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Abstract
Coordinated gastric smooth muscle contraction is critical for proper digestion and is adversely affected by a number of 
gastric motility disorders. In this study we report that the secreted protein Mfge8 (milk fat globule-EGF factor 8) inhibits 
the contractile responses of human gastric antrum muscles to cholinergic stimuli by reducing the inhibitory phosphoryla-
tion of the MYPT1 (myosin phosphatase-targeting subunit (1) subunit of MLCP (myosin light chain phosphatase), resulting 
in reduced LC20 (smooth muscle myosin regulatory light chain (2) phosphorylation. Mfge8 reduced the agonist-induced 
increase in the F-actin/G-actin ratios of β-actin and γ-actin1. We show that endogenous Mfge8 is bound to its receptor, α8β1 
integrin, in human gastric antrum muscles, suggesting that human gastric antrum muscle mechanical responses are regulated 
by Mfge8. The regulation of gastric antrum smooth muscles by Mfge8 and α8 integrin functions as a brake on gastric antrum 
mechanical activities. Further studies of the role of Mfge8 and α8 integrin in regulating gastric antrum function will likely 
reveal additional novel aspects of gastric smooth muscle motility mechanisms.
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Introduction

Digestion of ingested food by the stomach involves accom-
modation, chemical and mechanical disruption of solids 
into chyme, and controlled emptying into the duodenum. To 
carry out these functions, the stomach is comprised of func-
tional anatomic regions with distinct motility patterns (Kong 
and Singh 2008; Janssen et al. 2011). The fundus relaxes 
to accommodate ingested food and then tonically contracts 
to move the contents into the distal stomach where the sol-
ids are reduced in size by peristaltic contractions. Gastric 
emptying is regulated by contractions of the antrum and the 
resistance provided by the pyloric canal. Healthy gastric 
function depends on properly coordinated motor activities 

of the proximal and distal stomach (Tack and Janssen 2010). 
Animal models have been studied for many years, but the 
regulatory mechanisms underlying the motor activities of 
the human stomach are not as well understood (Goyal et al. 
2019; Tack et al. 2019).

Membrane depolarization of gastrointestinal (GI) smooth 
muscles triggers contraction by opening voltage‐dependent 
(L‐type)  Ca2+ channels, non‐selective cation currents, and 
other mechanisms that contribute to the  Ca2+ influx and the 
increase in  [Ca2+]i (Zhang et al. 2011; Sanders et al. 2012). 
The increase in  [Ca2+]i  activates calmodulin‐dependent 
myosin light chain kinase (MLCK) to phosphorylate LC20 at 
S19 (pS19), stimulating myosin ATPase activity to generate 
cross‐bridge cycling and contraction (Somlyo and Somlyo 
2003; He et al. 2008). Termination of the contractile signal 
decreases  [Ca2+]i by  Ca2+ removal mechanisms, and inac-
tivation of MLCK (Somlyo and Somlyo 1986; Somlyo and 
Himpens 1989). LC20 is then dephosphorylated by MLCP, 
leading to relaxation (Alessi et al. 1992; Paul et al. 2002). 
MLCP activity is inhibited by upstream kinase-dependent 
signaling pathways (Feng et al. 1999; Kitazawa et al. 2003; 
Ito et al. 2004). Phosphorylation of the protein kinase C- 
(PKC) potentiated phosphatase inhibitor protein-17 kDa 
(CPI-17) by PKC greatly increases its inhibition of MLCP 
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(Eto et  al. 1995; Hayashi et  al. 2001). Phosphorylation 
of MYPT1 at T696 (human isoform numbering) inhibits 
MLCP activity (Matsumura and Hartshorne 2008; Gras-
sie et al. 2011). Phosphorylation of MYPT1 T853 by Rho-
associated coiled-coil protein kinase 2 (ROCK2) reduces 
the affinity of MLCP to myosin filaments in vitro (Velasco 
et al. 2002). However, ROCK2 phosphorylation of MYPT1 
T853 does not appear to affect MLCP activity in vivo (He 
et al. 2013; Chen et al. 2015). In addition, expression of 
the MYPT1 T853A mutant does not affect agonist-induced 
LC20 phosphorylation and force development in bladder and 
ileum smooth muscles (Gao et al. 2013; Chen et al. 2015). 
Thus, although it is elevated by ROCK2 activation, MYPT1 
T853 phosphorylation is not necessary for agonist-induced 
 Ca2+ sensitization of smooth muscle (Gao et al. 2013; He 
et al. 2013; Chen et al. 2015). However, ROCK2 activity 
in smooth muscles is clearly required for  Ca2+ sensitization 
and augmented contraction (Chen et al. 2015). Therefore, 
the level of MYPT1 T853 phosphorylation can be used as 
an indicator of myofilament  Ca2+ sensitization in smooth 
muscles. Inhibiting MLCP while activating MLCK gener-
ates greater force by further increasing LC20 phosphoryla-
tion (Kitazawa et al. 1991; Mizuno et al. 2008). This phe-
nomenon was termed “Ca2+ sensitization of the contractile 
apparatus,” to describe the increased  Ca2+sensitivity of the 
contractile response (Somlyo and Somlyo 2003).

