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Abstract: The point and interval estimations for the unknown parameters of an exponentiated
half-logistic distribution based on adaptive type II progressive censoring are obtained in this article.
At the beginning, the maximum likelihood estimators are derived. Afterward, the observed and
expected Fisher’s information matrix are obtained to construct the asymptotic confidence intervals.
Meanwhile, the percentile bootstrap method and the bootstrap-t method are put forward for the
establishment of confidence intervals. With respect to Bayesian estimation, the Lindley method
is used under three different loss functions. The importance sampling method is also applied to
calculate Bayesian estimates and construct corresponding highest posterior density (HPD) credible
intervals. Finally, numerous simulation studies are conducted on the basis of Markov Chain Monte
Carlo (MCMC) samples to contrast the performance of the estimations, and an authentic data set is
analyzed for exemplifying intention.

Keywords: adaptive type-II progressive censoring; exponentiated half-logistic distribution; maxi-
mum likelihood estimation; Bayesian estimation; importance sampling; Lindley method; bootstrap
method; Monte Carlo simulation

1. Introduction
1.1. Adaptive Type II Progressive Censoring Scheme

In this day and age, owing to the development of science and technology, industrial
products have become greatly reliable and as a result, getting sufficient failure time during
a life testing experiment for any statistical analysis purposes results in a sharp increase in
cost and time. Hence, the aim of reducing test time and saving the cost leads us into the
realm of censoring. With units removed before their failure time purposefully, the duration
and cost can be greatly reduced. Many statisticians have investigated various censoring
schemes. The two most commonly used censoring schemes are type I and type II censoring
schemes. In type I censoring, the life-testing experiment terminates at a predetermined
time while, under type II censoring, the life-testing test stops once the observed failure
units reach the predetermined number. For the sake of further reducing the experimental
cost and time, a concoction of these two schemes called hybrid censoring was put forward.
However, none of these schemes permits the survival units to be removed during the
experiment, which lacks flexibility. Accordingly, the concept of progressive censoring
was brought forward by [1] to increase the flexibility of removing units other than the
terminal experimental time. A concise presentation of the progressive type Il censoring is
as follows. Assume that there are totally # identical units in the test. In addition, the failure
time of the units is defined as X = (X(1ynn), X(2omn)r = » X(m—1:m:m)r X(mzmen) ), and the
censoring scheme denotes as R = (Ry, Ry, -+, Ryy—1, Rin), where n —m = }" | R;. When
the first unit fails at X;, we remove R; units from n — 1 units remained randomly. Then,
we remove R; units from the n —j — ZZ;} R; remaining units on the occurrence of the
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j-th failure in the same way. In addition, you can refer to [1,2] for further information in
progressive censoring.

However, one of the drawbacks of the scheme is that researchers can not control
the experiment time in practical terms. Recently, Ref. [3] proposed a new censoring
called adaptive type II progressive censoring scheme in the interest of saving the aggre-
gate time and improving the analysis efficiency. Based on progressive type Il censoring,
the expected total experimental time T is also pre-fixed before the test. If T > X,
the experiment is implemented according to the progressive type II censoring scheme
with R = (Ry, Ry, -+, Rpy—1, Ri) and terminates at time X,.,,...,)- However, once the
actual time runs over T, namely T < X;.,,..,), we do not stop the test at T but no longer
remove survival units after the prefixed time T. Suppose that the time runs over T right
after the occurrence of the J-th failure, namely | = max{j, T > X(j,.,)}. Therefore,
once the concrete test time runs over T, the censoring scheme after time T becomes
Rjz1 = Rjyppo =+ =Ry_1 =0, Ry =n—m-— 2{:1 R;. In particular, there are
two special situations with the change of T. If T = oo, the scheme eventually turns into
progressive type II censoring. In addition, if the expected time T equals to 0, the scheme
changes into the common type II censoring scheme. Figure 1 presents adaptive type II
progressive censoring.

Casel T > X(umn)

R4 R, R
| / / / o
X(l:m:n) X(Z:m:n) o X(m:m:n) T

Case II T < X(

m:m:n)

Rq Ry Ry R

A ~

P
[ & & & A 4 L 4 &

X(l:m:n) X(Z:m:n)' o X(]:m:n) T X(]+l:m:n) o X(m:m:n)
Figure 1. Adaptive type II progressive censoring.

Since the adaptive type II progressive censoring scheme was proposed, its good
property has attracted a great number of researchers to study this field. The adaptive
progressive type II censoring model was further studied in Ref. [4]. Under this censoring
model, Ref. [5] also studied the estimator of unknown parameters of Weibull distribution.
The classical estimations and the Bayesian estimations were both derived from the scheme.
The adaptive type II progressive censoring was collaborated with the exponential step-
stress accelerated life-testing model to derive confidence intervals in Ref. [6]. Furthermore,
this censoring scheme was also extended by taking account of competing risks under two-
Parameter Rayleigh Distribution and making classical and Bayesian inference by Ref. [7].

1.2. The Exponentiated Half-Logistic Distribution

The exponentiated half-logistic distribution (EHL) is extremely famous in numerous
applications particularly in parameter estimates. It has been applied in many areas, in-
cluding insurance, engineering, medicine, education, etc. This distribution is suitable for
modeling lifetime data and is extremely parallel to the two-parameter family of distribu-
tions, which is noted in Ref. [8]. For example, the Gamma distribution is an important
distribution in the two-parameter family of distributions. However, compared to the
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Gamma distribution, exponentiated half-logistic distribution has a whip hand due to the
closed form of its cumulative distribution.

In this article, we focus on the exponentiated half-logistic distribution. The probability
density function (PDF) is written as:

Al—e 7 )A—l 2e "7

Flaid,e) =2 T et

- x>0, A,0>0, €))
O 1+e ¢

and the cumulative distribution function (CDF) is described as

1—e"

= Y, x>0, Aoc>0, @)
e

F(x;A,0) = (

SR Q=

where A > 0 is the shape parameter and ¢ > 0 is the scale parameter. We denote this
distribution as EHI(A,0).
The corresponding reliability function is written as:

1—et7
RO =1-(17=)" t>0 3)
while the hazard rate function is:
20Ae™ 10 1_pto
ht) = Al t . 4
( ) (1 +e—tg)2[1 _ (%;E:Z)A} (1 _i_eftg) ’ >0 ( )

From Figure 2, when % > 1, the PDF of the exponentiated half-logistic distribution is
unimodal. In addition, while % < 1, it becomes monotonically decreasing. When A is fixed,
the smaller ¢ is, the more sharply the PDF decreases. As for the CDF of the distribution,
the growth of CDF becomes slow with ¢ increasing. Furthermore, smaller A results in a
higher rising rate.
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X
Figure 2. CDF (left) and PDF (right) of exponentiated half-logistic distribution.

When A = 1, the exponentiated half-logistic distribution degrades into the renowned
half logistic distribution. The half logistic distribution has extensive use particularly
employed in censored data in the area of survival analysis. This distribution has been
studied by some researchers. The order statistics of the half logistic distribution was
studied in Ref. [9]. On the basis of progressively type Il censored data, Ref. [10] derived the
classical and Bayes estimators of the scale parameter of this distribution. In accordance
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with the study results of [10], analytic expressions were studied further for the biases of
the maximum likelihood estimators of the distribution in [11]. The generalized ranked-set
sampling technique was employed for obtaining parameters estimation of the half-logistic
distribution in [12].

The exponentiated half-logistic distribution has recently attracted a lot of researchers.
On the basis of progressive Type-II censored data, Ref. [13] derived the maximum likelihood
estimator of the scale parameter in an exponentiated half logistic distribution and proposed
some approximate maximum likelihood estimators as well. In addition to the MLE, Ref. [14]
focused on the moment estimators and entropy estimator in this distribution. For the
purpose of promoting practicability of the distribution, Ref. [15] extended the exponentiated
half-logistic distribution by putting forward the concept of the exponentiated half-logistic
family, which is a fresh generator of continuous distributions of two excess parameters.
Considering that the life test sometimes stops at a pre-determined time, Ref. [16] developed
acceptance sampling for the percentiles of this distribution. Meanwhile, not only the
operating characteristic values of the sampling plans but also the producer’s risk were
shown. Based on the distribution, Ref. [17] proposed an attribute control chart for time
truncated life tests with different shape parameters. Thus far, research associated with this
distribution has a great deal of space to explore.

In this article, the problem of the point and interval estimation of the parameters for
exponentiated half logistic distribution under adaptive type Il progressive censored data
are considered. We organize the remainder paper as follows. In Section 2, the maximum
likelihood estimates are derived and computed. Meanwhile, the observed and expected
Fisher information matrix is acquired and then the asymptotic confidence intervals are
established. We employ the bootstrap resampling method to build two bootstrap confidence
intervals in Section 3. As for Section 4, Bayesian estimations under several loss functions
are carried out by utilizing the Lindley method. The importance sampling method is also
used to calculate the Bayesian estimates and construct the highest posterior density (HPD)
credible intervals. Simulations are conducted and the behaviors of estimators obtained
with the diverse methods are evaluated and compared in Section 5. An authentic data set is
studied to illustrate the effectiveness of estimation means in the above sections in Section 6.
In the end, the conclusions of point and interval estimations are drawn in Section 7.

2. Maximum Likelihood Estimation
2.1. Point Estimation

In this section, maximum likelihood estimation is used to estimate the unknown
parameters on the basis of the adaptive type Il progressive censored data. Assume that
the adaptive type Il progressive censored data come from an exponentiated half-logistic
distribution. Let x;.,.,) denote the i—th observation, thus we know x(1...) < X(2.:0) - - - <
X(m:m:n)- In addition, T represents the expected experimental time and | denotes the index
of the last failure before time T.

