informa-
tion matrix. The Fisher information matrix is a generalization of the Fisher information
amount. The Fisher information amount represents the average amount of information
about the state parameters in a certain sense that a sample of random variables can provide.
The Fisher information matrix (FIM) I(σ, λ) is

I(σ, λ) = −E

[
∂2l(λ,σ)

∂σ2
∂2l(λ,σ)

∂λ∂σ
∂2l(λ,σ)

∂λ∂σ
∂2l(λ,σ)

∂λ2

]
. (10)

Here,

∂2l
∂λ2 = − 1

λ2

[
m +

J

∑
i=1

RiG2
i F(xi) + (n−

J

∑
i=1

Ri −m)F(xm)G2
m

]
, (11)

∂2l
∂λ∂σ

=
1

λσ

[
−

m

∑
i=1

ζixi +
J

∑
i=1

Rixiηi(1 + Gi) + (n−m−
J

∑
i=1

Ri)xmηm(1 + Gm)

]
, (12)
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∂2l
∂σ2 = − 1

σ2 {m + (1− 1
λ
)

m

∑
i=1

xi[(1− Hi)ζi − ζ2]− 1
σ

m

∑
i=1

xiF(xi)
1
λ (2 +

1
λ

ζi)

+
J

∑
i=1

[−η2
i + (Hi − 1)ηi]Ri + (n−m−

J

∑
i=1

Ri)[−η2
m + (Hm − 1)ηm]xm}, (13)

where Hi = −1 + xi
σ F(xi)

1
λ + (−1 + λ) xi

λ ζi.
The FIM I(σ, λ) is called the expected Fisher matrix. It is determined by the distribu-

tion of the order statistics X(i). The PDF of X(i) based on the progressive type II censored
sample generally can be derived from [1].

fx(i)(x(i)) = c0
i−1

i

∑
k=1

d0
k,i f (x(i))[1− F(xi)]

r0
k−1, (14)

where

c0
i−1 =

i

∏
k=1

r0
k , r0

i = m + 1− i +
m

∑
k=i

Rk, i = 1, 2, · · · , j,

d0
11 = 1, d0

k,i =
i

∏
h=1,h 6=k

1
r0

h − r0
k

, 1 ≤ k ≤ i ≤ j.

The adaptive progressive type II censoring is considered as an improvement of the
progressive type II censoring. Actually, the PDF of X(i) of EHL(λ,σ) under adaptive
progressive type II censoring turns out to be

fx(i)(x(i)) =
c1

i−1

c1
j−1

i

∑
k=j+1

d1
k,iv(x(i))[1−V(x(i))]

r1
k−1, (15)

where

c1
i−1 =

i

∏
k=1

r1
k , r1

i = n− i + 1−
j

∑
k=1

Rk, i = j + 1, j + 2, · · · , m, d1
j+1,j+1 = 1,

d1
k,i =

i

∏
h=j+1,h 6=k

1
r1

h − r1
k

, j + 1 ≤ k ≤ i ≤ m, v(x(i)) =
f (x(i))

1− F(x(j))
, V(x(i)) =

F(x(i))− F(x(j))

1− F(x(j))
.

After sorting out, the formula (15) can be written as

fx(i)(x(i)) =



c0
i−1 ∑i

k=1 d0
k,i

λ
σ (

1−e−
x(i)

σ

1+e−
x(i)

σ

)λ−1 2e−
x(i)

σ

(1+e
−x(i)

σ )2
[1− ( 1−e−

x(i)
σ

1+e−
x(i)

σ

)λ]r
0
k−1 , i = 1, 2, · · · , j,

c1
i−1

c1
j−1

∑i
k=j+1 d1

k,i

λ
σ (

1−e−
x(i)

σ

1+e−
x(i)

σ

)λ−1 2e−
x(i)

σ

(1+e
−x(i)

σ )2

1−( 1−e−
x(i)

σ

1+e−
x(i)

σ

)λ

[

1−( 1−e−
x(i)

σ

1+e−
x(i)

σ

)λ

1−( 1−e−
x(i)

σ

1+e−
x(i)

σ

)λ

]r
1
k−1 , i = j + 1, j + 2, · · · , m.

(16)

Afterwards, we can calculate Fisher information matrix FIM I(σ, λ) directly based
on (16). In order to simplify complex calculation, the observed Fisher Information matrix
I
(
σ̂, λ̂

)
is employed skillfully to approximate the expected Fisher information matrix,

and then the variance–covariance matrix can be obtained. Then, the I(σ̂, λ̂) turns out to be

I(σ̂, λ̂) = −
[

∂2l(λ,σ)
∂σ2

∂2l(λ,σ)
∂λ∂σ

∂2l(λ,σ)
∂λ∂σ

∂2l(λ,σ)
∂λ2

]
(σ,λ)=(σ̂,λ̂)

. (17)

Here, σ̂ and λ̂ are the MLEs of σ and λ separately.
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Then, the asymptotic variance–covariance matrix is the inverse of the observed Fisher
Information matrix I

(
σ̂, λ̂

)
, denoted as I−1(σ̂, λ̂

)
.

I−1(σ̂, λ̂) =

[
Var(σ̂) Cov(σ̂, λ̂)

Cov(λ̂, σ̂) Var(λ̂)

]
. (18)

Thus, the 100(1− α)% asymptotic confidence intervals for σ and λ can be constructed as(
σ̂− d α

2
×
√

Var(σ̂), σ̂ + d α
2
×
√

Var(σ̂)
)

and (
λ̂− d α

2
×
√

Var(λ̂), λ̂ + d α
2
×
√

Var(λ̂)
)

where dα denotes the upper α-th quantile of the standard normal distribution.

3. Bootstrap Confidence Intervals

It is noticed that the classical theory works well with a large sample size while it makes
little sense on the condition that the sample size is small. Thus, the bootstrap methods are
applied to provide more precise confidence intervals.

The two most commonly used bootstrap methods are proposed, see [18]. One is
the percentile bootstrap method (boot-p). It replaces the distribution of original sample
statistics with the distribution of Bootstrap sample statistics to establish confidence intervals.
The other is the bootstrap-t method (boot-t). In addition, the core idea of this method is
to convert the Bootstrap sample statistic into the corresponding t statistic. The detailed
procedure for simulation of the two bootstrap methods is listed, see Algorithms 1 and 2.

Algorithm 1: Constructing percentile bootstrap confidence intervals

step 1 Set the simulation number Nboot times ahead.
step 2 Compute the MLEs of σ and λ under the original censored sample

x = (x1, x2, · · · , xm), denoted as σ̂ and λ̂. (If we carry out a simulation study,
we should first generate an adaptive progressive type II censored sample
x = (x1, x2, · · · , xm) from EHL(λ,σ) with T, n, m, R as the original sample.)

step 3 Generate a bootstrap sample x∗ using σ̂, λ̂ and the same censoring pattern
(n, m, T, R). Then, calculate the bootstrap MLEs under sample x∗, denote as σ̂∗

and λ̂∗.
step 4 Repeat step 3 Nboot times, then we can obtain a series of bootstrap MLEs(

σ̂
(1)
∗∗ , σ̂

(2)
∗∗ , · · · , σ̂

(Nboot)∗∗
)

and (λ̂
(1)
∗∗ , λ̂

(2)
∗∗ , · · · , λ̂

(Nboot)∗∗ ).

step 5 Arrange (σ̂
(1)
∗∗ , σ̂

(2)
∗∗ , · · · , σ̂

(Nboot)∗∗ ) and
(

λ̂
(1)
∗∗ , λ̂

(2)
∗∗ , · · · , λ̂

(Nboot)∗∗
)

in ascending

order, respectively, and obtain (σ̂
[1]
∗∗ , σ̂

[2]
∗∗ , · · · , σ̂

[Nboot ]∗∗ ) and (λ̂
[1]
∗∗ , λ̂

[2]
∗∗ , · · · , λ̂

[Nboot ]∗∗ ).

3.1. Percentile Bootstrap Confidence Intervals

Then, the 100(1− α)% Boot-p confidence intervals are given by
(

σ̂
[K1]∗∗ , σ̂

[K2]∗∗
)

and(
λ̂
[K1]∗∗ , λ̂

[K2]∗∗
)

, where K1 and K2 are the integer parts of α
2 × Nboot and (1 − α

2 ) × Nboot,
respectively.

3.2. Bootstrap-t Confidence Intervals

Then, the 100(1− α)% Boot-t confidence intervals are given by(
σ̂− S̃1

[K2]
∗∗
√

Var(σ̂), σ̂− S̃1
[K1]
∗∗
√

Var(σ̂)
)
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and (
λ̂− S̃1

[K2]
∗∗
√

Var(λ̂), λ̂− S̃1
[K1]
∗∗
√

Var(λ̂)
)

where K1 and K2 are the integer parts of α
2 × Nboot and (1− α

2 )× Nboot, respectively.