In addition to the actin filaments which interact with myo-
sin thick filaments, smooth muscle cells contain a cortical 
actin cytoskeleton lying just under the plasma membrane 
which strengthens the membrane for the transmission of 
force to the extracellular matrix, and to enable the drastic 
morphological changes as smooth muscle cells shorten dur-
ing contraction (Mehta and Gunst 1999; Gunst and Zhang 
2008; Kim et al. 2008; Lehman and Morgan 2012). Smooth 
muscle cells can contract to 50% of their initial length, 
compared to only 20% for striated muscles (Widmaier et al. 
2011). The cortical actin cytoskeleton must be flexible to 
allow these changes. It is now known that the dynamic reor-
ganization of the cortical actin cytoskeleton also participates 
in force transduction, stiffness and adhesion, by increases 
in actin polymerization in response to contractile stimuli 
(Gunst and Zhang 2008; Kim et al. 2008; Lehman and Mor-
gan 2012).

A novel mechanism regulating ROCK2-dependent myo-
filament  Ca2+ sensitization in gastric smooth muscles has 
recently been described in murine gastric antrum muscles, 
involving the secreted protein Mfge8 (milk fat globule-EGF 
factor 8). (Khalifeh-Soltani et al. 2016). Mfge8 (or lactad-
herin) was initially identified as a principal component of the 
milk fat globule, a collection of membrane-encircled pro-
teins and triglycerides that bud from the apical surface of 
mammary epithelia during lactation (Raymond et al. 2009). 
Mfge8 has since been shown to be ubiquitously expressed 

and to participate in a wide variety of cellular interactions, 
including phagocytosis of apoptotic lymphocytes and other 
apoptotic cells, sperm-egg adhesion, repair of intestinal 
mucosa, mammary gland branching morphogenesis, angio-
genesis, attenuating inflammation, promoting wound heal-
ing, and enhancing tumorigenicity and cancer metastasis 
(Raymond et al. 2009; Li et al. 2013).

α8β1 integrins are RGD-binding integrins that were ini-
tially found to be critical for kidney morphogenesis where 
deletion of the α8 subunit leads to impaired recruitment 
of mesenchymal cells into epithelial structures (Müller 
et al. 1997; Humbert et al. 2014). It was recently shown 
that Mfge8 contains the RGD integrin binding sequence, 
and that Mfge8 is a ligand for α8β1 integrins (Khalifeh-
Soltani et al. 2016). α8β1 integrins are also prominently 
expressed in smooth muscle and Mfge8 modulates smooth 
muscle contractile force (Kudo et al. 2013; Zargham et al. 
2007; Zargham and Thilbault 2006; Schnapp et al. 1995). 
The binding of Mfge8 to α8β1 integrin heterodimers results 
in the inhibition of MYPT1 phosphorylation by ROCK2 
and inhibition of antral contractility and gastric emptying 
(Khalifeh-Soltani et al. 2016). In contrast, in  Mfge8−/− mice, 
or α8  integrin−/− mice, MYPT1 phosphorylation and antral 
contractility and gastric emptying are increased (Khalifeh-
Soltani et al. 2016). These findings indicate that Mfge8 
binding to α8β1 integrins acts as a “brake” on gastric mus-
cle contractions and suggest that the endogenous level of 
gastric Mfge8 plays a role in regulating gastric motility. We 
have previously found that MYPT1 T853 is constitutively 
phosphorylated in human gastric smooth muscles, and is 
decreased by ROCK2 inhibition (Bhetwal et al. 2011, 2013a, 
b). However, whether Mfge8 regulates MYPT1 phosphoryl-
ation and the contractile responses of human gastric smooth 
muscles has not been reported. In this report, we show that, 
similar to mouse gastric antrum muscles, Mfge8 is present 
in human gastric antrum muscles and is constitutively bound 
to α8β1 integrin. We found that exogenously added Mfge8 
inhibits the contractions evoked by electric field stimulation 
of cholinergic motor neurons, and the contractile responses 
to the cholinergic agonist carbachol (CCh). Exogenously 
added Mfge8 also reduced basal and CCh-evoked MYPT1 
T696 and T853, and LC20 S19 phosphorylation levels, and 
inhibited the CCh-induced increase in cortical F-actin.