For the sake of simplicity, let x = (x1,x2, - -+, Xu) denote (X(1p:n), X2men)r "+ # X(mimin))-
The likelihood function turns to be

] m
L(A,olx) = Dy[1 — F ()] Eha K [T —FE)ISTTf(x), )
i=1 i=1
where
m min {],i—1}

D]:H(ﬂ+1—i— Z Rk).

i=1 k=1
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The corresponding likelihood function is derived as

,/\Em lnH—e L:7%Z?; x; m 1
L(Aolx) = Djo "A"e 1o d T _
i=11—e &
/ 1—6*% ) 1—e & ey R
<TI0 = )N = )M (6)
i=1 14e @ 14+e @
Therefore, the log-likelihood function can be obtained by
mooped I 1
I(A\olx) = D+minA— mlna—M A I Y
i1 l—e 7 31 1—e—<"
] J
+) Riln(1—F(x;)) + (n—m—Y_ R;)In(1 — F(xy,)), 7)
i=1 i=1

where D is a constant.
Finding the partial derivatives involving o and A separately and letting them equal
zero, the equations correspond to

ol 1 1, & 1y : ] I
el L +(1— X)géixi - E;(P(xi))Axl- - ;Riﬂixi —(n—m _lg)”mx’"] =0 ®)
o _ 1 +i1 F(x;) ZRGF - ZRGF( )| =0 ©)
aA _ /\ m L n 7’1 m — = Xm — Y,
_ i) _ ( i) — InF X
where (; = jFCE;)/ M= 1ipx(xi)’ Gi = 17F((xi))

The roots of the equations correspond to the MLEs. However, owing to the nonlinearity
of the equations, obviously we can not obtain the explicit expressions. Thus, the Newton—
Raphson method is employed to solve this problem. The Newton—-Raphson method is an
important method to find the roots of equations by employing the Taylor series method.
Thus, the Newton-Raphson method is employed to acquire the MLEs, written as & and A.

2.2. Asymptotic Confidence Interval

In this subsection, the asymptotic confidence intervals for ¢ and A are established by
employing Var(¢) and Var(A). We acquire the asymptotic confidence intervals for o and A
from the variance—covariance matrix, which is also known as the inverse Fisher informa-
tion matrix. The Fisher information matrix is a generalization of the Fisher information
amount. The Fisher information amount represents the average amount of information
about the state parameters in a certain sense that a sample of random variables can provide.
The Fisher information matrix (FIM) I(c, A) is

2l(Aa)  PI(A0)

_ 2 Ao
I, ) = = [ 2100 e ] : (10)

ToAdr . oAz

Here,
021 1 L, )
i=1
R I I

90 = o |~ l;gixi + ;Rixim(l +G)+(n—m— i;Ri)xmr]m(l +Gw)|, (12)
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021 1 1, & 1 1 1
32 = —ﬁ{er(l—X)i;xi[(l—Hi)Ci—Cz]—;;xiF(xi)A(zﬂLX?i)

R)) =11 + (Hm — )] xm }, (13)

I
i=1

J
+ Y =77+ (Hi = D)yi)R; + (n — m —
=

1=

where H; = —1+ %F(x;)7 + (=14 A)%¢;.

The FIM I(c, A) is called the expected Fisher matrix. It is determined by the distribu-
tion of the order statistics X(;). The PDF of X|;) based on the progressive type II censored
sample generally can be derived from [1].

1

0_
fx(i) (x(l)> = C?—l dg/lf(x(l))[l — F(xl-)]’k 1, (14)
k=1
where
i m
C?_lz ]’2, r?:m+l_l+2Rk/l:1/2//]1
k=1 k=i
i 1
=1, dy= ] o i<k<is)

0
h=1h#k Th — Tk

The adaptive progressive type II censoring is considered as an improvement of the
progressive type Il censoring. Actually, the PDF of X(;) of EHL(A,0) under adaptive
progressive type Il censoring turns out to be

1 i
Ci1 1_
fr (X)) = 3 Y. dp ()= Vixg)] (15)
i—1 k=j+1
where
i j
ca=]Ir ri=n-itl- ZRk/i =j+1j+2,---,m, djl‘+1,j+1 =1,
k=1 k=1
i 1 X(i F(x() — F(x;
dii= I ——i+1<k<i<m, o(xy)= 1f(F<l)) V(xg) = W
h=j+ihzk T~ Tk — Flx(j) = Fx(p)
After sorting out, the formula (15) can be written as
0 i dO A lfe—ngi) A—1 ze—x%’.) 1 176—X(T") A r%—l 10 .
i1 k=t Air (=) =g 1 ()] d=12---,]
te o (14e 7 )2 14e @
A 1*971%%) A-1 267X(Ti) _X<7i)
Frola) =1 e e 1)
i— i 1+e @ e 0 e~ U — . . .
o 1 Li—ji1 dii— x(,-1)+ S 5| Voi=j+1,j+2,---,m.
= loe” 0 l—e T
1—( B0) ? 1-(F =g »
1+e” 0 1+e 0O

Afterwards, we can calculate Fisher information matrix FIM I(c, A) directly based
on (16). In order to simplify complex calculation, the observed Fisher Information matrix
1(o, )A\) is employed skillfully to approximate the expected Fisher information matrix,
and then the variance—covariance matrix can be obtained. Then, the I(&, ;\) turns out to be

Pl(Ae)  3%(A0)
PN 2
10,4) = —[ e Bae) ] - 7)
oA oAZ (e A)=(6,A)

Here, & and A are the MLEs of o and A separately.
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Then, the asymptotic variance-covariance matrix is the inverse of the observed Fisher
Information matrix I(&,A), denoted as I (¢, A).

"6, A) = { Cov(d, A) } (18)

)
Cov(A,0)  Var(A)

Thus, the 100(1 — &) % asymptotic confidence intervals for o and A can be constructed as

(fr—d% X/ Var(0),0 +dg X \/Var(é*)>
(i—d% x \/Var(A), A +dy x \/Var(ﬁ)>

where d, denotes the upper a-th quantile of the standard normal distribution.

and

3. Bootstrap Confidence Intervals

It is noticed that the classical theory works well with a large sample size while it makes
little sense on the condition that the sample size is small. Thus, the bootstrap methods are
applied to provide more precise confidence intervals.

The two most commonly used bootstrap methods are proposed, see [18]. One is
the percentile bootstrap method (boot-p). It replaces the distribution of original sample
statistics with the distribution of Bootstrap sample statistics to establish confidence intervals.
The other is the bootstrap-t method (boot-t). In addition, the core idea of this method is
to convert the Bootstrap sample statistic into the corresponding t statistic. The detailed
procedure for simulation of the two bootstrap methods is listed, see Algorithms 1 and 2.

Algorithm 1: Constructing percentile bootstrap confidence intervals

step 1 Set the simulation number Njy,,; times ahead.

step 2 Compute the MLEs of o and A under the original censored sample
x = (x1,x, -+, Xy ), denoted as & and A (If we carry out a simulation study,
we should first generate an adaptive progressive type Il censored sample
x = (x1,x2,- -+, xm) from EHL(A,0) with T, n,m, R as the original sample.)

step 3 Generate a bootstrap sample x* using &, A and the same censoring pattern
(n,m, T, R). Then, calculate the bootstrap MLEs under sample x*, denote as &*
and A*.

step 4 Repeat step 3 Nj,,; times, then we can obtain a series of bootstrap MLEs

((%Ei),@'g), Tt ra—ﬂg*met)) and (}\Sk’{k)/;\gkz*)/ e ’}tii]buot))‘

step 5 Arrange ((‘TS) ,&,E?,- o, ,ﬁii\]b"‘”)) and ()A\il*),ftii),- . ,A&fb““f )) in ascending

order, respectively, and obtain (aiﬂ,aﬁ], e, &g"”‘”]) and (/A\Llj, /’A\E!, cee, M}XW).

3.1. Percentile Bootstrap Confidence Intervals
Then, the 100(1 — a)% Boot-p confidence intervals are given by (ai’iﬂ,ai’iﬂ) and
(}\Lﬁﬂ,ﬂ’iﬂ), where K; and K; are the integer parts of § X Ny and (1 — 5) X Nigot,

respectively.

3.2. Bootstrap-t Confidence Intervals
Then, the 100(1 — «)% Boot-t confidence intervals are given by

(fr _ g Kl Var(6),6 — gl Var(?r))
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" ( - 2]\/Var LA—S Kl]\/Var >

where K and K; are the integer parts of § X Np,or and (1 — 5) x Ny, respectively.

Algorithm 2: Constructing bootstrap-t confidence intervals

step 1 Set the simulation number Np,,; times ahead.
step 2 Compute the MLEs of ¢ and A under the original censored sample

x = (x1,x, -+ ,xp), denoted as & and A (If we carry out a simulation study,
we should first generate an adaptive progressive type Il censored sample
X = (x1,x2,- -+, X) from EHL(A,0) with T, n,m, R as the original sample.)
step 3 Generate a bootstrap sample x* using &,A and the same censoring pattern
(n,m, T, R). Then, calculate the bootstrap MLEs ¢* and A* and their variances
Var(6*) and Var(A*).
e 5 A A 3 *
step 4 Calculate the t-statistics S; = \/ﬁ for 6* and S, = W for A*.

step 5 Repeat steps 2-3 Nj,,; times to acquire a series of bootstrap t-statistics
(51 il*), 5~1i2*)r E 5~1(Nb””t)) and (Szi*)/ Szi*), : §2(Nh0°'))-

step 6 Arrange (slg*),sliﬁ, . Slg””‘”» and (52£*>,Szi*),- . ,S}i{:]b““f)) in
ascending order respectively and obtain (Slij, S1 *[ ], Sy Effb""”) and
(S0, 2. o).

4. Bayesian Estimation

In this section, we compute the Bayesian estimates of the quantities by using the Lind-
ley method and the importance sampling procedure. Unlike classical statistics, Bayesian
statistics treat quantities as random variables, which combines the prior information with
observed information.