Algorithm 2: Constructing bootstrap-t confidence intervals

step 1 Set the simulation number Nboot times ahead.
step 2 Compute the MLEs of σ and λ under the original censored sample

x = (x1, x2, · · · , xm), denoted as σ̂ and λ̂. (If we carry out a simulation study,
we should first generate an adaptive progressive type II censored sample
x = (x1, x2, · · · , xm) from EHL(λ,σ) with T, n, m, R as the original sample.)

step 3 Generate a bootstrap sample x∗ using σ̂,λ̂ and the same censoring pattern
(n, m, T, R). Then, calculate the bootstrap MLEs σ̂∗ and λ̂∗ and their variances
Var(σ̂∗) and Var(λ̂∗).

step 4 Calculate the t-statistics S̃1 = σ̂∗−σ̂√
Var(σ̂∗)

for σ̂∗ and S̃2 = λ̂∗−λ̂√
Var(λ̂∗)

for λ̂∗.

step 5 Repeat steps 2–3 Nboot times to acquire a series of bootstrap t-statistics(
S̃1

(1)
∗∗ , S̃1

(2)
∗∗ , · · · , S̃1

(Nboot)
∗∗

)
and

(
S̃2

(1)
∗∗ , S̃2

(2)
∗∗ , · · · , S̃2

(Nboot)
∗∗

)
.

step 6 Arrange
(

S̃1
(1)
∗∗ , S̃1

(2)
∗∗ , · · · , S̃1

(Nboot)
∗∗

)
and

(
S̃2

(1)
∗∗ , S̃2

(2)
∗∗ , · · · , S̃2

(Nboot)
∗∗

)
in

ascending order respectively and obtain
(

S̃1
[1]
∗∗ , S̃1

[2]
∗∗ , · · · S̃1

[Nboot ]
∗∗

)
and(

S̃2
[1]
∗∗ , S̃2

[2]
∗∗ , · · · , S̃2

[Nboot ]
∗∗

)
.

4. Bayesian Estimation

In this section, we compute the Bayesian estimates of the quantities by using the Lind-
ley method and the importance sampling procedure. Unlike classical statistics, Bayesian
statistics treat quantities as random variables, which combines the prior information with
observed information.

The option of prior distribution is a pivotal problem. Generally speaking, the conjugate
prior distribution is the first choice due to its algebraic simplicity. However, it is very diffi-
cult to find such prior when both quantities σ and λ are unknown. The prior distribution is
reasonable to keep the same form as (6). Suppose that σ ∼ IG(γ, δ) and λ ∼ Ga(α, β) and
that these two priors are independent. The PDFs of their prior distributions correspond to

π(σ) =
δγ

Γ(γ)
σ−γ−1e−

δ
σ , γ > 0, δ > 0 (19)

π(λ) =
βα

Γ(α)
λα−1e−βλ, α > 0, β > 0. (20)

The corresponding joint distribution is

π(σ, λ) =
δγβα

Γ(γ)Γ(α)
σ−γ−1λα−1e−(

δ
σ +βλ), (21)

Given the sample x, the posterior distribution π(σ, λ|x) can be written as

π(σ, λ|x) = L(x|σ, λ)π(σ, λ)∫ ∞
0

∫ ∞
0 L(x|σ, λ)π(σ, λ)dσdλ

. (22)

4.1. Symmetric and Asymmetric Loss Functions

The loss function is employed to appraise the intensity of inconsistency between
the estimation of the parameter and the true value. The squared error loss function is a
symmetric loss function, which is applied in many areas. However, on the condition that
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overestimation causes greater loss compared with underestimation or vice versa, using a
symmetric loss function is not suitable. Instead, the asymmetric loss function is employed
to fix the problem. Therefore, we consider the Bayesian estimations under one symmetric
loss function, namely the squared error loss function (SELF) as well as two asymmetric loss
functions, namely the Linex Loss Function (LLF) and the General Entropy Loss Function
(GELF) in this subsection.

4.1.1. Squared Error Loss Function (SELF)

The squared error loss function is a symmetric loss function, which puts the overesti-
mate and underestimate on the same level. It is the sum of squared distances between the
target variable and the predicted value. The function corresponds to

LSE(υ, υ̂) = (υ̂− υ)2, (23)

where υ̂ is the estimation of υ.
The Bayesian estimation of υ under SELF is given by

υ̂ = Eυ(υ|x). (24)

Then, for the unknown parameters σ and λ, the Bayesian estimates under SELF can
be given directly as

σ̂SE =
∫ ∞

0

∫ ∞

0
σπ(σ, λ|x)dσdλ, (25)

λ̂SE =
∫ ∞

0

∫ ∞

0
λπ(σ, λ|x)dσdλ. (26)

4.1.2. Linex Loss Function (LLF)

The Linex function is a well-known asymmetric loss function. It is defined as

LLL(υ, υ̂) = ep(υ̂−υ) − p(υ̂− υ)− 1. (27)

The size of p denotes the level of asymmetry and its sign represents the direction of
asymmetry. For p < 0, LLF alters exponentially in the negative direction and linearly in
the positive direction, thus a negative bias has a more serious impact—while, for p > 0,
the positive error will be punished heavily. The larger the dimension of p is, the larger the
punishment intensity is. When |p| approaches 0, LLF is almost symmetric.

The Bayesian estimation of υ under LLF is written as

υ̂LL = − 1
p

ln Eυ(e−pυ|x). (28)

Then, for unknown parameters σ and λ, the Bayesian estimates under LLF are

σ̂LL = − 1
p

ln[
∫ ∞

0

∫ ∞

0
e−pσπ(σ, λ|x)dσdλ], (29)

λ̂LL = − 1
p

ln[
∫ ∞

0

∫ ∞

0
e−pλπ(σ, λ|x)dσdλ]. (30)

4.1.3. General Entropy Loss Function (GELF)

The General Entropy loss function (GELF) is another noted asymmetric loss function,
which is

LGE(υ, υ̂) = (
υ̂

υ
)q − q ln

υ̂

υ
− 1. (31)
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For q > 0, the overestimation has a more serious impact compared with the underestima-
tion, and vice versa. The Bayesian estimation of υ under GELF is derived:

υ̂GE = [Eυ(υ
−q|x)]−

1
q . (32)

Notably, when q = −1, the Bayesian estimation under GELF has the same value as
that under SELF. The Bayesian estimates of σ and λ under GELF correspond to

σ̂GE = [
∫ ∞

0

∫ ∞

0
σ−qπ(σ, λ|x)dσdλ]

− 1
q , (33)

λ̂GE = [
∫ ∞

0

∫ ∞

0
λ−qπ(σ, λ|x)dσdλ]

− 1
q . (34)

We can know that the Bayesian estimates of σ and λ are in the modality of a ratio
of two complicated integrals and the specific and explicit forms cannot be represented
without trouble. Thus, the Lindley method is employed to solve this problem.

4.2. Lindley Approximation Method

In this subsection, in order to compute the Bayesian estimates, we apply the Lindley
approximation method. Let ϕ(σ, λ) denote any function about σ and λ, l denote the log-
likelihood function and ρ(σ, λ) = ln π(σ, λ). According to the [19], the Bayesian estimates
can be expressed by the posterior expectation of ϕ(σ, λ)

E[ϕ(σ, λ)|x] = ϕ(σ̂, λ̂) + ρ1 A12 +
1
2
(A + l03B21 + l30B12 + l12C21 + l21C12) + ρ2 A21, (35)

where

A =
2

∑
i=1

2

∑
i=1

ϕijbij lij =
∂i+jl

∂θi∂θ j , i = 3− j and i, j = 0, 1, 2, 3

ρi =
∂ρ

∂θi
, ϕi =

∂ρ

∂θi
, ϕij =

∂2ρ

∂θi∂θj
, bij = −[lij]−1, Aij = ϕbii + ϕjbji,

Bij = (ϕibii + ϕjbij)bii, Cij = 3ϕibiibij + ϕj(biibjj + 2b2
ij).

Here, θ = (θ1, θ2) = (σ, λ) and bij denotes the (i, j)-th component of the covariance
matrix. Then, the Bayesian estimates under three loss functions SELF, LLF, and GELF
are derived.

4.2.1. Squared Error Loss Function (SELF)

For σ, let ϕ(σ, λ) = σ; therefore,

ϕ(σ, λ) = σ, ϕ1 = 1, ϕ11 = ϕ12 = ϕ2 = ϕ21 = ϕ22 = 0. (36)

Then, the Bayesian estimate of σ under SELF is

σ̂SE = σ̂ +
1
2
[b2

11l30 + 3 b11b12l21 + b11b22l12 + 2b2
21l12 + b21b22l03] + ρ1b11 + ρ2b12. (37)

Similarly, for parameter λ, it is clear that ϕ(σ, λ) = λ, hence

ϕ(σ, λ) = λ, ϕ2 = 1, ϕ21 = ϕ22 = ϕ1 = ϕ11 = ϕ12 = 0. (38)

Then, the Bayesian estimate of λ under SELF can be written as

λ̂SE = λ̂ +
1
2
[b11b12l30 + b11b22l21 + 2b2

12l12 + 3b21b22l12 + b2
22l03] + ρ1b21 + ρ2b22. (39)
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4.2.2. Linex Loss Function (LLF)

For σ, we take ϕ(σ, λ) = e−pσ, hence

ϕ1 = −pe−pσ, ϕ11 = p2e−pσ, ϕ2 = ϕ12 = ϕ21 = ϕ22 = 0. (40)

The Bayesian estimate of σ under LLF is derived as

σ̂LL = − 1
p

ln{e−pσ̂ +
1
2

ϕ11b11 +
1
2

ϕ1[b2
11l30 + 3b11b12l21

+b11b22l12 + 2b2
21l12 + b21b22l03] + ϕ1(ρ1b11 + ρ2b12)}. (41)

Similarly, for the parameter λ, let ϕ(σ, λ) = e−pλ, hence

ϕ2 = −pe−pλ, ϕ22 = p2e−pλ, ϕ1 = ϕ11 = ϕ12 = ϕ21 = 0. (42)