Materials and methods

Human stomach smooth muscles

The use of human resected stomach tissues was approved by 
the Human Subjects Research Committees at the Renown 
Regional Medical Center and the Biomedical Institutional 
Review Board at the University of Nevada, Reno, and was 
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conducted in accordance with the Declaration of Helsinki 
(revised version, October 2008, Seoul, South Korea). All 
patients provided written informed consent. Resected stom-
ach specimens were acquired immediately after surgery 
from patients undergoing sleeve gastrectomy. The resected 
stomach tissue was placed into ice-cold Krebs–Ringer buffer 
(KRB; composition (in mM): NaCl 118.5, KCl 4.5,  MgCl2 
1.2,  NaHCO3 23.8,  KH2PO4 1.2, dextrose 11.0, and  CaCl2 
2.4; for transport to the laboratory. The gastric fundus region 
was identified by its bulbous appearance, and the gastric 
antrum region was identified by its narrow tapered shape. 
The resected stomach tissues were opened along the sta-
ples, laid out flat, and pinned to a Sylgard-lined dish con-
taining oxygenated KRB. The mucosa and submucosa were 
removed by sharp dissection. Gastric antrum muscles were 
mapped and obtained from regions 13–16 (Rhee et al. 2011). 
Rectangular strips (∼4 mm × 10 mm × 2 mm) of full thick-
ness muscle were used for the contractile studies and the 
protein phosphorylation studies. Larger strips snap-frozen in 
liquid  N2 were used for differential centrifugation to obtain 
the ratios of filamentous (F)-actin to globular (G)-actin.

Mechanical responses

Gastric antrum smooth muscle strips were attached to a Fort 
10 isometric strain gauge (WPI, Sarasota, FL, USA), in par-
allel with the circular muscles, and pretreated with 2 µM 
neostigmine for 10 min at 37 °C in oxygenated KRB, and 
three 1 min washes with KRB, to remove any residual curar-
iform neuromuscular paralytics (Li et al. 2018). Contractions 
were measured in static myobaths with oxygenated Krebs 
bubbled with 97%  O2–3%  CO2 at 37 °C, the pH of KRB was 
7.3–7.4). Each strip was stretched to an initial resting force 
of ~ 0.8 g and then equilibrated for 45 min-60 min in 37 °C 
oxygenated KRB. To measure the contractile responses to 
KCl or CCh, the muscle strips were incubated with 0.3 µM 
tetrodotoxin to eliminate motor neuron activity. To measure 
contractile responses in response to electrical field stimu-
lation, the muscle strips were incubated with LNNA and 
MRS2500 to eliminate nitrergic and purinergic motor neu-
ron activity (Bhetwal et al. 2013b). Contractile activity was 
acquired and analyzed with AcqKnowledge 3.2.7 software 
(BIOPAC Systems, www. biopac. com).

Automated capillary electrophoresis 
and immunodetection with Wes Simple Western

For automated capillary electrophoresis and Western blot-
ting by Wes, the muscles were submerged into ice-cold ace-
tone/10 µM dithiothreitol (DTT)/10% (w/v) trichloroacetic 
acid for 2 min, snap-frozen in liquid  N2, and stored at − 80 °C 
for subsequent Wes analysis (Li et al. 2018; Xie et al. 2018). 
Muscles were washed in ice‐cold‐acetone–10 µM DTT for 