The option of prior distribution is a pivotal problem. Generally speaking, the conjugate
prior distribution is the first choice due to its algebraic simplicity. However, it is very diffi-
cult to find such prior when both quantities o and A are unknown. The prior distribution is
reasonable to keep the same form as (6). Suppose that o ~ IG(v, ) and A ~ Ga(a, B) and
that these two priors are independent. The PDFs of their prior distributions correspond to

o7 1 -9
H(J):W(T v e o, ’)/>0, 6>0 (19)
T(A) = L 1B w50, B0 (20)
- r(ﬂ() ’ 4 N

The corresponding joint distribution is

— oTp" —y=1ya—1,—(2+BA)
(o, A) = F(fy)l"(oc)a A e , (21)

Given the sample x, the posterior distribution 77(c, A|x) can be written as

L(x|o, A)mt(o, M)

O AL = Jmw o A (e, A)dodA

(22)

4.1. Symmetric and Asymmetric Loss Functions

The loss function is employed to appraise the intensity of inconsistency between
the estimation of the parameter and the true value. The squared error loss function is a
symmetric loss function, which is applied in many areas. However, on the condition that
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overestimation causes greater loss compared with underestimation or vice versa, using a
symmetric loss function is not suitable. Instead, the asymmetric loss function is employed
to fix the problem. Therefore, we consider the Bayesian estimations under one symmetric
loss function, namely the squared error loss function (SELF) as well as two asymmetric loss
functions, namely the Linex Loss Function (LLF) and the General Entropy Loss Function
(GELF) in this subsection.

4.1.1. Squared Error Loss Function (SELF)

The squared error loss function is a symmetric loss function, which puts the overesti-
mate and underestimate on the same level. It is the sum of squared distances between the
target variable and the predicted value. The function corresponds to

Lsg(v,0) = (0 —v)?, (23)

where 0 is the estimation of v.
The Bayesian estimation of v under SELF is given by

0 = Ey(v]x). (24)
Then, for the unknown parameters ¢ and A, the Bayesian estimates under SELF can

be given directly as
Osp = / / ort(o, A|x)dodA, (25)
JO JO

RSE:/ / A, A|x)dodA. (26)
0 0

4.1.2. Linex Loss Function (LLF)

The Linex function is a well-known asymmetric loss function. It is defined as

Lir(v,0) = eP0=0)

—p(0—v)—1. (27)
The size of p denotes the level of asymmetry and its sign represents the direction of
asymmetry. For p < 0, LLF alters exponentially in the negative direction and linearly in
the positive direction, thus a negative bias has a more serious impact—while, for p > 0,
the positive error will be punished heavily. The larger the dimension of p is, the larger the
punishment intensity is. When |p| approaches 0, LLF is almost symmetric.
The Bayesian estimation of v under LLF is written as

by = —; In Ey (e 7" |2). (28)

Then, for unknown parameters ¢ and A, the Bayesian estimates under LLF are

1 (o) [e0]
o = ——1 / / (o, Alx)dod)], 29
OLL pn[o ) e P70, Alx)dodA] (29)
AL = —;ln[/ / e Prr(o, A|x)dodA). (30)
o Jo

4.1.3. General Entropy Loss Function (GELF)

The General Entropy loss function (GELF) is another noted asymmetric loss function,
which is

<>

Lop(v,0) = ()7 —gIn ) —1. (1)
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For g > 0, the overestimation has a more serious impact compared with the underestima-
tion, and vice versa. The Bayesian estimation of v under GELF is derived:

oce = [Eo(v™7|x)] 7. (32)

Notably, when g = —1, the Bayesian estimation under GELF has the same value as
that under SELF. The Bayesian estimates of o and A under GELF correspond to

1

0ce = / / c (o, Alx)dodA] 9, (33)

Ack = [/Ooo /Ooo A172(0, Alx)dodA] 1. (34)

We can know that the Bayesian estimates of o and A are in the modality of a ratio
of two complicated integrals and the specific and explicit forms cannot be represented
without trouble. Thus, the Lindley method is employed to solve this problem.

4.2. Lindley Approximation Method

In this subsection, in order to compute the Bayesian estimates, we apply the Lindley
approximation method. Let ¢ (o, A) denote any function about ¢ and A, I denote the log-
likelihood function and p(c, A) = In (o, A). According to the [19], the Bayesian estimates
can be expressed by the posterior expectation of ¢ (o, A)

E[p(o,A)|x] = ¢(0,A) +p1A12 + (A +103Bo1 + I30B12 4 112Co1 + 11Ci2) + p2A21, (35)

where
2 2 oitil ) ..
A=Y Loiby 1= g i=3-j and i,j=0123
ap ap 02 oo -1
Pi= 36,7~ 36, = 36,06, by = =[] Ay = obii + gibji,

Bij = (9ibii + 9jbij)bii, Cij = 3@ibiibij + ;(biibjj + 2b7).

Here, 6 = (01,602) = (0, A) and b;j denotes the (i, j)-th component of the covariance
matrix. Then, the Bayesian estimates under three loss functions SELF, LLF, and GELF
are derived.

4.2.1. Squared Error Loss Function (SELF)
For o, let (0, A) = 0; therefore,

po,A)=0, ¢g1=1 ¢u=¢n=¢=¢n=¢n=0 (36)
Then, the Bayesian estimate of o under SELF is

~

L1
Ose=0+5 [b31130 4 3 biybialoy + biiboolip + 263,11y + bayboolos] + p1b11 + p2b1n. (37)
Similarly, for parameter A, it is clear that ¢ (o, A) = A, hence

P, A)=A, ¢2=1, ¢n=0¢n=¢1=¢1=¢n=0. (38)

Then, the Bayesian estimate of A under SELF can be written as

>
%)

~ 1
+t3 [b11b1alsg + bi1boolyy 4 262,115 + 3by1banlis + b3olos] + p1bo1 + p2ban. (39)
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4.2.2. Linex Loss Function (LLF)
For o, we take ¢(0,A) = e P7, hence

g1 =—pe P, gu=pe", 1= =9n=9¢n=0
The Bayesian estimate of o under LLF is derived as
oL = —}19 Infe 77 + %@11511 + %q’l (621150 + 3b11b1211
+b11b2l12 + 205,115 + by1baolos] + @1(p1b11 + p2b12) }-
Similarly, for the parameter A, let ¢(0, A) = e PA hence
p2=—pe P, gn=pPe P, 91 =pn =9 =9¢n=0.
The Bayesian estimate of A under LLF can be written as
Anp = —;1? In{e Pt + %9022522 + %4?2 [b3,103 + 3bxbalia

+b11balay + 203,11 + biabi1lso) + @a(p1ba + p2ba)}-

4.2.3. General Entropy Loss Function (GELF)

For parameter o, let ¢(0, A) = 01, hence

pr=—q0 " eu=4q(@+1)r 7% ¢r=¢n=9¢n=¢n=0

The Bayesian estimate of ¢ under GELF can be written as

N . 1 1
ocg = {077+ §¢11b11 + 5401 [5%1130 + 3b11b12l01 + b11biolh
1
+2b3, 115 + barbaolos) + @a(p1b11 + p2b12) } 1.

Similarly, for parameter A, , itis clear that ¢(c,A) = A7, hence

P2=—gA " o =q(@+ 1A T2, 91 =n = ¢u = ¢1p =0.

The Bayesian estimate of A under GELF can be written as

” A 1 1
oge = {A71+ Eqﬂzzbzz + Eqﬂz[bgzlm + 3b2oby1l12 + b11bnloy

1
+2b25121 + biabi1ls0] + @2(01021 + p2b22) } .

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

Though the Lindley approximation is effective to obtain point estimations by estimat-
ing the ratio of integrals, it can not provide credible intervals of the unknown parameters.
Therefore, the importance sampling method is adopted to gain not only point estimation

but also credible intervals.

4.3. Importance Sampling Procedure

The importance sampling procedure is an extension to the Monte Carlo method, which
can greatly reduce the number of sample points drawn in the simulation, and is widely
used in the reliability analysis of various models. From (6) and (21), the joint posterior

distribution is derived by
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Y RX _)\Zm 1n1+L xTI:_l l xz_*—ﬁ)\
7T(U,}\|£) o Lafmf'yfl)\mwcfl e 1
I'(y)I(a)
m Ji _ i o m
e R A e D 49)
i=11—e o i=1 14+e 7 14+e ¢
o hy(0)ha(Alo)hs(o, A),
where Gy -
+ i X ST
hi(o) = =170 g (bl e 3= 49
1(e) T(y + m) (49)
B+ X" 1nﬁ]a+m L
(A i=1 1—e7%i /\vc—&-m 1 (ﬁJr):m ln1 e,ﬁ) -
= +e O
2( |0') r(a+m) e , ( )
m ] - _%i B _x%
hz(o,A) = 1 - H 1 — H[l_ (1 e . A]R,- _(%)A]nfmlel:l&‘ (51)
[B+ Y0, In e Z jatm =11 —e” @ i1 1+e @ 1+e ¢
n 1—e~ @

It is clear that /7 (0) is the PDF of an inverse Gamma distribution while /() is the
PDF of a Gamma distribution.

Therefore, the Bayesian estimation of ¢(c, A) is acquired by the following steps:

1. Generate o from IG,(y +m, 0 + Y"1 x;).
2. On the basis of step 1, generate A from Ga, |, (m +a, 1724 ln Lie @ + B).
3.  Repeat step 1 and step 2 M times and produce a series of samples.
4. The Bayesian estimate of ¢(c, A) is calculated by
1, (i, Ai)hs (o3, M)

P(o,A) = (52)

Y M ha(oy, M)

Therefore, the Bayesian estimate of the unknown parameter ¢ and A is derived by

Y M oihs (03, )

0= ,
M ha(oi, Ay)
1= Zf\i1 )\ihS(Uir /\i)
Y ha(oy, M)
Let (o3 A)
o, A
h3i(0, Aj) = =gt (53)
Z[:] h3(0i/ )\l)
For the sake of simplicity, h3;(0;, A;) is denoted as h3;. Then, we sort {oy,05 ..., 0Mm}

in ascending order as {c(),

{(%)rham))f (‘T(zwhs(z))

based on the estimate 0 = o

0(2) -+, 0(m) }- In addition, we combine /3; and o; together as
((7( M) h3m )} The HPD credible interval is established

)7 where g, is an integer that satisfies

gp gp+l
Yo hay Sp< ) b

i=1 i=1

(54)

Hence, the 100%(1 — ) credible interval can be represented as (07, 07+1-a), & = h3(1), h3(1) +

h3y, ) Zﬁ 1 h3(i)- Therefore, the HPD credible for ¢ is obtained by (07, 07+11-4). Note
that 07« 11 4 — 07 < 0741 — O forall £.
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5. Simulation

Plenty of simulation experiments are carried out to appraise the performance of
our estimations by Monte Carlo simulations. Here, the R software is employed for all
the simulations. The point estimation is evaluated by the mean square error (MSE) and
estimation value (VALUE), while the interval estimation is assessed based on the coverage
rate (CR) and interval mean length (ML). For point estimation, smaller mean square error
and closer estimation value suggest better performance of estimation. In addition, for
interval estimation, the higher the coverage rate is and the narrower the interval mean
length is, the better the estimation is.