The Bayesian estimate of λ under LLF can be written as

λ̂LL = − 1
p

ln{e−pλ̂ +
1
2

ϕ22b22 +
1
2

ϕ2[b2
22l03 + 3b22b21l12

+b11b22l21 + 2b2
12l21 + b12b11l30] + ϕ2(ρ1b21 + ρ2b22)}. (43)

4.2.3. General Entropy Loss Function (GELF)

For parameter σ, let ϕ(σ, λ) = σ−q, hence

ϕ1 = −qσ−q−1, ϕ11 = q(q + 1)σ−q−2, ϕ2 = ϕ12 = ϕ21 = ϕ22 = 0. (44)

The Bayesian estimate of σ under GELF can be written as

σ̂GE = {σ̂−q +
1
2

ϕ11b11 +
1
2

ϕ1[b2
11l30 + 3b11b12l21 + b11b12l12

+2b2
21l12 + b21b22l03] + ϕ2(ρ1b11 + ρ2b12)}

1
q . (45)

Similarly, for parameter λ, , it is clear that ϕ(σ, λ) = λ−q, hence

ϕ2 = −qλ−q−1, ϕ22 = q(q + 1)λ−q−2, ϕ1 = ϕ11 = ϕ21 = ϕ12 = 0. (46)

The Bayesian estimate of λ under GELF can be written as

σ̂GE = {λ̂−q +
1
2

ϕ22b22 +
1
2

ϕ2[b2
22l03 + 3b22b21l12 + b11b22l21

+2b2
12l21 + b12b11l30] + ϕ2(ρ1b21 + ρ2b22)}

1
q . (47)

Though the Lindley approximation is effective to obtain point estimations by estimat-
ing the ratio of integrals, it can not provide credible intervals of the unknown parameters.
Therefore, the importance sampling method is adopted to gain not only point estimation
but also credible intervals.

4.3. Importance Sampling Procedure

The importance sampling procedure is an extension to the Monte Carlo method, which
can greatly reduce the number of sample points drawn in the simulation, and is widely
used in the reliability analysis of various models. From (6) and (21), the joint posterior
distribution is derived by
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π(σ, λ|x) ∝
δγβα

Γ(γ)Γ(α)
σ−m−γ−1λm+α−1e

−λ ∑m
i=1 ln 1+e−

xi
σ

1−e−
xi
σ

− 1
σ ∑m

i=1 xi− δ
σ−βλ

×
m

∏
i=1

1

1− e−
2xi
σ

J

∏
i=1

[1− (
1− e−

xi
σ

1 + e−
xi
σ

)λ]Ri [1− (
1− e−

xm
σ

1 + e−
xm
σ

)λ]n−m−∑J
i=1 Ri (48)

∝ h1(σ)h2(λ|σ)h3(σ, λ),

where

h1(σ) =
(δ + ∑m

i=1 xi)
γ+m

Γ(γ + m)
σ−(γ+m+1)e−

δ+∑m
i=1

σ , (49)

h2(λ|σ) =
[β + ∑m

i=1 ln 1+e−
xi
σ

1−e−
xi
σ
]α+m

Γ(α + m)
λα+m−1e

−λ(β+∑m
i=1 ln 1−e−

xi
σ

1+e−
xi
σ

)

, (50)

h3(σ, λ) =
1

[β + ∑m
i=1 ln 1+e−

xi
σ

1−e−
xi
σ
]α+m

m

∏
i=1

1

1− e−
2xi
σ

J

∏
i=1

[1− (
1− e−

xi
σ

1 + e−
xi
σ

)λ]Ri [1− (
1− e−

xm
σ

1 + e−
xm
σ

)λ]n−m−∑J
i=1 Ri . (51)

It is clear that h1(σ) is the PDF of an inverse Gamma distribution while h2(λ) is the
PDF of a Gamma distribution.

Therefore, the Bayesian estimation of ϕ(σ, λ) is acquired by the following steps:

1. Generate σ from IGσ(γ + m, δ + ∑m
i=1 xi).

2. On the basis of step 1, generate λ from Gaλ|σ(m + α, ∑m
i=1 ln 1+e−

xi
σ

1−e−
xi
σ
+ β).

3. Repeat step 1 and step 2 M times and produce a series of samples.
4. The Bayesian estimate of ϕ(σ, λ) is calculated by

ϕ̂(σ, λ) =
∑M

i=1 ϕ(σi, λi)h3(σi, λi)

∑M
i=1 h3(σi, λi)

. (52)

Therefore, the Bayesian estimate of the unknown parameter σ and λ is derived by

σ̂ =
∑M

i=1 σih3(σi, λi)

∑M
i=1 h3(σi, λi)

,

λ̂ =
∑M

i=1 λih3(σi, λi)

∑M
i=1 h3(σi, λi)

.

Let

h3i(σi, λi) =
h3(σi, λi)

∑M
i=1 h3(σi, λi)

. (53)

For the sake of simplicity, h3i(σi, λi) is denoted as h3i. Then, we sort {σ1, σ2 . . . , σM}
in ascending order as {σ(1), σ(2) . . . , σ(M)}. In addition, we combine h3i and σi together as

{
(

σ(1), h3(1)

)
,
(

σ(2), h3(2)

)
, . . .

(
σ(M), h3(M)

)
}. The HPD credible interval is established

based on the estimate σ̂p = σ(gp), where gp is an integer that satisfies

gp

∑
i=1

h3(i) ≤ p ≤
gp+1

∑
i=1

h3(i). (54)

Hence, the 100%(1− α) credible interval can be represented as (σ̂ζ , σ̂ζ+1−α), ζ = h3(1), h3(1) +

h3(2), · · · , ∑
gp
i=1 h3(i). Therefore, the HPD credible for σ is obtained by (σ̂ζ∗ , σ̂ζ∗+1−α). Note

that σ̂ζ∗+1−α − σ̂ζ∗ ≤ σ̂ζ+1−α − σ̂ζ for all ζ.
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5. Simulation

Plenty of simulation experiments are carried out to appraise the performance of
our estimations by Monte Carlo simulations. Here, the R software is employed for all
the simulations. The point estimation is evaluated by the mean square error (MSE) and
estimation value (VALUE), while the interval estimation is assessed based on the coverage
rate (CR) and interval mean length (ML). For point estimation, smaller mean square error
and closer estimation value suggest better performance of estimation. In addition, for
interval estimation, the higher the coverage rate is and the narrower the interval mean
length is, the better the estimation is.

First of all, adaptive type II progressive censored data from an exponentiated half-
logistic distribution should be generated. The algorithm for generating adaptive Type II
progressive censored data from a general distribution can be obtained in [3]. The algorithm
to generate the censored data is listed in Algorithm 3.

Algorithm 3: Generating adaptive type II progressive censored data from EHL(λ, σ).
1. Generate a Type II progressive censored sample from an exponentiated half-logistic

distribution EHL(λ, σ) with initial values of (R1, R2, · · · , Rm) and T, n, m:

(a) generate independent random variables U1, U2, · · · , Um from the uniform
distribution U(0, 1).

(b) Let Vi = U
1

i+∑m
j=m−i+1 Ri

i , i = 1, 2, · · · , m.
(c) Let Wi = 1−VmVm−1 · · · Vm−i+1, i = 1, 2, · · · , m.
(d) For certain σ and λ, let Xi = F−1(Wi). Then, X = (X1, X2, · · · , Xm) is the Type II

progressive censored sample from EHL(λ, σ).

2. Confirm the value of J, and abandon the sample XJ+2, · · · , Xm.

3. Generate the first m− J − 1 order statistics from a truncated distribution f (x)
[1−F(xJ+1)]

with

sample size n− (∑J
i=1 Ri + J + 1) as XJ+2, XJ+3, · · · , Xm.

In order to carry out simulations, we set σ = 1.5 and λ = 1. For comparison pur-
poses, we consider T = 2, 4 and (n, m) = (30, 20), (30, 25), (50, 40), (50, 45), (80, 60), (80, 70).
For all the combinations of sample size and time T, two different censoring schemes (CS)
are chosen:

Scheme I (Sch I) : R1 = n−m, Rk = 0, k = 2, 3, · · · , m.
Scheme II (Sch II) : R1 = R2 = · · · = Rn−m = 1, Rk = 0, k > n−m.

In addition, the specific diverse censoring schemes conceived for the simulation are
listed in Table 1.

For simplicity, we abbreviate the censoring schemes. For example, (1, 1, 1, 0, 0, 0,
0) is represented as (1*3, 0*4). In each case, the simulation is repeated 3000 times. Then,
the associated MSEs and VALUEs with the point estimation and the related coverage
rates and mean lengths with the interval estimation can be acquired through Monte Carlo
simulations using R software.
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Table 1. Different censoring schemes.

T n m CS T n m CS

2

30

20
(10, 0*19)

4

30

20
(10, 0*19)

(1*10, 0*10) (1*10, 0*10)

25
(5, 0*24)

25
(5, 0*24)

(1*5, 0*20) (1*5, 0*20)

50

40
(10, 0*39)

50

40
(10, 0*39)

(1*10, 0*30) (1*10, 0*30)

45
(5, 0*44)

45
(5, 0*44)

(1*5, 0*40) (1*5, 0*40)

80

60
(20, 0*59)

80

60
(20, 0*59)

(1*20, 0*40) (1*20, 0*40)

70
(10, 0*69)

70
(10, 0*69)

(1*10, 0*60) (1*10, 0*60)

For maximum likelihood estimation, the L-BFGS-B method is used and the simulation
results are put into Table A1. In Bayesian estimation, we employ not only non-informative
priors (non-infor) but also informative priors (infor). For the non-informative priors,
we set α = β = γ = δ = 0.0001. Then, for the informative priors, we should first
determine the hyper-parameters for Bayesian estimation. Generally speaking, the actual
value of the parameter is usually considered as the expectation of the prior distribution.
However, due to the complexity and interactive influence of the two prior distributions,
the optimal value can not be found directly. Thus, we adopt a genetic algorithm and
simulated annealing algorithm to determine the optimal hyper-parameters and the results
are: γ = 4.5, δ = 7.5, α = 4.5, β = 4.5. To get Bayesian point estimation, the Lindley method
and the importance sampling method are employed. Three loss functions are adopted
separately for comparison purposes. The parameter p of LLF is set to 0.5 and 1 and the
parameter q of GELF is set to −0.5 and 0.5.