1 min, 3 times, followed by a 1 min wash in ice‐cold lysis 
buffer (mM: 50 Tris–HCl pH 8.0, 60 β‐glycerophosphate, 
100 NaF, 2 EGTA, 25 sodium pyrophosphate, 1 DTT, 0.5% 
NP‐40, 0.2% sodium dodecyl sulfate and protease inhibi-
tors (Bhetwal et al. 2011). Tissues were homogenized in 
0.5 ml lysis buffer in a Bullet Blender (0.01% anti‐foam 
C, one stainless steel bead per tube, speed 6, 5 min), then 
centrifuged at 16,000×g, for 10 min at 4 °C. Supernatants 
were stored at − 80 °C. Protein concentrations of the super-
natants were determined by the Bradford assay using bovine 
γ‐globulin as the standard. Protein expression and phospho-
rylation levels were measured and analyzed according to 
the Wes User Guide using a Wes Simple Western instru-
ment from ProteinSimple (www. prote insim ple. com). The 
protein samples were mixed with the fluorescent 5X master 
mix (ProteinSimple) and then heated at 95 °C for 5 min. 
Boiled samples, biotinylated protein ladder, blocking buffer, 
primary antibodies, ProteinSimple horseradish peroxidase‐
conjugated anti‐rabbit or anti‐mouse secondary antibodies, 
luminol‐peroxide and wash buffer were loaded into the Wes 
plate (Wes 12–230 kDa Pre‐filled Plates with Split Buffer, 
ProteinSimple). The plates and capillary cartridges were 
loaded into the Wes instrument, and protein separation, 
antibody incubation and imaging were performed using 
default parameters. Compass software (ProteinSimple) was 
used to acquire the data, and to generate image reconstruc-
tion and chemiluminescence signal intensities. The protein 
and phosphorylation levels are expressed as the area of the 
peak chemiluminescence intensity. The following primary 
antibodies were used for Wes analysis: rabbit anti-γ-actin1, 
rabbit anti-enteric γ-actin2, GTX55849, www. genet ex. com; 
mouse-anti β-actin, mouse anti-integrin-α8, MAB6194, 
www. rndsy stems. com; rabbit anti-integrin-β1, sc-8978; rab-
bit anti‐LC20, sc‐15,370; www. scbt. com; rabbit anti-Mfge8, 
HPA002807, www. sigma aldri ch. com; rabbit anti‐MYPT1 
(PPP1R12A), sc‐25,618; rabbit anti‐pT696‐MYPT1, sc‐
17,556‐R; rabbit anti‐pT853‐MYPT1, sc‐17,432‐R; rabbit 
anti-pS19-LC20, PA5-17,726, www. therm ofish er. com.

Immunofluorescence and in situ proximity ligation 
assay (PLA)

For both immunofluorescence and isPLA the gastric antrum 
smooth muscle strips were fixed with 4% paraformaldeyde 
in PBS, and then cryo-protected with PBS/30% sucrose at 
4 °C, embedded in OCT, and frozen at − 80 °C (Xie and 
Perrino 2019). The blocks were cut using a microtome 
into 10 µm sections and placed onto Vectabond (SP-1800) 
coated glass slides (Fisherbrand Superfrost Plus Microscope 
Slides, 12–550-15). After 20 min microwave heat-induced 
antigen retrieval in Tris–EDTA buffer (10 mM Tris base, 
1 mM EDTA solution, 0.05% Tween 20, pH 9.0), the slides 
were permeabilized and blocked with PBS containing 0.2% 

http://www.biopac.com
http://www.proteinsimple.com
http://www.genetex.com
http://www.rndsystems.com
http://www.scbt.com
http://www.sigmaaldrich.com
http://www.thermofisher.com
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Tween-20 and 1% BSA for 10 min at room temperature. 
The slides were then incubated overnight at 4 °C with the 
appropriate primary antibody as indicated below. Immu-
nofluorescent labeling was performed with the appropriate 
Alexa-488 or Alexa-594 conjugated secondary antibody 
(Cell Signaling Technology, www. cells ignal. com) against 
the primary antibody (1:500 for 30 min at room tempera-
ture in PBS). isPLA was performed according to the manu-
facturer’s instructions using the Duolink In Situ Detection 
Reagents Red DUO92008 (Sigma-Aldrich, Olink Biosci-
ence, Sweden, www. sigma aldri ch. com) (Xie and Perrino 
2019). The muscle sections were incubated with each pri-
mary antibody (1:400 dilution) sequentially for 1 h at room 
temperature. The slides were then incubated with the appro-
priate PLA probes (diluted 1:5 in PBS containing 0.05% 
Tween-20 and 3% bovine serum albumin) in a pre-heated 
humidified chamber at 37 °C for 1 h, followed by the liga-
tion (30 min, 37 °C) and amplification (100 min, 37 °C) 
reactions. Mounting medium with DAPI was used to label 
nuclei blue. It has been reported that the number of PLA 
signals can decrease as kits get older (Ulke-Lemée et al. 
2015). We did not experience any differences in the PLA 
results as the kits aged. However, control and treated mus-
cle sections were compared using Duolink Detection kits 
from the same lot number prior to the lot expiration date. 
The following antibodies were used for isPLA: mouse anti-
integrin-α8, MAB6194, www. rndsy stems. com; rabbit anti-
integrin-β1, sc-8978, www. scbt. com; rabbit anti-Mfge8, 
HPA002807, www. sigma aldri ch. com; rabbit anti-enteric 
γ-actin, GTX55849, www. genet ex. com.