First of all, adaptive type II progressive censored data from an exponentiated half-
logistic distribution should be generated. The algorithm for generating adaptive Type I
progressive censored data from a general distribution can be obtained in [3]. The algorithm
to generate the censored data is listed in Algorithm 3.

Algorithm 3: Generating adaptive type Il progressive censored data from EHL(A, 7).

1.  Generate a Type II progressive censored sample from an exponentiated half-logistic

distribution EHL(A, ) with initial values of (R, Ry, -+, Ry) and T, n, m:

(a) generate independent random variables Uy, Uy, - - - , Uy, from the uniform
distribution U(0,1).

®)  LetVi=u T i=12,.,m.

©  LetWi=1—VyVp1- Vi gpr,i=12,--,m.

(d) For certain ¢ and A, let X; = F~1(W;). Then, X = (X1, Xy, - -+, Xy is the Type I
progressive censored sample from EHL(A, 7).

Confirm the value of ], and abandon the sample Xy 5, -+, Xp.

Generate the first m — | — 1 order statistics from a truncated distribution % with

sample size n — (Zi/:l Ri+J+1)as Xpy2, Xp43,- -+, Xn-

In order to carry out simulations, we set ¢ = 1.5 and A = 1. For comparison pur-
poses, we consider T = 2,4 and (1, m) = (30, 20), (30,25), (50,40), (50,45), (80,60), (80,70).
For all the combinations of sample size and time T, two different censoring schemes (CS)
are chosen:

SchemeI (Sch): Ry =n—m, R, =0,k=2,3,--- ,m.
Scheme Il (SchIl): Ry =Ry =---=Ry;_n =1, Ry =0,k >n—m.

In addition, the specific diverse censoring schemes conceived for the simulation are
listed in Table 1.

For simplicity, we abbreviate the censoring schemes. For example, (1,1,1,0, 0, 0,
0) is represented as (1*3, 0*4). In each case, the simulation is repeated 3000 times. Then,
the associated MSEs and VALUEs with the point estimation and the related coverage
rates and mean lengths with the interval estimation can be acquired through Monte Carlo
simulations using R software.
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Table 1. Different censoring schemes.

T n m CS T n m CS
(10, 0*19) (10, 0*19)
20 20
(1*10, 0*10) (1*10, 0*10)
30 30
(5, 0*24) (5, 0*24)
25 25
(1%5, 0*20) (1*5, 0*20)
(10, 0*39) (10, 0%39)
) 40 4 40
(1*10, 0*30) (1*10, 0*30)
50 50
(5, 0*44) (5, 0*44)
45 45
(1%5, 0*40) (175, 0*40)
20, 0*59 20, 0*59
60 ( ) 60 ( )
(1*20, 0%40) (1*20, 0*40)
80 80
(10, 0*69) (10, 0%69)
70 70
(1*10, 0*60) (1*10, 0*60)

For maximum likelihood estimation, the L-BFGS-B method is used and the simulation
results are put into Table Al. In Bayesian estimation, we employ not only non-informative
priors (non-infor) but also informative priors (infor). For the non-informative priors,
weseta = B = v = 6 = 0.0001. Then, for the informative priors, we should first
determine the hyper-parameters for Bayesian estimation. Generally speaking, the actual
value of the parameter is usually considered as the expectation of the prior distribution.
However, due to the complexity and interactive influence of the two prior distributions,
the optimal value can not be found directly. Thus, we adopt a genetic algorithm and
simulated annealing algorithm to determine the optimal hyper-parameters and the results
are: v =4.5,6 =7.5,a =45, = 4.5. To get Bayesian point estimation, the Lindley method
and the importance sampling method are employed. Three loss functions are adopted
separately for comparison purposes. The parameter p of LLF is set to 0.5 and 1 and the
parameter q of GELF is set to —0.5 and 0.5.

The informative Bayes method uses minimization of loss functions, and such mini-
mizations can only be performed if the true parameter values are known. Hence, informa-
tive Bayes can only be seen as a reference, or an oracle method.

The results are presented in Tables A2—A9. In addition, the mean length and coverage
rate of asymptotic confidence intervals, boot-t intervals, boot-p intervals, and HPD intervals
at 95% confidence/credible level are also shown in Tables A10 and Al1.

Due to the excessive amount of tables, it is not easy for readers to find rules of the
estimation. Therefore, some figures which present the most representative simulation
results are made to show the rules more intuitively. Figures 3 and 4 present the MSEs
of the maximum likelihood estimates of the two parameters under censoring scheme I
and censoring scheme Il when T = 2. Figures 5 and 6 compare the MSEs of maximum
likelihood estimates with the Bayesian estimates with non-informative and informative
priors obtained by importance sampling under censoring scheme I and T = 2.
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Figure 3. The MSEs of the MLEs of parameter o under two censoring schemes.

[aV]
s ] —e— Censoring Scheme |
—e— Censoring Scheme I
o
o
[0}
C>. —
o
w
»
=
©
o 4
=)
<
[ -
=)
(s}
Q —
e T T T T T T
(30,20) (30,25) (50,40) (50,45) (80,60) (80,70)
(n,m)

Figure 4. The MSEs of the MLEs of parameter A under two censoring schemes.
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Figure 5. The MSEs of MLEs and Bayesian estimates with non-informative and informative priors of
parameter o.
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Figure 6. The MSEs of MLEs and Bayesian estimates with non-informative and informative priors of

parameter o.
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From Table A1, we can draw that

All the estimation values are generally inclined to approach the true value, and MSEs
tend to decrease as the sample size 1 or observed numbers m or the value of m/n
increases. The rules of the MSEs can be easily obtained from Figures 3 and 4.

The MLEs of A perform better than the MLEs of ¢ according to the MSE. However,
the estimation values of ¢ are closer to the true value compared with those of A.
Diverse censoring schemes show a regular mode in terms of MSE. From the Figures 3 and 4,
we can know that, when ¢ is considered, Sch I performs better than Sch II in all cases,
yet when A is considered, Sch II is more effective than Sch I except the case of n = 30.
There is no observed specific pattern with the change of T. It is apprehensible because
the observed data may remain unaltered when T changes.

From Tables A2—-A9, we can find that

Generally, the Bayesian estimates under three loss functions with informative priors
are more accurate contrasted with MLEs in terms of MSE in all cases. This rule
can be intuitively summarized from Figures 5 and 6. This is because the Bayesian
method not only considers the data but also takes the prior information of unknown
parameters into account. In addition, the importance sampling procedure outperforms
the Lindley method.

From Figures 5 and 6, it is clear that the performance of the Bayesian estimates with
non-informative priors is almost similar to MLEs under all circumstances. This is
because we have no information with respect to the unknown parameters. In other
words, it only takes the data into account. Thus, it is reasonable that the results are
analogous to MLEs.

The Bayesian estimates under GELF are superior compared with those under SELF
and LLF. For LLF, Bayesian estimates under p = 1 are better than those under p = 0.5
for the parameter A, while choosing p = 0.5 is better than p = 1 for the estimate
of 0. For GELF, take the fact that both 4 = —0.5 and g = 0.5 are satisfactory and
perform well. On the whole, the Bayesian estimates under GELF using the importance
sampling procedure are the most effective as they possess the minimal MSEs and the
closest estimation values.

When ¢ is considered, Sch I performs better than Sch II except when n = 50, yet when
A is taken into account, Sch II is superior compared with Sch I in most cases.

From Tables A10 and A11, we can draw these conclusions
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(1) The mean lengths of all the intervals become narrower as n and m increase, and this
pattern holds for both ¢ and A. In addition, the coverage rate of intervals of ¢ is higher
while the coverage rate of intervals of A is stable with the increase of m and n.

(2) The HPD credible intervals and boot-t intervals perform better contrasted by asymp-
totic confidence intervals due to narrower mean length and higher coverage rate. In
addition, the HPD credible intervals possess the narrowest mean length while the
boot-t intervals have the highest coverage rate.

(3) Theresults of the two parameters’ intervals have no obvious connection with different
censoring schemes.

6. Real Data Analysis

An authentic dataset is analyzed for expository intention by employing the methods
mentioned above in this section. The dataset was initially from [20] and further employed
by [21,22]. The complete data set describes log times to the breakdown of an insulating
fluid testing experiment and is presented in Table 2.

Table 2. Real data set.

0.270027 1.02245 1.15057 1.42311 1.54116 1.57898 1.8718 1.9947
2.08069 2.11263 2.48989 3.45789 3.48187 3.52371 3.60305 4.28895

At the beginning, we should consider the problem whether the distribution EHL(A, o)
fits the data set well. The fitting effect of exponentiated half-logistic distribution and Half

_x-A
Logistic distribution with the CDF F(x) = 173 “+ is compared. The criteria employed
e

x—A
“+e T
for examining the goodness of fit include the negative log-likelihood function (—1In L),
Kolmogorov-Smirnov (K-S) statistics with its p-value, Bayesian Information Criterion
(BIC), and Akaike Information Criterion (AIC). The definitions are:

AIC=2x (d—1InL),

BIC=dxInn—-2xInL,

where d is the number of parameters, L is the maximized value of the likelihood function,
and 7 denotes the total number of observed values.

The results of the K-S, p-value, AIC, BIC, and — In L of the two distributions are listed
in Table 3. Obviously, exponentiated half-logistic distribution fits the model better since it
has lower K-S, AIC, BIC, — In L statistics, and higher p-value. Then, we can analyze this
data on the basis of our model.

Table 3. The fitting results of the two distributions.

A o —InL AIC BIC K-S Statistic p-Value
HL 1.0023 0.6536 27.0313 56.6609 56.2061 0.2659 0.3749
EHL 2.4309 0.9639 24.4488 52.8976 54.4428 0.1836 0.5906

Wesetn = 16,m = 12and T = %, 2. The two different censoring schemes are
(4,0%11) and (1 % 4,0 % 8). Table 4 presents the specific adaptive type II censoring data
under different schemes based on the data set.
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Table 4. Adaptive progressive type II censoring data under different schemes.