The informative Bayes method uses minimization of loss functions, and such mini-
mizations can only be performed if the true parameter values are known. Hence, informa-
tive Bayes can only be seen as a reference, or an oracle method.

The results are presented in Tables A2–A9. In addition, the mean length and coverage
rate of asymptotic confidence intervals, boot-t intervals, boot-p intervals, and HPD intervals
at 95% confidence/credible level are also shown in Tables A10 and A11.

Due to the excessive amount of tables, it is not easy for readers to find rules of the
estimation. Therefore, some figures which present the most representative simulation
results are made to show the rules more intuitively. Figures 3 and 4 present the MSEs
of the maximum likelihood estimates of the two parameters under censoring scheme I
and censoring scheme II when T = 2. Figures 5 and 6 compare the MSEs of maximum
likelihood estimates with the Bayesian estimates with non-informative and informative
priors obtained by importance sampling under censoring scheme I and T = 2.
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Figure 3. The MSEs of the MLEs of parameter σ under two censoring schemes.
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Figure 4. The MSEs of the MLEs of parameter λ under two censoring schemes.
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Figure 5. The MSEs of MLEs and Bayesian estimates with non-informative and informative priors of
parameter σ.
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Figure 6. The MSEs of MLEs and Bayesian estimates with non-informative and informative priors of
parameter σ.

From Table A1, we can draw that

(1) All the estimation values are generally inclined to approach the true value, and MSEs
tend to decrease as the sample size n or observed numbers m or the value of m/n
increases. The rules of the MSEs can be easily obtained from Figures 3 and 4.

(2) The MLEs of λ perform better than the MLEs of σ according to the MSE. However,
the estimation values of σ are closer to the true value compared with those of λ.

(3) Diverse censoring schemes show a regular mode in terms of MSE. From the Figures 3 and 4,
we can know that, when σ is considered, Sch I performs better than Sch II in all cases,
yet when λ is considered, Sch II is more effective than Sch I except the case of n = 30.

(4) There is no observed specific pattern with the change of T. It is apprehensible because
the observed data may remain unaltered when T changes.

From Tables A2–A9, we can find that

(1) Generally, the Bayesian estimates under three loss functions with informative priors
are more accurate contrasted with MLEs in terms of MSE in all cases. This rule
can be intuitively summarized from Figures 5 and 6. This is because the Bayesian
method not only considers the data but also takes the prior information of unknown
parameters into account. In addition, the importance sampling procedure outperforms
the Lindley method.

(2) From Figures 5 and 6, it is clear that the performance of the Bayesian estimates with
non-informative priors is almost similar to MLEs under all circumstances. This is
because we have no information with respect to the unknown parameters. In other
words, it only takes the data into account. Thus, it is reasonable that the results are
analogous to MLEs.

(3) The Bayesian estimates under GELF are superior compared with those under SELF
and LLF. For LLF, Bayesian estimates under p = 1 are better than those under p = 0.5
for the parameter λ, while choosing p = 0.5 is better than p = 1 for the estimate
of σ. For GELF, take the fact that both q = −0.5 and q = 0.5 are satisfactory and
perform well. On the whole, the Bayesian estimates under GELF using the importance
sampling procedure are the most effective as they possess the minimal MSEs and the
closest estimation values.

(4) When σ is considered, Sch I performs better than Sch II except when n = 50, yet when
λ is taken into account, Sch II is superior compared with Sch I in most cases.

From Tables A10 and A11, we can draw these conclusions
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(1) The mean lengths of all the intervals become narrower as n and m increase, and this
pattern holds for both σ and λ. In addition, the coverage rate of intervals of σ is higher
while the coverage rate of intervals of λ is stable with the increase of m and n.

(2) The HPD credible intervals and boot-t intervals perform better contrasted by asymp-
totic confidence intervals due to narrower mean length and higher coverage rate. In
addition, the HPD credible intervals possess the narrowest mean length while the
boot-t intervals have the highest coverage rate.

(3) The results of the two parameters’ intervals have no obvious connection with different
censoring schemes.

6. Real Data Analysis

An authentic dataset is analyzed for expository intention by employing the methods
mentioned above in this section. The dataset was initially from [20] and further employed
by [21,22]. The complete data set describes log times to the breakdown of an insulating
fluid testing experiment and is presented in Table 2.

Table 2. Real data set.

0.270027 1.02245 1.15057 1.42311 1.54116 1.57898 1.8718 1.9947
2.08069 2.11263 2.48989 3.45789 3.48187 3.52371 3.60305 4.28895

At the beginning, we should consider the problem whether the distribution EHL(λ, σ)
fits the data set well. The fitting effect of exponentiated half-logistic distribution and Half

Logistic distribution with the CDF F(x) = 1−e−
x−λ

σ

1+e−
x−λ

σ
is compared. The criteria employed

for examining the goodness of fit include the negative log-likelihood function (− ln L),
Kolmogorov–Smirnov (K-S) statistics with its p-value, Bayesian Information Criterion
(BIC), and Akaike Information Criterion (AIC). The definitions are:

AIC = 2× (d− ln L),

BIC = d× ln n− 2× ln L,

where d is the number of parameters, L is the maximized value of the likelihood function,
and n denotes the total number of observed values.

The results of the K-S, p-value, AIC, BIC, and − ln L of the two distributions are listed
in Table 3. Obviously, exponentiated half-logistic distribution fits the model better since it
has lower K-S, AIC, BIC, − ln L statistics, and higher p-value. Then, we can analyze this
data on the basis of our model.

Table 3. The fitting results of the two distributions.

λ σ − ln L AIC BIC K-S Statistic p-Value

HL 1.0023 0.6536 27.0313 56.6609 56.2061 0.2659 0.3749
EHL 2.4309 0.9639 24.4488 52.8976 54.4428 0.1836 0.5906

We set n = 16, m = 12 and T = 3
2 , 2. The two different censoring schemes are

(4, 0 ∗ 11) and (1 ∗ 4, 0 ∗ 8). Table 4 presents the specific adaptive type II censoring data
under different schemes based on the data set.
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Table 4. Adaptive progressive type II censoring data under different schemes.

Scheme Censored Data

(4, 0*11), T = 1.5 0.270027, 1.57898, 1.8718, 1.9947, 2.08089, 2.11263
2.48989, 3.45789, 3.481865, 3.52371, 3.60305, 4.28895

(4, 0*11), T = 2 0.270027, 1.57898, 1.8718, 1.9947, 2.08089, 2.11263
2.48989, 3.45789, 3.481865, 3.52371, 3.60305, 4.28895

(1*4, 0*8), T = 1.5 0.270027, 1.15057, 1.54116, 1.57898, 1.8718, 1.9947
2.08089, 2.11263, 2.48989, 3.45789, 3.481865, 3.52371

(1*4, 0*8), T = 2 0.270027, 1.15057, 1.54116, 1.8718, 2.08089, 2.11263
2.48989, 3.45789, 3.48187, 3.52371, 3.60305, 4.28895

The point estimations for σ and λ are presented in Tables 5 and 6. For Bayesian
estimation, since we have no informative prior, a non-informative prior is applied, namely
α = β = γ = δ = 0.0001. Three loss functions are considered, and we still use the
parameters in the previous simulation. At the same time, 95% ACIs, boot-p, boot-t, and
HPD intervals are established, while Tables 7 and 8 display the corresponding results. Let
Lower denote the lower bound and Upper denote the upper bound.

Table 5. The MLEs and Bayesian estimates of σ under SELF, LLF, and GELF by the Lindley approxi-
mation and the importance sampling.

T R MLE SELF
LLF GELF

Method
p = 1

2 p = 1 p = − 1
2 p = 1

2

1.5
(4, 0*11) 1.1958 1.1285 1.1104 1.0942 1.1134 1.0875 Lindley

1.2577 1.3180 1.0408 1.0662 1.2887 Importance sampling

(1*4, 0*11) 1.2014 1.0794 1.0626 1.0483 1.0654 1.0429 Lindley
1.2346 1.1696 1.1458 1.1257 1.1306 Importance sampling

2
(4, 0*11) 1.1958 1.0340 1.0197 1.0061 1.0206 0.9959 Lindley

1.3057 1.0047 1.2387 1.2787 0.9836 Importance sampling

(1*4, 0*11) 1.2326 0.9577 0.9451 0.9333 0.9451 0.9223 Lindley
1.3420 1.2877 1.2147 1.1860 1.3209 Importance sampling

Table 6. The MLEs and Bayesian estimates of λ under SELF, LLF, and GELF by the Lindley approxi-
mation and the importance sampling.

T R MLE SELF
LLF GELF

Method
p = 1

2 p = 1 p = − 1
2 p = 1

2

1.5
(4, 0*11) 2.4364 2.3591 2.3883 2.3182 2.2932 2.3234 Lindley

2.4817 2.2303 2.3475 2.5060 2.3174 Importance sampling

(1*4, 0*11) 2.3748 2.5351 2.3908 2.1896 2.5062 2.3240 Lindley
2.5865 2.3003 2.4913 2.4253 2.4157 Importance sampling

2
(4, 0*11) 2.4364 2.5786 2.3282 2.1437 2.4798 2.2910 Lindley

2.1038 2.1082 1.8596 2.0381 2.0456 Importance sampling

(1*4, 0*11) 2.3820 2.7732 2.5294 2.3202 2.7069 2.5050 Lindley
2.5353 2.1758 2.5118 2.4388 2.4546 Importance sampling
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Table 7. The four intervals for σ at the 95% confidence/credible level.

T R
ACI boot-p boot-t HPD

Lower Upper Lower Upper Lower Upper Lower Upper

1.5 (4, 0*11) 0.6568 1.7348 0.6645 1.7800 0.8590 1.6932 0.7425 1.6066
(1*4, 0*11) 0.6243 1.7785 0.6399 2.0750 0.7176 1.7313 0.8460 1.7601

2 (4, 0*11) 0.6568 1.7348 0.6001 1.7640 0.6955 1.7824 0.6969 1.6236
(1*4, 0*11) 0.6243 1.7785 0.6340 1.9732 0.8295 1.9510 0.9078 1.4993

Table 8. The four intervals for λ at the 95% confidence/credible level.

T R
ACI boot-p boot-t HPD

Lower Upper Lower Upper Lower Upper Lower Upper

1.5 (4, 0*11) 0.5197 4.3530 1.3134 3.8975 0.8036 3.2435 1.0744 3.3039
(1*4, 0*11) 0.5143 4.0354 1.2444 4.3882 1.0538 3.8101 0.7514 3.2800

2 (4, 0*11) 0.5197 4.3530 1.3085 4.0165 1.5664 4.3491 0.8151 3.4981
(1*4, 0*11) 0.5143 4.0354 1.3628 3.8839 0.4289 3.2993 1.0254 3.7863

From Tables 5–8, the following conclusions are drawn:

(1) The estimates of parameter σ using the Lindley method generally tend to be larger
than those gained by the importance sampling procedure.

(2) The estimates under the first censoring scheme are closer to the MLEs under the full
sample, and the estimations using the Lindley method are more effective than those
obtained by the importance sampling.

(3) The results are relatively close between T = 1.5 and T = 2 when using the first cen-
soring scheme because the observed data remain unaltered when the T is increasing.

(4) The HPD credible intervals have the narrowest mean length among all the intervals
while the ACIs possess the longest mean length.

(5) The results of the two parameters’ intervals have no obvious connection with different
censoring schemes.

7. Conclusions

In this manuscript, classical and Bayesian inference for exponentiated half-logistic
distribution under adaptive Type II progressive censoring is considered. The maximum
likelihood estimates are derived through the Newton–Raphson algorithm. Bayesian esti-
mation under three loss functions is also considered and the estimates are derived through
importance sampling and the Lindley method. Meanwhile, we establish the confidence
and credible intervals of σ and λ and contrast them with each other. Asymptotic con-
fidence intervals are constructed based on observed and expected Fisher information
matrices. In order to tackle the problem of small sample size, boot-p and boot-t intervals
are computed.

In the simulation section, estimation values and mean squared values are calculated
to test the performance of the point estimation while mean lengths and coverage rates are
considered for the interval estimation. According to the simulation results, it is clear that the
Bayesian estimation which possesses suitable informative priors performs better than MLEs
under all circumstances. In more detail, the Bayesian estimations under GELF perform best
among all the estimations and the importance sampling procedure makes more sense than
Lindley approximation. In addition, when it comes to interval estimation, boot-t and boot-p
intervals perform better in the case of a small sample size than asymptotic confidence
intervals. In addition, HPD credible intervals generally possess the shortest mean length
while boot-t intervals have the highest coverage rate compared with other intervals.

Exponentiated half-logistic distribution under adaptive Type II progressive censoring
is significant and practical due to the flexibility of the censoring scheme and the superior
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features of distribution. Furthermore, the competing risks and accelerated life test can be
explored in the research field. In brief, carrying out further research on this model has
great potential for survival and reliability analysis.
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Appendix A. The Simulation Results of MLEs

Table A1. The simulation results of MLEs for σ and λ.

T n m Sch
σ λ

VALUE MSE VALUE MSE

2

30
20 I 1.4694 0.1207 1.1028 0.1075

II 1.4661 0.1457 1.1075 0.1138

25 I 1.4667 0.0937 1.1024 0.1010
II 1.4754 0.1005 1.1006 0.1025

50
40 I 1.4787 0.0622 1.0607 0.0533

II 1.4792 0.0649 1.0565 0.0496

45 I 1.4832 0.0558 1.0580 0.0477
II 1.4816 0.0559 1.0553 0.0458

80
60 I 1.4898 0.0404 1.0403 0.0297

II 1.4858 0.0425 1.0341 0.0272

70 I 1.4858 0.0351 1.0348 0.0271
II 1.4892 0.0364 1.0337 0.0258

4

30
20 I 1.4651 0.1260 1.1133 0.1140

II 1.4573 0.1316 1.1152 0.1170

25 I 1.4655 0.0990 1.1063 0.1039
II 1.4661 0.1025 1.1049 0.1057

50
40 I 1.4772 0.0583 1.0569 0.0503

II 1.4857 0.0655 1.0500 0.0454

45 I 1.4823 0.0572 1.0518 0.0474
II 1.4805 0.0580 1.0542 0.0456

80
60 I 1.4904 0.0419 1.0342 0.0305

II 1.4912 0.0445 1.0303 0.0288

70 I 1.4843 0.0352 1.0342 0.0266
II 1.4884 0.0369 1.0336 0.0264
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Appendix B. The Simulation Results of Bayesian Estimates with Non-Informative Priors

Table A2. The results of Bayesian estimates with non-informative priors for σ using the Lindley method.

T n m
σ̂SE

σ̂LL σ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.5300 0.1187 1.5303 0.1183 1.5301 0.1201 1.5309 0.1156 1.5296 0.1117

1.5328 0.1415 1.5347 0.1376 1.5335 0.1397 1.5333 0.1386 1.5329 0.1397

25 1.5289 0.0926 1.5336 0.0891 1.5323 0.0916 1.5327 0.0917 1.5330 0.0864
1.5346 0.1003 1.5247 0.1010 1.5244 0.9938 1.5242 0.0971 1.5242 0.0965

50
40 1.5209 0.0596 1.5221 0.0612 1.5209 0.0603 1.5210 0.0622 1.5201 0.0572

1.5206 0.0636 1.5210 0.0659 1.5200 0.0632 1.5199 0.0657 1.5198 0.0603

45 1.5202 0.0541 1.5175 0.0546 1.5167 0.0559 1.5164 0.0504 1.5162 0.0525
1.5195 0.0563 1.5194 0.0548 1.5181 0.0560 1.5174 0.0535 1.5183 0.0504

80
60 1.5092 0.0402 1.5105 0.0401 1.5098 0.0397 1.5101 0.0353 1.5092 0.0285

1.5136 0.0438 1.5143 0.0431 1.5138 0.0419 1.5137 0.0415 1.5131 0.0404

70 1.5126 0.0341 1.5148 0.0339 1.5141 0.0348 1.5134 0.0312 1.5132 0.0329
1.5104 0.0358 1.5116 0.0371 1.5106 0.0360 1.5105 0.0336 1.5104 0.0375

4

30
20 1.5324 0.1200 1.5359 0.1270 1.5339 0.1237 1.5341 0.1173 1.5343 0.1214

1.5367 0.1297 1.5433 0.1281 1.5427 0.1268 1.5421 0.1296 1.5415 0.1246

25 1.5327 0.0970 1.5354 0.0980 1.5340 0.0960 1.5338 1.0002 1.5343 0.0964
1.5292 0.0983 1.5347 0.1031 1.5339 0.1059 1.5331 0.1020 1.5331 0.1025

50
40 1.5196 0.0579 1.5235 0.0579 1.5218 0.0521 1.5221 0.0561 1.5220 0.0524

1.5183 0.0633 1.5149 0.0652 1.5136 0.0565 1.5133 0.0628 1.5136 0.0586

45 1.5168 0.0580 1.5182 0.0552 1.5168 0.0532 1.5170 0.0521 1.5174 0.0542
1.5195 0.0584 1.5197 0.0598 1.5188 0.0570 1.5192 0.0579 1.5186 0.0559

80
60 1.5109 0.0403 1.5097 0.0402 1.5091 0.0405 1.5086 0.0407 1.5085 0.0358

1.5088 0.0414 1.5098 0.0430 1.5088 0.0435 1.5083 0.0412 1.5080 0.0582

70 1.5121 0.0326 1.5160 0.0372 1.5150 0.0331 1.5151 0.0299 1.5156 0.0331
1.5105 0.0334 1.5124 0.0353 1.5108 0.0362 1.5113 0.0361 1.5105 0.0371

Table A3. The results of Bayesian estimates with non-informative priors for λ using the Lindley method.