Scheme Censored Data

0.270027, 1.57898, 1.8718, 1.9947, 2.08089, 2.11263

* —
(4, 0°11), T = 1.5 2.48989, 3.45789, 3.481865, 3.52371, 3.60305, 4.28895

0.270027, 1.57898, 1.8718, 1.9947, 2.08089, 2.11263

* —
(4, 0711), T =2 2.48989, 3.45789, 3.481865, 3.52371, 3.60305, 4.28895

0.270027, 1.15057, 1.54116, 1.57898, 1.8718, 1.9947

*, * —
(1%4,0°8), T =15 2.08089, 2.11263, 2.48989, 3.45789, 3.481865, 3.52371

0.270027, 1.15057, 1.54116, 1.8718, 2.08089, 2.11263

*, * —
(1%4,0°8), T =2 2.48989, 3.45789, 3.48187, 3.52371, 3.60305, 4.28895

The point estimations for ¢ and A are presented in Tables 5 and 6. For Bayesian
estimation, since we have no informative prior, a non-informative prior is applied, namely
x = B =9 =6 = 0.0001. Three loss functions are considered, and we still use the
parameters in the previous simulation. At the same time, 95% ACls, boot-p, boot-t, and
HPD intervals are established, while Tables 7 and 8 display the corresponding results. Let
Lower denote the lower bound and Upper denote the upper bound.

Table 5. The MLEs and Bayesian estimates of o under SELF, LLF, and GELF by the Lindley approxi-
mation and the importance sampling.

T R MLE SELF Method

1.1285 1.1104 1.0942 1.1134 1.0875 Lindley

(4, 0%11) 1.1958 1.2577 1.3180 1.0408 1.0662 1.2887  Importance sampling

1.5
1.0794 1.0626 1.0483 1.0654 1.0429 Lindley
* *
(14, 0%11)  1.2014 1.2346 11696 1.1458 1.1257 1.1306  Importance sampling
4, 0%11) 1.1958 1.0340 1.0197 1.0061 1.0206 0.9959  Lindley
5 ’ ) 1.3057 1.0047 1.2387 1.2787  0.9836 Importance sampling

09577 09451 0.9333 0.9451 0.9223 Lindley

* *
(1%4, 0°11) 1.2326 1.3420 1.2877 1.2147 1.1860 1.3209  Importance sampling

Table 6. The MLEs and Bayesian estimates of A under SELF, LLE, and GELF by the Lindley approxi-
mation and the importance sampling.

LLF GELF
T R MLE SELF 1 1 Method
r=3 p= 1 p=—3 pP=3
2.3591 23883 23182 22932 23234 Lindley
24817 22303 23475 2.5060 2.3174 Importance sampling

(4,0%11) 2.4364

15
2.5351 23908 2.1896 25062  2.3240 Lindley
*, *
(174, 011) - 2.3748 2.5865 23003 24913 24253 24157 Importance sampling
2.5786 23282 2.1437 24798 22910 Lindley
%
) (4, 011) 24364 2.1038 21082 1.8596 2.0381  2.0456 Importance sampling

27732 25294 23202 2.7069 2.5050 Lindley

* *
(14, 0°11)  2.3820 25353 21758 25118 2.4388 24546 Importance sampling
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Table 7. The four intervals for ¢ at the 95% confidence/credible level.
T R ACI boot-p boot-t HPD
Lower Upper Lower Upper Lower Upper Lower Upper
15 (4, 0*11) 0.6568  1.7348 0.6645 17800  0.8590  1.6932  0.7425  1.6066

(1*4,0*11)  0.6243 1.7785  0.6399  2.0750  0.7176 1.7313  0.8460 1.7601

(4,0%11) 0.6568 1.7348  0.6001 1.7640  0.6955 1.7824  0.6969 1.6236
(1*4,0*11)  0.6243 1.7785  0.6340 19732 0.8295 1.9510  0.9078 1.4993

Table 8. The four intervals for A at the 95% confidence/credible level.

T R ACI boot-p boot-t HPD
Lower Upper Lower Upper Lower Upper Lower Upper
15 (4, 0*11) 0.5197 43530 1.3134 3.8975 0.8036  3.2435 1.0744  3.3039

(1*4,0*11) 0.5143  4.0354 1.2444 43882  1.0538  3.8101 0.7514  3.2800

(4,0%11) 0.5197 43530 13085  4.0165 15664  4.3491 0.8151 3.4981
(1*4,0*11) 0.5143  4.0354 1.3628 3.8839 04289 3.2993  1.0254 3.7863

From Tables 5-8, the following conclusions are drawn:

(1) The estimates of parameter ¢ using the Lindley method generally tend to be larger
than those gained by the importance sampling procedure.

(2) The estimates under the first censoring scheme are closer to the MLEs under the full
sample, and the estimations using the Lindley method are more effective than those
obtained by the importance sampling.

(3) The results are relatively close between T = 1.5 and T = 2 when using the first cen-
soring scheme because the observed data remain unaltered when the T is increasing.

(4) The HPD credible intervals have the narrowest mean length among all the intervals
while the AClIs possess the longest mean length.

(5) Theresults of the two parameters’ intervals have no obvious connection with different
censoring schemes.

7. Conclusions

In this manuscript, classical and Bayesian inference for exponentiated half-logistic
distribution under adaptive Type Il progressive censoring is considered. The maximum
likelihood estimates are derived through the Newton-Raphson algorithm. Bayesian esti-
mation under three loss functions is also considered and the estimates are derived through
importance sampling and the Lindley method. Meanwhile, we establish the confidence
and credible intervals of ¢ and A and contrast them with each other. Asymptotic con-
fidence intervals are constructed based on observed and expected Fisher information
matrices. In order to tackle the problem of small sample size, boot-p and boot-t intervals
are computed.

In the simulation section, estimation values and mean squared values are calculated
to test the performance of the point estimation while mean lengths and coverage rates are
considered for the interval estimation. According to the simulation results, it is clear that the
Bayesian estimation which possesses suitable informative priors performs better than MLEs
under all circumstances. In more detail, the Bayesian estimations under GELF perform best
among all the estimations and the importance sampling procedure makes more sense than
Lindley approximation. In addition, when it comes to interval estimation, boot-t and boot-p
intervals perform better in the case of a small sample size than asymptotic confidence
intervals. In addition, HPD credible intervals generally possess the shortest mean length
while boot-t intervals have the highest coverage rate compared with other intervals.

Exponentiated half-logistic distribution under adaptive Type II progressive censoring
is significant and practical due to the flexibility of the censoring scheme and the superior
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features of distribution. Furthermore, the competing risks and accelerated life test can be
explored in the research field. In brief, carrying out further research on this model has
great potential for survival and reliability analysis.
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Appendix A. The Simulation Results of MLEs

Table A1l. The simulation results of MLEs for ¢ and A.

o A
T n m Sch
VALUE MSE VALUE MSE
20 I 1.4694 0.1207 1.1028 0.1075
30 I 1.4661 0.1457 1.1075 0.1138
25 I 1.4667 0.0937 1.1024 0.1010
II 1.4754 0.1005 1.1006 0.1025
40 I 1.4787 0.0622 1.0607 0.0533
2 50 II 1.4792 0.0649 1.0565 0.0496
45 I 1.4832 0.0558 1.0580 0.0477
I 1.4816 0.0559 1.0553 0.0458
60 I 1.4898 0.0404 1.0403 0.0297
30 I 1.4858 0.0425 1.0341 0.0272
70 I 1.4858 0.0351 1.0348 0.0271
II 1.4892 0.0364 1.0337 0.0258
20 I 1.4651 0.1260 1.1133 0.1140
30 II 1.4573 0.1316 1.1152 0.1170
25 I 1.4655 0.0990 1.1063 0.1039
II 1.4661 0.1025 1.1049 0.1057
40 I 1.4772 0.0583 1.0569 0.0503
4 50 I 1.4857 0.0655 1.0500 0.0454
45 I 1.4823 0.0572 1.0518 0.0474
I 1.4805 0.0580 1.0542 0.0456
60 I 1.4904 0.0419 1.0342 0.0305
30 I 1.4912 0.0445 1.0303 0.0288
70 I 1.4843 0.0352 1.0342 0.0266

II 1.4884 0.0369 1.0336 0.0264
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Appendix B. The Simulation Results of Bayesian Estimates with Non-Informative Priors

Table A2. The results of Bayesian estimates with non-informative priors for ¢ using the Lindley method.