T n m
σ̂SE

λ̂LL λ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.1021 0.1065 1.1024 0.1075 1.1019 0.1062 1.1017 0.1059 1.1018 0.1062

1.1064 0.1129 1.1071 0.1147 1.1063 0.1127 1.1071 0.1134 1.1055 0.1125

25 1.1024 0.1012 1.1021 0.1003 1.1019 0.1003 1.1006 0.1000 1.1019 0.0991
1.0999 0.1014 1.0996 0.1022 1.0990 0.1022 1.1005 0.1016 1.0995 0.1016

50
40 1.0594 0.0524 1.0604 0.0539 1.0600 0.0523 1.0604 0.0514 1.0590 0.0524

1.0563 0.0491 1.0561 0.0489 1.0558 0.0481 1.0547 0.0487 1.0561 0.0487

45 1.0578 0.0474 1.0570 0.0461 1.0567 0.0463 1.0572 0.0479 1.0565 0.0462
1.0543 0.0454 1.0552 0.0439 1.0551 0.0449 1.0534 0.0454 1.0551 0.0444

80
60 1.0393 0.0282 1.0393 0.0285 1.0392 0.0313 1.0387 0.0282 1.0400 0.0290

1.0328 0.0267 1.0325 0.0260 1.0330 0.0275 1.0325 0.0255 1.0339 0.0256

70 1.0342 0.0266 1.0338 0.0264 1.0347 0.0261 1.0330 0.0259 1.0341 0.0269
1.0327 0.0250 1.0324 0.0250 1.0335 0.0268 1.0336 0.0256 1.0317 0.0257

4

30
20 1.1121 0.1138 1.1123 0.1120 1.1127 0.1122 1.1124 0.1135 1.1119 0.1128

1.1145 0.1176 1.1140 0.1158 1.1148 0.1164 1.1144 0.1157 1.1140 0.1155

25 1.1053 0.1032 1.1057 0.1028 1.1060 0.1024 1.1055 0.1031 1.1054 0.1023
1.1034 0.1059 1.1048 0.1038 1.1034 0.1054 1.1047 0.1042 1.1040 0.1049

50
40 1.0566 0.0501 1.0560 0.0490 1.0558 0.0493 1.0568 0.0493 1.0560 0.0490

1.0493 0.0450 1.0491 0.0448 1.0487 0.0446 1.0491 0.0460 1.0492 0.0449

45 1.0509 0.0462 1.0517 0.0470 1.0517 0.0473 1.0501 0.0459 1.0507 0.0459
1.0527 0.0448 1.0530 0.0449 1.0525 0.0450 1.0527 0.0457 1.0527 0.0436

80
60 1.0338 0.0297 1.0337 0.0297 1.0340 0.0293 1.0330 0.0297 1.0340 0.0292

1.0297 0.0290 1.0290 0.0272 1.0300 0.0278 1.0288 0.0287 1.0287 0.0285

70 1.0326 0.0260 1.0331 0.0268 1.0334 0.0264 1.0336 0.0252 1.0340 0.0263
1.0328 0.0263 1.0324 0.0253 1.0324 0.0258 1.0332 0.0262 1.0316 0.0247
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Table A4. The results of Bayesian estimates with non-informative priors for σ using importance sampling.

T n m
λ̂SE

λ̂LL λ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.5302 0.1207 1.4709 0.1089 1.4641 0.1172 1.5326 0.1205 1.5251 0.1298

1.5382 0.1419 1.5321 0.1323 1.5292 0.1391 1.5328 0.1356 1.5307 0.1438

25 1.5305 0.0892 1.5301 0.0882 1.5246 0.0815 1.5327 0.0822 1.5299 0.0844
1.5393 0.0997 1.5327 0.0989 1.5257 0.0907 1.5311 0.0925 1.5279 0.0942

50
40 1.5293 0.0595 1.5275 0.0616 1.5244 0.0589 1.5203 0.0585 1.5242 0.0558

1.5253 0.0631 1.5220 0.0602 1.5291 0.0675 1.5253 0.0593 1.5281 0.0653

45 1.5269 0.0568 1.5296 0.0567 1.5266 0.0541 1.5290 0.0557 1.5237 0.0536
1.5253 0.0562 1.5270 0.0527 1.5248 0.0548 1.5277 0.0571 1.5226 0.0550

80
60 1.5126 0.0403 1.5125 0.0357 1.5109 0.0396 1.5179 0.0389 1.5147 0.0376

1.5098 0.0428 1.5151 0.0404 1.5135 0.0422 1.5140 0.0444 1.5103 0.0431

70 1.5117 0.0350 1.5091 0.0340 1.5078 0.0331 1.5130 0.0340 1.5104 0.0360
1.5148 0.0371 1.5078 0.0310 1.5064 0.0331 1.5108 0.0348 1.5082 0.0328

4

30
20 1.5288 0.1211 1.5313 0.1121 1.5323 0.1185 1.5330 0.1145 1.5321 0.1225

1.5378 0.1372 1.5324 0.1366 1.5302 0.1309 1.5363 0.1335 1.5356 0.1371

25 1.5298 0.0943 1.5352 0.0906 1.5285 0.0924 1.5227 0.0973 1.5202 0.0990
1.5311 0.1021 1.5241 0.1081 1.5370 0.0991 1.5333 0.1054 1.5206 0.1078

50
40 1.5265 0.0515 1.5250 0.0556 1.5222 0.0553 1.5274 0.0590 1.5212 0.0562

1.5250 0.0633 1.5241 0.0665 1.5221 0.0634 1.5253 0.0609 1.5290 0.0683

45 1.5266 0.0579 1.5241 0.0507 1.5214 0.0584 1.5290 0.0558 1.5239 0.0537
1.5240 0.0596 1.5262 0.0556 1.5239 0.0537 1.5263 0.0575 1.5212 0.0553

80
60 1.5167 0.0444 1.5101 0.0480 1.5184 0.0468 1.5117 0.0430 1.5183 0.0416

1.51198 0.0479 1.5145 0.0499 1.5130 0.0389 1.5162 0.0465 1.5148 0.0451

70 1.5083 0.0337 1.5108 0.0355 1.5095 0.0346 1.5144 0.0327 1.5118 0.0318
1.5082 0.0353 1.5069 0.0334 1.5157 0.0356 1.5146 0.0342 1.5121 0.0332

Table A5. The results of Bayesian estimates with non-informative priors for λ using importance sampling.

T n m
λ̂SE

λ̂LL λ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.1076 0.1033 1.1079 0.1053 1.1042 0.1003 1.1002 0.1083 1.1004 0.1028

1.1061 0.1110 1.1086 0.1157 1.1006 0.1173 1.1004 0.1183 1.1078 0.1193

25 1.1063 0.0962 1.1023 0.0927 1.1013 0.0914 1.1031 0.0941 0.9085 0.0932
1.1089 0.0966 1.1040 0.0918 1.1026 0.0934 1.1051 0.0939 1.1006 0.0948

50
40 1.0589 0.0526 1.0513 0.0498 0.9547 0.0501 1.0514 0.0503 0.9470 0.0508

1.0532 0.0468 1.0561 0.0459 0.9493 0.0478 1.0561 0.0463 0.9517 0.0484

45 0.9475 0.0432 0.9508 0.0429 0.9531 0.0424 0.9507 0.0432 0.9561 0.0433
1.0507 0.0459 1.0518 0.0453 0.9554 0.0457 1.0519 0.0456 0.9585 0.0463

80
60 0.9648 0.0282 0.9702 0.0279 0.9723 0.0271 0.9702 0.0281 0.9774 0.0276

0.9694 0.0265 0.9755 0.0264 0.9793 0.0253 0.9754 0.0265 0.9749 0.0257

70 0.9773 0.0245 0.9737 0.0245 0.9774 0.0257 0.9735 0.0246 0.9731 0.0262
0.9731 0.0261 0.9797 0.0261 0.9705 0.0261 0.9796 0.0262 0.9764 0.0265

4

30
20 1.1117 0.1115 1.1143 0.1158 1.1164 0.1108 1.1157 0.1182 1.1126 0.1130

1.1187 0.1111 1.1155 0.1153 1.1134 0.1155 1.1168 0.1175 1.1112 0.1172

25 1.1080 0.1096 1.1032 0.1047 1.1046 0.1084 1.1045 0.1066 1.1021 0.1099
1.1042 0.1003 1.1078 0.1096 1.1024 0.1081 1.1087 0.1013 0.9001 0.1097

50
40 1.0540 0.0498 0.9489 0.0491 1.0527 0.0522 0.9489 0.0495 0.9450 0.0533

1.0576 0.0488 1.0502 0.0479 1.0552 0.0396 1.0504 0.0384 0.9479 0.0430

45 1.0537 0.0482 0.9468 0.0475 0.9548 0.0449 0.9468 0.0479 0.9577 0.0456
1.0544 0.0454 0.9477 0.0449 0.9587 0.0447 0.9477 0.0452 0.9518 0.0452

80
60 0.9650 0.0307 0.9607 0.0306 0.9682 0.0292 0.9706 0.0307 0.9734 0.0366

0.9675 0.0268 0.9636 0.0267 0.9647 0.0259 0.9635 0.0268 0.9703 0.0363

70 0.9630 0.0245 0.9693 0.0245 0.9684 0.0232 0.9692 0.0246 0.9642 0.0337
0.9639 0.0261 0.9603 0.0261 0.9622 0.0234 0.9702 0.0262 0.9683 0.0338
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Appendix C. The Simulation Results of Bayesian Estimates with Informative Priors

Table A6. The results of Bayesian estimates with informative priors for σ using the Lindley method.

T n m
σ̂SE

σ̂LL σ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.5319 0.1153 1.5307 0.1125 1.5315 0.1259 1.4699 0.1010 1.5329 0.1187

1.5352 0.1254 1.5338 0.1176 1.5310 0.1301 1.4637 0.1042 1.5305 0.1271

25 1.5235 0.0895 1.5298 0.0890 1.5212 0.1117 1.4737 0.0750 1.5295 0.0937
1.5295 0.1102 1.5257 0.0984 1.5205 0.1218 1.4741 0.0821 1.5377 0.1018

50
40 1.5203 0.0542 1.5217 0.0499 1.5245 0.0516 1.4785 0.0531 1.5235 0.0567

1.5281 0.0566 1.5265 0.0519 1.5248 0.0593 1.4780 0.0545 1.5230 0.0632

45 1.5156 0.0417 1.5166 0.0485 1.5105 0.0439 1.4841 0.0440 1.5106 0.0498
1.5250 0.0473 1.5256 0.0535 1.5234 0.0448 1.4834 0.0476 1.5236 0.0509

80
60 1.5059 0.0357 1.5114 0.0339 1.5133 0.0346 1.4961 0.0315 1.5165 0.0325

1.5154 0.0399 1.5151 0.0436 1.5149 0.0409 1.4992 0.0316 1.5176 0.0462

70 1.5033 0.0289 1.5010 0.0276 1.5052 0.0297 1.4993 0.0255 1.5095 0.0283
1.5059 0.0294 1.5034 0.0280 1.5023 0.0307 1.4934 0.0257 1.5164 0.0291

4

30
20 1.5324 0.1234 1.5312 0.1144 1.5381 0.1292 1.4606 0.1025 1.5305 0.1202

1.5371 0.1235 1.5356 0.1154 1.5306 0.1364 1.4654 0.1026 1.5391 0.1250

25 1.5265 0.1056 1.5227 0.0945 1.5261 0.1094 1.4779 0.0775 1.5244 0.0920
1.5242 0.1064 1.5305 0.0951 1.5227 0.1115 1.4753 0.0789 1.5311 0.1141

50
40 1.5173 0.0624 1.5258 0.0579 1.5239 0.0630 1.4772 0.0511 1.5227 0.0577

1.5198 0.0640 1.5284 0.0594 1.5290 0.0679 1.4750 0.0519 1.5275 0.0622

45 1.5091 0.0551 1.5199 0.0417 1.5129 0.0544 1.4853 0.0467 1.5132 0.0505
1.5121 0.0530 1.5130 0.0495 1.5146 0.0507 1.4899 0.0439 1.5253 0.0473

80
60 1.5107 0.0380 1.5162 0.0360 1.5133 0.0346 1.4911 0.0320 1.5125 0.0325

1.5148 0.0471 1.5140 0.0404 1.5108 0.0406 1.4907 0.0329 1.5134 0.0457

70 1.5061 0.0284 1.5037 0.0270 1.5059 0.0278 1.4954 0.0260 1.5101 0.0264
1.5078 0.0300 1.5054 0.0285 1.5059 0.0318 1.4925 0.0248 1.5100 0.0302

Table A7. The results of Bayesian estimates with informative priors for λ using the Lindley method.

T n m
λ̂SE

λ̂LL λ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.0909 0.1012 1.0895 0.0995 1.0908 0.0923 1.0887 0.0983 1.0915 0.0934

1.0961 0.0975 1.0883 0.0976 1.0856 0.0922 1.0873 0.0962 1.0795 0.0920

25 1.0878 0.0969 1.0772 0.0957 0.9273 0.0932 1.0766 0.0949 1.0773 0.0924
1.0765 0.0908 1.0697 0.0929 0.9278 0.0919 1.0689 0.0932 1.6983 0.0910

50
40 1.0664 0.0498 1.0496 0.0491 0.9424 0.0437 1.0594 0.0487 0.9490 0.0433

1.0579 0.0435 1.0411 0.0431 0.9548 0.0402 1.0510 0.0428 0.9518 0.0397

45 0.9952 0.0385 0.9691 0.0385 0.9548 0.0337 0.9511 0.0383 0.9533 0.0333
1.0547 0.0373 1.0362 0.0368 0.9679 0.0313 1.0480 0.0366 0.9545 0.0310

80
60 1.0476 0.0191 1.0328 0.0190 0.9737 0.0134 1.0328 0.0188 0.9684 0.0132

1.0302 0.0141 0.9763 0.0143 1.0312 0.0135 0.9765 0.0142 1.0254 0.0144

70 0.9775 0.0135 0.9737 0.0134 0.9809 0.0137 0.9738 0.0133 0.9849 0.0133
0.9752 0.0119 0.9763 0.0119 0.9852 0.0139 0.9814 0.0119 0.9790 0.0115

4

30
20 1.0927 0.1037 1.0892 0.1017 0.9186 0.0996 1.0882 0.1006 1.0897 0.0967

1.0899 0.0965 1.0882 0.0957 1.0833 0.0977 1.0873 0.0937 1.0835 0.0967

25 0.9271 0.0930 0.9265 0.0925 0.9202 0.0861 0.9262 0.0918 1.0708 0.0955
1.0835 0.0858 1.0629 0.0850 1.0760 0.0838 1.0726 0.0844 1.0653 0.0826

50
40 1.0565 0.0408 1.0683 0.0401 1.0591 0.0317 1.0520 0.0397 1.0559 0.0317

1.0506 0.0302 0.9340 0.0300 0.9599 0.0291 0.9539 0.0298 1.0465 0.0289

45 1.0546 0.0323 1.0482 0.0320 0.9576 0.0314 1.0481 0.0317 0.9542 0.0310
1.0495 0.0286 1.0433 0.0283 1.0449 0.0254 1.0432 0.0280 1.0412 0.0253

80
60 0.9729 0.0152 0.9685 0.0152 0.9652 0.0135 0.9786 0.0151 0.9797 0.0142

1.0327 0.0151 0.9688 0.0150 0.9670 0.0184 0.9787 0.0149 1.0210 0.0132

70 0.9765 0.0120 0.9725 0.0129 0.9708 0.0125 0.9825 0.0129 0.9847 0.0120
1.0225 0.0120 0.9789 0.0125 0.9740 0.0120 0.9889 0.0128 0.9780 0.0119
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Table A8. The results of Bayesian estimates with informative priors for σ using importance sampling.

T n m
σ̂SE

σ̂LL σ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.5380 0.0790 1.5336 0.0678 1.5337 0.0745 1.5379 0.0694 1.5336 0.0632

1.5347 0.0985 1.5394 0.0848 1.5353 0.0918 1.5320 0.0845 1.5342 0.0778

25 1.5352 0.0729 1.5304 0.0675 1.5313 0.0691 1.5282 0.0652 1.5269 0.0561
1.5303 0.0796 1.5362 0.0635 1.5361 0.0757 1.5368 0.0715 1.5330 0.0598

50
40 1.5296 0.0522 1.5210 0.0471 1.5222 0.0505 1.5274 0.0487 1.5295 0.0457

1.5332 0.0476 1.5289 0.0439 1.5260 0.0461 1.5215 0.0445 1.5271 0.0424

45 1.5207 0.0439 1.5276 0.0377 1.5216 0.0427 1.5177 0.0413 1.5158 0.0362
1.5270 0.0463 1.5201 0.0437 1.5279 0.0443 1.5221 0.0425 1.5286 0.0421

80
60 1.5188 0.0271 1.5151 0.0261 1.5139 0.0261 1.5109 0.0252 1.5108 0.0253

1.5201 0.0314 1.5114 0.0264 1.5142 0.0301 1.5044 0.0290 1.5113 0.0255

70 1.5075 0.0214 1.5038 0.0187 1.5037 0.0205 1.5022 0.0198 1.5088 0.0181
1.5117 0.0217 1.5071 0.0196 1.5068 0.0210 1.5044 0.0204 1.5110 0.0190

4

30
20 1.5322 0.0527 1.5371 0.0737 1.5351 0.0494 1.5345 0.0461 1.5333 0.0685

1.5331 0.0828 1.5309 0.0931 1.5346 0.0777 1.5325 0.0718 1.5344 0.0853

25 1.5277 0.0763 1.5292 0.0849 1.5234 0.0732 1.5243 0.0665 1.5249 0.0596
1.5261 0.0771 1.5321 0.0639 1.5334 0.0817 1.5344 0.0684 1.5358 0.0698

50
40 1.5254 0.0453 1.5203 0.0392 1.5263 0.0434 1.5206 0.0416 1.5191 0.0378

1.5249 0.0453 1.5207 0.0465 1.5268 0.0440 1.5219 0.0424 1.5195 0.0451

45 1.5233 0.0352 1.5204 0.0346 1.5261 0.0345 1.5219 0.0336 1.5228 0.0394
1.5157 0.0405 1.5133 0.0354 1.5183 0.0391 1.5136 0.0377 1.5156 0.0342

80
60 1.5168 0.0270 1.5126 0.0217 1.5116 0.0258 1.5093 0.0247 1.5114 0.0210

1.5127 0.0278 1.5161 0.0229 1.5130 0.0268 1.5105 0.0248 1.5148 0.0221

70 1.5072 0.0227 1.5108 0.0220 1.5132 0.0220 1.5108 0.0214 1.5097 0.0214
1.5024 0.0254 1.5088 0.0261 1.5082 0.0244 1.5055 0.0236 1.5078 0.0235

Table A9. The results of Bayesian estimates with informative priors for λ using importance sampling.