R OLL OGE
OSE
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.5300 0.1187 1.5303 0.1183 1.5301 0.1201 1.5309 0.1156 1.5296 0.1117
30 1.5328 0.1415 1.5347 0.1376 1.5335 0.1397 1.5333 0.1386 1.5329 0.1397
o5 1.5289 0.0926 1.5336 0.0891 1.5323 0.0916 1.5327 0.0917 1.5330 0.0864
1.5346 0.1003 1.5247 0.1010 1.5244 0.9938 1.5242 0.0971 1.5242 0.0965
20 1.5209 0.0596 1.5221 0.0612 1.5209 0.0603 1.5210 0.0622 1.5201 0.0572
2 0 1.5206 0.0636 1.5210 0.0659 1.5200 0.0632 1.5199 0.0657 1.5198 0.0603
45 1.5202 0.0541 1.5175 0.0546 1.5167 0.0559 1.5164 0.0504 1.5162 0.0525
1.5195 0.0563 1.5194 0.0548 1.5181 0.0560 1.5174 0.0535 1.5183 0.0504
60 1.5092 0.0402 1.5105 0.0401 1.5098 0.0397 1.5101 0.0353 1.5092 0.0285
80 1.5136 0.0438 1.5143 0.0431 1.5138 0.0419 1.5137 0.0415 1.5131 0.0404
20 15126 0.0341 1.5148 0.0339 1.5141 0.0348 1.5134 0.0312 1.5132 0.0329
1.5104 0.0358 1.5116 0.0371 1.5106 0.0360 1.5105 0.0336 1.5104 0.0375
20 1.5324 0.1200 1.5359 0.1270 1.5339 0.1237 1.5341 0.1173 1.5343 0.1214
30 1.5367 0.1297 1.5433 0.1281 1.5427 0.1268 1.5421 0.1296 1.5415 0.1246
25 1.5327 0.0970 1.5354 0.0980 1.5340 0.0960 1.5338 1.0002 1.5343 0.0964
1.5292 0.0983 1.5347 0.1031 1.5339 0.1059 1.5331 0.1020 1.5331 0.1025
40 1.5196 0.0579 1.5235 0.0579 1.5218 0.0521 1.5221 0.0561 1.5220 0.0524
4 50 1.5183 0.0633 1.5149 0.0652 1.5136 0.0565 1.5133 0.0628 1.5136 0.0586
45 1.5168 0.0580 1.5182 0.0552 1.5168 0.0532 1.5170 0.0521 1.5174 0.0542
1.5195 0.0584 1.5197 0.0598 1.5188 0.0570 1.5192 0.0579 1.5186 0.0559
60 1.5109 0.0403 1.5097 0.0402 1.5091 0.0405 1.5086 0.0407 1.5085 0.0358
0 1.5088 0.0414 1.5098 0.0430 1.5088 0.0435 1.5083 0.0412 1.5080 0.0582
70 1.5121 0.0326 1.5160 0.0372 1.5150 0.0331 1.5151 0.0299 1.5156 0.0331
1.5105 0.0334 1.5124 0.0353 1.5108 0.0362 1.5113 0.0361 1.5105 0.0371
Table A3. The results of Bayesian estimates with non-informative priors for A using the Lindley method.
. ;\LL ;\GE
OSE
T n m p=1 p=1 g=—1 g=1
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.1021 0.1065 1.1024 0.1075 1.1019 0.1062 1.1017 0.1059 1.1018 0.1062
30 1.1064 0.1129 1.1071 0.1147 1.1063 0.1127 1.1071 0.1134 1.1055 0.1125
25 1.1024 0.1012 1.1021 0.1003 1.1019 0.1003 1.1006 0.1000 1.1019 0.0991
1.0999 0.1014 1.0996 0.1022 1.0990 0.1022 1.1005 0.1016 1.0995 0.1016
40 1.0594 0.0524 1.0604 0.0539 1.0600 0.0523 1.0604 0.0514 1.0590 0.0524
2 50 1.0563 0.0491 1.0561 0.0489 1.0558 0.0481 1.0547 0.0487 1.0561 0.0487
45 1.0578 0.0474 1.0570 0.0461 1.0567 0.0463 1.0572 0.0479 1.0565 0.0462
1.0543 0.0454 1.0552 0.0439 1.0551 0.0449 1.0534 0.0454 1.0551 0.0444
60 1.0393 0.0282 1.0393 0.0285 1.0392 0.0313 1.0387 0.0282 1.0400 0.0290
80 1.0328 0.0267 1.0325 0.0260 1.0330 0.0275 1.0325 0.0255 1.0339 0.0256
70 1.0342 0.0266 1.0338 0.0264 1.0347 0.0261 1.0330 0.0259 1.0341 0.0269
1.0327 0.0250 1.0324 0.0250 1.0335 0.0268 1.0336 0.0256 1.0317 0.0257
20 1.1121 0.1138 1.1123 0.1120 1.1127 0.1122 1.1124 0.1135 1.1119 0.1128
0 1.1145 0.1176 1.1140 0.1158 1.1148 0.1164 1.1144 0.1157 1.1140 0.1155
25 1.1053 0.1032 1.1057 0.1028 1.1060 0.1024 1.1055 0.1031 1.1054 0.1023
1.1034 0.1059 1.1048 0.1038 1.1034 0.1054 1.1047 0.1042 1.1040 0.1049
40 1.0566 0.0501 1.0560 0.0490 1.0558 0.0493 1.0568 0.0493 1.0560 0.0490
4 50 1.0493 0.0450 1.0491 0.0448 1.0487 0.0446 1.0491 0.0460 1.0492 0.0449
45 1.0509 0.0462 1.0517 0.0470 1.0517 0.0473 1.0501 0.0459 1.0507 0.0459
1.0527 0.0448 1.0530 0.0449 1.0525 0.0450 1.0527 0.0457 1.0527 0.0436
60 1.0338 0.0297 1.0337 0.0297 1.0340 0.0293 1.0330 0.0297 1.0340 0.0292
80 1.0297 0.0290 1.0290 0.0272 1.0300 0.0278 1.0288 0.0287 1.0287 0.0285
70 1.0326 0.0260 1.0331 0.0268 1.0334 0.0264 1.0336 0.0252 1.0340 0.0263
1.0328 0.0263 1.0324 0.0253 1.0324 0.0258 1.0332 0.0262 1.0316 0.0247
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Table A4. The results of Bayesian estimates with non-informative priors for ¢ using importance sampling.

. /\LL /\GE

Ase 1 1 1

T n m P=3 p= 1 qg=—3 q=;
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.5302 0.1207 1.4709 0.1089 1.4641 0.1172 15326 0.1205 1.5251 0.1298
30 1.5382 0.1419 1.5321 0.1323 1.5292 0.1391 1.5328 0.1356 1.5307 0.1438
25 1.5305 0.0892 1.5301 0.0882 1.5246 0.0815 1.5327 0.0822 1.5299 0.0844
1.5393 0.0997 1.5327 0.0989 15257 0.0907 1.5311 0.0925 1.5279 0.0942
40 1.5293 0.0595 1.5275 0.0616 1.5244 0.0589 1.5203 0.0585 1.5242 0.0558
2 50 1.5253 0.0631 1.5220 0.0602 1.5291 0.0675 1.5253 0.0593 1.5281 0.0653
45 1.5269 0.0568 1.5296 0.0567 1.5266 0.0541 1.5290 0.0557 1.5237 0.0536
1.5253 0.0562 1.5270 0.0527 15248 0.0548 15277 0.0571 1.5226 0.0550
60 1.5126 0.0403 15125 0.0357 15109 0.0396 1.5179 0.0389 1.5147 0.0376
80 1.5098 0.0428 15151 0.0404 15135 0.0422 1.5140 0.0444 1.5103 0.0431
70 15117 0.0350 1.5091 0.0340 1.5078 0.0331 1.5130 0.0340 1.5104 0.0360
1.5148 0.0371 1.5078 0.0310 1.5064 0.0331 1.5108 0.0348 1.5082 0.0328
20 1.5288 0.1211 1.5313 0.1121 1.5323 0.1185 1.5330 0.1145 1.5321 0.1225
30 1.5378 0.1372 1.5324 0.1366 1.5302 0.1309 15363 0.1335 1.5356 0.1371
95 1.5298 0.0943 1.5352 0.0906 1.5285 0.0924 1.5227 0.0973 1.5202 0.0990
1.5311 0.1021 1.5241 0.1081 1.5370 0.0991 1.5333 0.1054 1.5206 0.1078
40 1.5265 0.0515 1.5250 0.0556 1.5222 0.0553 1.5274 0.0590 1.5212 0.0562
4 50 1.5250 0.0633 1.5241 0.0665 1.5221 0.0634 1.5253 0.0609 1.5290 0.0683
45 1.5266 0.0579 1.5241 0.0507 15214 0.0584 1.5290 0.0558 1.5239 0.0537
1.5240 0.0596 1.5262 0.0556 1.5239 0.0537 1.5263 0.0575 1.5212 0.0553
60 1.5167 0.0444 1.5101 0.0480 15184 0.0468 15117 0.0430 15183 0.0416
80 1.51198 0.0479 1.5145 0.0499 1.5130 0.0389 1.5162 0.0465 1.5148 0.0451
70 1.5083 0.0337 15108 0.0355 1.5095 0.0346 15144 0.0327 15118 0.0318
1.5082 0.0353 1.5069 0.0334 15157 0.0356 1.5146 0.0342 1.5121 0.0332

Table A5. The results of Bayesian estimates with non-informative priors for A using importance sampling.
N ;\LL ;\GE

Ase 1 1 1

T n m pP=3: p=1 9=—3 9=3
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.1076 0.1033 1.1079 0.1053 1.1042 0.1003 1.1002 0.1083 1.1004 0.1028
30 1.1061 0.1110 1.1086 0.1157 1.1006 0.1173 1.1004 0.1183 1.1078 0.1193
25 1.1063 0.0962 1.1023 0.0927 1.1013 0.0914 1.1031 0.0941 0.9085 0.0932
1.1089 0.0966 1.1040 0.0918 1.1026 0.0934 1.1051 0.0939 1.1006 0.0948
40 1.0589 0.0526 1.0513 0.0498 0.9547 0.0501 1.0514 0.0503 0.9470 0.0508
2 50 1.0532 0.0468 1.0561 0.0459 0.9493 0.0478 1.0561 0.0463 0.9517 0.0484
45 0.9475 0.0432 0.9508 0.0429 0.9531 0.0424 0.9507 0.0432 0.9561 0.0433
1.0507 0.0459 1.0518 0.0453 0.9554 0.0457 1.0519 0.0456 0.9585 0.0463
60 0.9648 0.0282 0.9702 0.0279 0.9723 0.0271 0.9702 0.0281 0.9774 0.0276
80 0.9694 0.0265 0.9755 0.0264 0.9793 0.0253 0.9754 0.0265 0.9749 0.0257
70 0.9773 0.0245 0.9737 0.0245 0.9774 0.0257 0.9735 0.0246 0.9731 0.0262
0.9731 0.0261 0.9797 0.0261 0.9705 0.0261 0.9796 0.0262 0.9764 0.0265
20 11117 0.1115 1.1143 0.1158 11164 0.1108 1.1157 0.1182 1.1126 0.1130
30 1.1187 0.1111 11155 0.1153 11134 0.1155 1.1168 0.1175 11112 0.1172
o5 1.1080 0.1096 1.1032 0.1047 1.1046 0.1084 1.1045 0.1066 1.1021 0.1099
1.1042 0.1003 1.1078 0.1096 1.1024 0.1081 1.1087 0.1013 0.9001 0.1097
0 1.0540 0.0498 0.9489 0.0491 1.0527 0.0522 0.9489 0.0495 0.9450 0.0533
4 50 1.0576 0.0488 1.0502 0.0479 1.0552 0.0396 1.0504 0.0384 0.9479 0.0430
45 1.0537 0.0482 0.9468 0.0475 0.9548 0.0449 0.9468 0.0479 0.9577 0.0456
1.0544 0.0454 0.9477 0.0449 0.9587 0.0447 0.9477 0.0452 0.9518 0.0452
60 0.9650 0.0307 0.9607 0.0306 0.9682 0.0292 0.9706 0.0307 0.9734 0.0366
80 0.9675 0.0268 0.9636 0.0267 0.9647 0.0259 0.9635 0.0268 0.9703 0.0363
70 0.9630 0.0245 0.9693 0.0245 0.9684 0.0232 0.9692 0.0246 0.9642 0.0337
0.9639 0.0261 0.9603 0.0261 0.9622 0.0234 0.9702 0.0262 0.9683 0.0338
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Appendix C. The Simulation Results of Bayesian Estimates with Informative Priors

Table A6. The results of Bayesian estimates with informative priors for ¢ using the Lindley method.

R OLL UGE
OSE
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.5319 0.1153 1.5307 0.1125 1.5315 0.1259 1.4699 0.1010 1.5329 0.1187
0 1.5352 0.1254 1.5338 0.1176 1.5310 0.1301 1.4637 0.1042 1.5305 0.1271
o5 1.5235 0.0895 1.5298 0.0890 1.5212 0.1117 1.4737 0.0750 1.5295 0.0937
1.5295 0.1102 1.5257 0.0984 1.5205 0.1218 1.4741 0.0821 1.5377 0.1018
20 1.5203 0.0542 1.5217 0.0499 1.5245 0.0516 1.4785 0.0531 1.5235 0.0567
2 0 1.5281 0.0566 1.5265 0.0519 1.5248 0.0593 1.4780 0.0545 1.5230 0.0632
45 1.5156 0.0417 1.5166 0.0485 1.5105 0.0439 1.4841 0.0440 1.5106 0.0498
1.5250 0.0473 1.5256 0.0535 1.5234 0.0448 1.4834 0.0476 1.5236 0.0509
60 1.5059 0.0357 15114 0.0339 1.5133 0.0346 1.4961 0.0315 1.5165 0.0325
80 1.5154 0.0399 1.5151 0.0436 1.5149 0.0409 1.4992 0.0316 1.5176 0.0462
70 1.5033 0.0289 1.5010 0.0276 1.5052 0.0297 1.4993 0.0255 1.5095 0.0283
1.5059 0.0294 1.5034 0.0280 1.5023 0.0307 1.4934 0.0257 1.5164 0.0291
20 1.5324 0.1234 1.5312 0.1144 1.5381 0.1292 1.4606 0.1025 1.5305 0.1202
30 1.5371 0.1235 1.5356 0.1154 1.5306 0.1364 1.4654 0.1026 1.5391 0.1250
25 1.5265 0.1056 1.5227 0.0945 1.5261 0.1094 1.4779 0.0775 1.5244 0.0920
1.5242 0.1064 1.5305 0.0951 1.5227 0.1115 1.4753 0.0789 1.5311 0.1141
20 1.5173 0.0624 1.5258 0.0579 1.5239 0.0630 1.4772 0.0511 1.5227 0.0577
4 50 1.5198 0.0640 1.5284 0.0594 1.5290 0.0679 1.4750 0.0519 1.5275 0.0622
45 1.5091 0.0551 1.5199 0.0417 1.5129 0.0544 1.4853 0.0467 1.5132 0.0505
1.5121 0.0530 1.5130 0.0495 1.5146 0.0507 1.4899 0.0439 1.5253 0.0473
60 1.5107 0.0380 1.5162 0.0360 15133 0.0346 1.4911 0.0320 1.5125 0.0325
%0 1.5148 0.0471 1.5140 0.0404 1.5108 0.0406 1.4907 0.0329 1.5134 0.0457
70 1.5061 0.0284 1.5037 0.0270 1.5059 0.0278 1.4954 0.0260 1.5101 0.0264
1.5078 0.0300 1.5054 0.0285 1.5059 0.0318 1.4925 0.0248 1.5100 0.0302
Table A7. The results of Bayesian estimates with informative priors for A using the Lindley method.
X XLL ;\GE
SE
T n m p=1 p=1 g=—1 g=1
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.0909 0.1012 1.0895 0.0995 1.0908 0.0923 1.0887 0.0983 1.0915 0.0934
30 1.0961 0.0975 1.0883 0.0976 1.0856 0.0922 1.0873 0.0962 1.0795 0.0920
25 1.0878 0.0969 1.0772 0.0957 0.9273 0.0932 1.0766 0.0949 1.0773 0.0924
1.0765 0.0908 1.0697 0.0929 0.9278 0.0919 1.0689 0.0932 1.6983 0.0910
40 1.0664 0.0498 1.0496 0.0491 0.9424 0.0437 1.0594 0.0487 0.9490 0.0433
2 50 1.0579 0.0435 1.0411 0.0431 0.9548 0.0402 1.0510 0.0428 0.9518 0.0397
45 0.9952 0.0385 0.9691 0.0385 0.9548 0.0337 0.9511 0.0383 0.9533 0.0333
1.0547 0.0373 1.0362 0.0368 0.9679 0.0313 1.0480 0.0366 0.9545 0.0310
60 1.0476 0.0191 1.0328 0.0190 0.9737 0.0134 1.0328 0.0188 0.9684 0.0132
80 1.0302 0.0141 0.9763 0.0143 1.0312 0.0135 0.9765 0.0142 1.0254 0.0144
70 0.9775 0.0135 0.9737 0.0134 0.9809 0.0137 0.9738 0.0133 0.9849 0.0133
0.9752 0.0119 0.9763 0.0119 0.9852 0.0139 0.9814 0.0119 0.9790 0.0115
20 1.0927 0.1037 1.0892 0.1017 0.9186 0.0996 1.0882 0.1006 1.0897 0.0967
0 1.0899 0.0965 1.0882 0.0957 1.0833 0.0977 1.0873 0.0937 1.0835 0.0967
o5 0.9271 0.0930 0.9265 0.0925 0.9202 0.0861 0.9262 0.0918 1.0708 0.0955
1.0835 0.0858 1.0629 0.0850 1.0760 0.0838 1.0726 0.0844 1.0653 0.0826
40 1.0565 0.0408 1.0683 0.0401 1.0591 0.0317 1.0520 0.0397 1.0559 0.0317
4 50 1.0506 0.0302 0.9340 0.0300 0.9599 0.0291 0.9539 0.0298 1.0465 0.0289
45 1.0546 0.0323 1.0482 0.0320 0.9576 0.0314 1.0481 0.0317 0.9542 0.0310
1.0495 0.0286 1.0433 0.0283 1.0449 0.0254 1.0432 0.0280 1.0412 0.0253
60 0.9729 0.0152 0.9685 0.0152 0.9652 0.0135 0.9786 0.0151 0.9797 0.0142
80 1.0327 0.0151 0.9688 0.0150 0.9670 0.0184 0.9787 0.0149 1.0210 0.0132
70 0.9765 0.0120 0.9725 0.0129 0.9708 0.0125 0.9825 0.0129 0.9847 0.0120
1.0225 0.0120 0.9789 0.0125 0.9740 0.0120 0.9889 0.0128 0.9780 0.0119
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Table A8. The results of Bayesian estimates with informative priors for ¢ using importance sampling.