T n m
λ̂SE

λ̂LL λ̂GE

p = 1
2 p = 1 q = − 1

2 q = 1
2

VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE

2

30
20 1.0909 0.1012 1.0895 0.0995 1.0908 0.0923 1.0887 0.0983 1.0915 0.0934

1.0961 0.0975 1.0883 0.0976 1.0856 0.0922 1.0873 0.0962 1.0795 0.0920

25 1.0878 0.0969 1.0772 0.0957 0.9273 0.0932 1.0766 0.0949 1.0773 0.0924
1.0765 0.0908 1.0697 0.0929 0.9278 0.0919 1.0689 0.0932 1.6983 0.0910

50
40 1.0664 0.0498 1.0496 0.0491 0.9424 0.0437 1.0594 0.0487 0.9490 0.0433

1.0579 0.0435 1.0411 0.0431 0.9548 0.0402 1.0510 0.0428 0.9518 0.0397

45 0.9952 0.0385 0.9691 0.0385 0.9548 0.0337 0.9511 0.0383 0.9533 0.0333
1.0547 0.0373 1.0362 0.0368 0.9679 0.0313 1.0480 0.0366 0.9545 0.0310

80
60 1.0476 0.0191 1.0328 0.0190 0.9737 0.0134 1.0328 0.0188 0.9684 0.0132

1.0302 0.0141 0.9763 0.0143 1.0312 0.0135 0.9765 0.0142 1.0254 0.0144

70 0.9775 0.0135 0.9737 0.0134 0.9809 0.0137 0.9738 0.0133 0.9849 0.0133
0.9752 0.0119 0.9763 0.0119 0.9852 0.0139 0.9814 0.0119 0.9790 0.0115

4

30
20 1.0927 0.1037 1.0892 0.1017 0.9186 0.0996 1.0882 0.1006 1.0897 0.0967

1.0899 0.0965 1.0882 0.0957 1.0833 0.0977 1.0873 0.0937 1.0835 0.0967

25 0.9271 0.0930 0.9265 0.0925 0.9202 0.0861 0.9262 0.0918 1.0708 0.0955
1.0835 0.0858 1.0629 0.0850 1.0760 0.0838 1.0726 0.0844 1.0653 0.0826

50
40 1.0565 0.0408 1.0683 0.0401 1.0591 0.0317 1.0520 0.0397 1.0559 0.0317

1.0506 0.0302 0.9340 0.0300 0.9599 0.0291 0.9539 0.0298 1.0465 0.0289

45 1.0546 0.0323 1.0482 0.0320 0.9576 0.0314 1.0481 0.0317 0.9542 0.0310
1.0495 0.0286 1.0433 0.0283 1.0449 0.0254 1.0432 0.0280 1.0412 0.0253

80
60 0.9729 0.0152 0.9685 0.0152 0.9652 0.0135 0.9786 0.0151 0.9797 0.0142

1.0327 0.0151 0.9688 0.0150 0.9670 0.0184 0.9787 0.0149 1.0210 0.0132

70 0.9765 0.0120 0.9725 0.0129 0.9708 0.0125 0.9825 0.0129 0.9847 0.0120
1.0225 0.0120 0.9789 0.0125 0.9740 0.0120 0.9889 0.0128 0.9780 0.0119
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Appendix D. The Simulation Results of All Intervals

Table A10. The simulation results of five intervals for σ.

T n m Sch
ACI boop-p boot-t

HPD

non-infor infor

ML CR ML CR ML CR ML CR ML CR

2

30
20 I 1.3317 0.8903 1.2490 0.8847 1.2206 0.9163 1.3226 0.8883 1.1232 0.8277

II 1.3911 0.8893 1.4017 0.8917 1.3817 0.9047 1.3757 0.8891 1.1982 0.8383

25 I 1.1989 0.8923 1.2019 0.8970 1.1141 0.9210 1.1695 0.8887 1.0093 0.8410
II 1.2153 0.9083 1.2504 0.8970 1.1093 0.9157 1.1835 0.9038 1.0141 0.8477

50
40 I 0.9626 0.9160 0.9915 0.9056 0.8741 0.9440 0.9483 0.9106 0.7634 0.8580

II 0.9712 0.9280 0.9817 0.9193 0.9596 0.9253 0.9382 0.9214 0.7762 0.8767

45 I 0.9131 0.9260 0.9540 0.9220 0.8097 0.9440 0.9080 0.9219 0.7233 0.8773
II 0.9126 0.9250 0.9416 0.9147 0.8124 0.9433 0.8982 0.9237 0.7168 0.8753

80
60 I 0.7919 0.9293 0.8117 0.9180 0.6917 0.9527 0.7732 0.9230 0.5902 0.8700

II 0.8053 0.9283 0.7979 0.9293 0.7052 0.9520 0.7863 0.9272 0.6035 0.8800

70 I 0.7347 0.9317 0.7573 0.9396 0.6328 0.9500 0.7059 0.9252 0.5310 0.8847
II 0.7313 0.9247 0.7766 0.9380 0.6373 0.9487 0.6982 0.9228 0.5385 0.8773

4

30
20 I 1.3309 0.8943 1.3719 0.8897 1.2348 0.9007 1.3268 0.8903 1.1348 0.8367

II 1.3853 0.8810 1.3972 0.8967 1.3912 0.9150 1.3740 0.8800 1.1838 0.8273

25 I 1.1981 0.9020 1.2543 0.8980 1.1131 0.9257 1.1897 0.8983 1.0104 0.8243
II 1.2229 0.9050 1.2726 0.9113 1.1227 0.9190 1.1945 0.9015 1.0109 0.8387

50
40 I 0.9621 0.9200 0.9906 0.9115 0.8622 0.9510 0.9562 0.9149 0.7614 0.8453

II 0.9795 0.9230 0.9850 0.9160 0.8725 0.9487 0.9656 0.9202 0.7693 0.8513

45 I 0.9129 0.9223 0.9343 0.9267 0.8169 0.9467 0.9111 0.9183 0.7151 0.8680
II 0.9114 0.9217 0.9162 0.9273 0.8148 0.9500 0.8882 0.9183 0.7154 0.8760

80
60 I 0.7892 0.9340 0.8126 0.9438 0.6891 0.9467 0.7601 0.9314 0.5927 0.8673

II 0.8000 0.9210 0.8165 0.9247 0.7062 0.9560 0.7723 0.9154 0.6034 0.8647

70 I 0.7354 0.9300 0.7443 0.9173 0.6323 0.9580 0.7286 0.9281 0.5374 0.8727
II 0.7336 0.9310 0.7372 0.9333 0.6357 0.9520 0.7175 0.9258 0.5355 0.8713

Table A11. The simulation results of five intervals for λ.

T n m Sch
ACI boop-p boot-t

HPD

non-infor infor

ML CR ML CR ML CR ML CR ML CR

2

30
20 I 1.1725 0.9757 1.2475 0.9683 1.1384 0.9727 1.1518 0.9740 0.9855 0.9333

II 1.1256 0.9760 1.1127 0.9720 1.0805 0.9767 1.1010 0.9757 0.9149 0.9343

25 I 1.0975 0.9670 1.1181 0.9683 1.0467 0.9700 1.0800 0.9662 0.8888 0.9310
II 1.0547 0.9737 1.0705 0.9660 1.0307 0.9737 1.0333 0.9691 0.8649 0.9290

50
40 I 0.8137 0.9563 0.9125 0.9570 0.7454 0.9665 0.8130 0.9531 0.8149 0.9165

II 0.7850 0.9600 0.7832 0.9593 0.7540 0.9697 0.7843 0.9599 0.6828 0.9167

45 I 0.7861 0.9610 0.7972 0.9620 0.7409 0.9687 0.7572 0.9583 0.5714 0.9127
II 0.7715 0.9540 0.7716 0.9533 0.7373 0.9597 0.7483 0.9474 0.5620 0.9207

80
60 I 0.6444 0.9553 0.6664 0.9560 0.6028 0.9680 0.6177 0.9524 0.4456 0.9180

II 0.6072 0.9543 0.6552 0.9467 0.5687 0.9510 0.5985 0.9509 0.4104 0.9213

70 I 0.6071 0.9533 0.6263 0.9593 0.5707 0.9503 0.5891 0.9521 0.4114 0.9193
II 0.6119 0.9547 0.6244 0.9613 0.5569 0.9507 0.5953 0.9486 0.3963 0.9120

4

30
20 I 1.1804 0.9730 1.2876 0.9690 1.0701 0.9767 1.1675 0.9673 0.9649 0.9340

II 1.1162 0.9670 1.1590 0.9730 1.0710 0.9773 1.1049 0.9643 0.9150 0.9300

25 I 1.0862 0.9660 1.1597 0.9707 1.0303 0.9750 1.0706 0.9621 0.8776 0.9260
II 1.0459 0.9667 1.0828 0.9703 1.0023 0.9793 1.0172 0.9643 0.8611 0.9293

50
40 I 0.8169 0.9573 0.9245 0.9595 0.7183 0.9745 0.7907 0.9543 0.6126 0.9153

II 0.7839 0.9553 0.7913 0.9620 0.7482 0.9727 0.7708 0.9530 0.5899 0.9193

45 I 0.7806 0.9543 0.7859 0.9627 0.7277 0.9613 0.7739 0.9525 0.5706 0.9113
II 0.7724 0.9610 0.7674 0.9513 0.7157 0.9760 0.7442 0.9548 0.5634 0.9180

80
60 I 0.6437 0.9593 0.6638 0.9520 0.5828 0.9647 0.6175 0.9584 0.4463 0.9167

II 0.6125 0.9473 0.6484 0.9547 0.5991 0.9600 0.5976 0.9432 0.4108 0.9107

70 I 0.6094 0.9550 0.6255 0.9587 0.5227 0.9687 0.5813 0.9493 0.4106 0.9067
II 0.6124 0.9523 0.5959 0.9600 0.5347 0.9667 0.6093 0.9471 0.3967 0.9187
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