R OLL UGE
USE 1 1 1
T n m P=3 p=1 q=—; q=3
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.5380 0.0790 1.5336 0.0678 1.5337 0.0745 1.5379 0.0694 1.5336 0.0632
30 1.5347 0.0985 1.5394 0.0848 1.5353 0.0918 1.5320 0.0845 1.5342 0.0778
5 1.5352 0.0729 1.5304 0.0675 1.5313 0.0691 1.5282 0.0652 1.5269 0.0561
1.5303 0.0796 1.5362 0.0635 1.5361 0.0757 1.5368 0.0715 1.5330 0.0598
40 15296 0.0522 1.5210 0.0471 1.5222 0.0505 1.5274 0.0487 1.5295 0.0457
2 50 15332 0.0476 1.5289 0.0439 1.5260 0.0461 15215 0.0445 15271 0.0424
45 1.5207 0.0439 1.5276 0.0377 1.5216 0.0427 1.5177 0.0413 1.5158 0.0362
15270 0.0463 1.5201 0.0437 1.5279 0.0443 1.5221 0.0425 1.5286 0.0421
€0 15188 0.0271 1.5151 0.0261 1.5139 0.0261 1.5109 0.0252 15108 0.0253
80 15201 0.0314 1.5114 0.0264 1.5142 0.0301 1.5044 0.0290 15113 0.0255
70 1.5075 0.0214 1.5038 0.0187 1.5037 0.0205 1.5022 0.0198 1.5088 0.0181
1.5117 0.0217 1.5071 0.0196 1.5068 0.0210 1.5044 0.0204 15110 0.0190
20 1.5322 0.0527 1.5371 0.0737 1.5351 0.0494 1.5345 0.0461 1.5333 0.0685
30 15331 0.0828 1.5309 0.0931 1.5346 0.0777 1.5325 0.0718 1.5344 0.0853
25 1.5277 0.0763 1.5292 0.0849 1.5234 0.0732 1.5243 0.0665 1.5249 0.0596
1.5261 0.0771 1.5321 0.0639 1.5334 0.0817 1.5344 0.0684 1.5358 0.0698
40 1.5254 0.0453 1.5203 0.0392 1.5263 0.0434 1.5206 0.0416 1.5191 0.0378
4 50 1.5249 0.0453 1.5207 0.0465 1.5268 0.0440 1.5219 0.0424 1.5195 0.0451
45 15233 0.0352 1.5204 0.0346 1.5261 0.0345 1.5219 0.0336 15228 0.0394
1.5157 0.0405 15133 0.0354 1.5183 0.0391 15136 0.0377 15156 0.0342
€0 15168 0.0270 1.5126 0.0217 1.5116 0.0258 1.5093 0.0247 15114 0.0210
80 1.5127 0.0278 1.5161 0.0229 1.5130 0.0268 1.5105 0.0248 1.5148 0.0221
70 15072 0.0227 1.5108 0.0220 1.5132 0.0220 1.5108 0.0214 1.5097 0.0214
15024 0.0254 1.5088 0.0261 1.5082 0.0244 1.5055 0.0236 1.5078 0.0235
Table A9. The results of Bayesian estimates with informative priors for A using importance sampling.
i A Ace
SE
T n m =73 p=1 = =2
VALUE MSE VALUE MSE VALUE MSE VALUE MSE VALUE MSE
20 1.0909 0.1012 1.0895 0.0995 1.0908 0.0923 1.0887 0.0983 1.0915 0.0934
30 1.0961 0.0975 1.0883 0.0976 1.0856 0.0922 1.0873 0.0962 1.0795 0.0920
o5 1.0878 0.0969 1.0772 0.0957 0.9273 0.0932 1.0766 0.0949 1.0773 0.0924
1.0765 0.0908 1.0697 0.0929 0.9278 0.0919 1.0689 0.0932 1.6983 0.0910
40 1.0664 0.0498 1.0496 0.0491 0.9424 0.0437 1.0594 0.0487 0.9490 0.0433
2 50 1.0579 0.0435 1.0411 0.0431 0.9548 0.0402 1.0510 0.0428 0.9518 0.0397
45 0.9952 0.0385 0.9691 0.0385 0.9548 0.0337 0.9511 0.0383 0.9533 0.0333
1.0547 0.0373 1.0362 0.0368 0.9679 0.0313 1.0480 0.0366 0.9545 0.0310
60 1.0476 0.0191 1.0328 0.0190 0.9737 0.0134 1.0328 0.0188 0.9684 0.0132
80 1.0302 0.0141 0.9763 0.0143 1.0312 0.0135 0.9765 0.0142 1.0254 0.0144
70 0.9775 0.0135 0.9737 0.0134 0.9809 0.0137 0.9738 0.0133 0.9849 0.0133
0.9752 0.0119 0.9763 0.0119 0.9852 0.0139 0.9814 0.0119 0.9790 0.0115
20 1.0927 0.1037 1.0892 0.1017 0.9186 0.0996 1.0882 0.1006 1.0897 0.0967
30 1.0899 0.0965 1.0882 0.0957 1.0833 0.0977 1.0873 0.0937 1.0835 0.0967
25 0.9271 0.0930 0.9265 0.0925 0.9202 0.0861 0.9262 0.0918 1.0708 0.0955
1.0835 0.0858 1.0629 0.0850 1.0760 0.0838 1.0726 0.0844 1.0653 0.0826
0 1.0565 0.0408 1.0683 0.0401 1.0591 0.0317 1.0520 0.0397 1.0559 0.0317
4 50 1.0506 0.0302 0.9340 0.0300 0.9599 0.0291 0.9539 0.0298 1.0465 0.0289
45 1.0546 0.0323 1.0482 0.0320 0.9576 0.0314 1.0481 0.0317 0.9542 0.0310
1.0495 0.0286 1.0433 0.0283 1.0449 0.0254 1.0432 0.0280 1.0412 0.0253
60 0.9729 0.0152 0.9685 0.0152 0.9652 0.0135 0.9786 0.0151 0.9797 0.0142
80 1.0327 0.0151 0.9688 0.0150 0.9670 0.0184 0.9787 0.0149 1.0210 0.0132
70 0.9765 0.0120 0.9725 0.0129 0.9708 0.0125 0.9825 0.0129 0.9847 0.0120
1.0225 0.0120 0.9789 0.0125 0.9740 0.0120 0.9889 0.0128 0.9780 0.0119
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Appendix D. The Simulation Results of All Intervals

Table A10. The simulation results of five intervals for o.

HPD
ACI boop-p boot-t
T n m Sch non-infor infor
ML CR ML CR ML CR ML CR ML CR
20 I 1.3317 0.8903 1.2490 0.8847 1.2206 0.9163 1.3226 0.8883 1.1232 0.8277
30 I 1.3911 0.8893 1.4017 0.8917 1.3817 0.9047 1.3757 0.8891 1.1982 0.8383
- I 1.1989 0.8923 1.2019 0.8970 1.1141 0.9210 1.1695 0.8887 1.0093 0.8410
11 1.2153 0.9083 1.2504 0.8970 1.1093 0.9157 1.1835 0.9038 1.0141 0.8477
40 1 0.9626 0.9160 0.9915 0.9056 0.8741 0.9440 0.9483 0.9106 0.7634 0.8580
2 50 il 0.9712 0.9280 0.9817 0.9193 0.9596 0.9253 0.9382 0.9214 0.7762 0.8767
45 I 0.9131 0.9260 0.9540 0.9220 0.8097 0.9440 0.9080 0.9219 0.7233 0.8773
11 0.9126 0.9250 0.9416 0.9147 0.8124 0.9433 0.8982 0.9237 0.7168 0.8753
60 I 0.7919 0.9293 0.8117 0.9180 0.6917 0.9527 0.7732 0.9230 0.5902 0.8700
80 11 0.8053 0.9283 0.7979 0.9293 0.7052 0.9520 0.7863 0.9272 0.6035 0.8800
70 I 0.7347 0.9317 0.7573 0.9396 0.6328 0.9500 0.7059 0.9252 0.5310 0.8847
I 0.7313 0.9247 0.7766 0.9380 0.6373 0.9487 0.6982 0.9228 0.5385 0.8773
20 I 1.3309 0.8943 1.3719 0.8897 1.2348 0.9007 1.3268 0.8903 1.1348 0.8367
30 11 1.3853 0.8810 1.3972 0.8967 1.3912 0.9150 1.3740 0.8800 1.1838 0.8273
25 1 1.1981 0.9020 1.2543 0.8980 1.1131 0.9257 1.1897 0.8983 1.0104 0.8243
11 1.2229 0.9050 1.2726 09113 1.1227 0.9190 1.1945 0.9015 1.0109 0.8387
20 I 0.9621 0.9200 0.9906 09115 0.8622 0.9510 0.9562 0.9149 0.7614 0.8453
4 50 11 0.9795 0.9230 0.9850 0.9160 0.8725 0.9487 0.9656 0.9202 0.7693 0.8513
45 I 0.9129 0.9223 0.9343 0.9267 0.8169 0.9467 0.9111 0.9183 0.7151 0.8680
11 09114 0.9217 0.9162 0.9273 0.8148 0.9500 0.8882 0.9183 0.7154 0.8760
60 I 0.7892 0.9340 0.8126 0.9438 0.6891 0.9467 0.7601 0.9314 0.5927 0.8673
%0 I 0.8000 0.9210 0.8165 0.9247 0.7062 0.9560 0.7723 0.9154 0.6034 0.8647
70 I 0.7354 0.9300 0.7443 09173 0.6323 0.9580 0.7286 0.9281 0.5374 0.8727
11 0.7336 0.9310 0.7372 0.9333 0.6357 0.9520 0.7175 0.9258 0.5355 0.8713
Table A11. The simulation results of five intervals for A.
HPD
ACI boop-p boot-t
T n m Sch non-infor infor
ML CR ML CR ML CR ML CR ML CR
20 I 1.1725 0.9757 1.2475 0.9683 1.1384 0.9727 1.1518 0.9740 0.9855 0.9333
0 il 1.1256 0.9760 1.1127 0.9720 1.0805 0.9767 1.1010 0.9757 0.9149 0.9343
25 1 1.0975 0.9670 1.1181 0.9683 1.0467 0.9700 1.0800 0.9662 0.8888 0.9310
11 1.0547 0.9737 1.0705 0.9660 1.0307 0.9737 1.0333 0.9691 0.8649 0.9290
40 1 0.8137 0.9563 0.9125 0.9570 0.7454 0.9665 0.8130 0.9531 0.8149 0.9165
2 50 il 0.7850 0.9600 0.7832 0.9593 0.7540 0.9697 0.7843 0.9599 0.6828 0.9167
45 I 0.7861 0.9610 0.7972 0.9620 0.7409 0.9687 0.7572 0.9583 0.5714 0.9127
11 0.7715 0.9540 0.7716 0.9533 0.7373 0.9597 0.7483 0.9474 0.5620 0.9207
60 1 0.6444 0.9553 0.6664 0.9560 0.6028 0.9680 0.6177 0.9524 0.4456 0.9180
80 11 0.6072 0.9543 0.6552 0.9467 0.5687 0.9510 0.5985 0.9509 0.4104 0.9213
70 I 0.6071 0.9533 0.6263 0.9593 0.5707 0.9503 0.5891 0.9521 0.4114 0.9193
11 0.6119 0.9547 0.6244 0.9613 0.5569 0.9507 0.5953 0.9486 0.3963 0.9120
20 I 1.1804 0.9730 1.2876 0.9690 1.0701 0.9767 1.1675 0.9673 0.9649 0.9340
30 11 1.1162 0.9670 1.1590 0.9730 1.0710 0.9773 1.1049 0.9643 0.9150 0.9300
25 1 1.0862 0.9660 1.1597 0.9707 1.0303 0.9750 1.0706 0.9621 0.8776 0.9260
il 1.0459 0.9667 1.0828 0.9703 1.0023 0.9793 1.0172 0.9643 0.8611 0.9293
20 I 0.8169 0.9573 0.9245 0.9595 0.7183 0.9745 0.7907 0.9543 0.6126 0.9153
4 50 1I 0.7839 0.9553 0.7913 0.9620 0.7482 0.9727 0.7708 0.9530 0.5899 0.9193
45 1 0.7806 0.9543 0.7859 0.9627 0.7277 0.9613 0.7739 0.9525 0.5706 0.9113
11 0.7724 0.9610 0.7674 0.9513 0.7157 0.9760 0.7442 0.9548 0.5634 0.9180
60 I 0.6437 0.9593 0.6638 0.9520 0.5828 0.9647 0.6175 0.9584 0.4463 0.9167
80 Il 0.6125 0.9473 0.6484 0.9547 0.5991 0.9600 0.5976 0.9432 0.4108 0.9107
70 1 0.6094 0.9550 0.6255 0.9587 0.5227 0.9687 0.5813 0.9493 0.4106 0.9067
11 0.6124 0.9523 0.5959 0.9600 0.5347 0.9667 0.6093 0.9471 0.3967 0.9187
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