Confocal microscopy and image acquisition

The slides were examined using an LSM510 Meta (Zeiss, 
www. zeiss. com) or Fluoview FV1000 confocal microscope 
(Olympus,www. olymp us- lifes cience. com) (Xie and Perrino 
2019). Confocal micrographs are digital composites of the 
Z-series of scans (1 µm optical sections of 10 µm thick sec-
tions). Settings were fixed at the beginning of both acquisi-
tion and analysis steps and were unchanged. Brightness and 
contrast were slightly adjusted after merging. Final images 
were constructed using FV10-ASW 2.1 software (Olympus). 
Each image is representative of labeling experiments from 3 
sections from 3 gastric antrum muscles. Scale bars, 10 µm.

Differential ultracentrifugation of homogenates 
for filamentous (F)‑ and globular (G)‑actin ratios

The protocol was as described (Kim et al. 2008; Bhet-
wal et al. 2013a), with some modifications. Muscle strips 
were homogenized in 1  ml 37  °C fractionation buffer 
(50 mM PIPES (pH 6.9), 50 mM NaCl, 5 mM MgCl2, 
5 mM EGTA, 5% (vol/vol) glycerol, 0.1% Nonidet P-40 

(NP-40), 0.1% Triton X-100, 0.1% Tween 20, 100 mM 
ATP, 1 mM dithiothreitol, 0.001% antifoam C, and a pro-
tease inhibitor tablet) in a Bullet Blender (two stainless 
steel bead per tube, speed 6, until a uniform homogenate 
was obtained), then centrifuged at 16,000×g, for 10 min at 
32 °C. The supernatants were transferred to a prewarmed 
(37 °C) ultracentrifuge rotor and spun at 100, 000 g for 
1 h at 37 °C to separate the globular G-actin (supernatant) 
and filamentous F-actin (pellet) fractions. The pellets were 
resuspended in 200 µl of ice-cold lysis buffer. Both frac-
tions were stored at − 80 °C. Protein concentrations were 
determined by the Bradford assay using bovine γ‐globulin 
as the standard.

Data and statistical analysis

Contractile responses were compared by measuring the 
area under the curve (AUC) of each peak including the 
contribution of basal tone (integral, grams × seconds) 
divided by time (seconds), per cross‐sectional area  (cm2) 
of the smooth muscles, using Acknowledge. The average 
peak responses (mean (SD)) were calculated using Prism, 
and significance was determined by  t  test using Prism 
with P < 0.05 considered as significant. Graphs were gener-
ated using Prism. The area of the peak chemiluminescence 
intensity values of the protein bands were calculated by 
Compass software. The chemiluminescence intensity val-
ues of pT696, pT853, and pS19 were divided by the total 
MYPT1, and LC20 chemiluminescence intensity values 
from the same sample, respectively, to obtain the ratio of 
phosphorylated protein to total protein. The ratios were 
normalized to 1 for unstimulated muscles and all ratios 
were subsequently analyzed by non‐parametric repeated 
tests of ANOVA using Prism 7.01 software (GraphPad 
Software, www. graph pad. com), and are expressed as the 
means ± SD. Student’s t test was used to measure signifi-
cance and P < 0.05 is considered significant. The digital 
lane views (bitmaps) of the immunodetected protein bands 
were generated by Compass software, with each lane cor-
responding to an individual capillary tube. The PLA figures 
were created from the digitized data using Adobe Photo-
shop Version 12.0.3. Fiji software was used to count PLA 
spots (Xie and Perrino 2019). Graphs were generated using 
GraphPad/Prism.

Drugs and reagents

Recombinant human Mfge8 and recombinant human laminin 
subunit alpha-1 were purchased from R&D Systems, www. 
rndsy stems. com; atropine and tetrodotoxin were obtained 
from EMD Millipore, www. emdmi llipo re. com; and 

http://www.cellsignal.com
http://www.sigmaaldrich.com
http://www.rndsystems.com
http://www.scbt.com
http://www.sigmaaldrich.com
http://www.genetex.com
http://www.zeiss.com
http://www.olympus-lifescience.com
http://www.graphpad.com
http://www.rndsystems.com
http://www.rndsystems.com
http://www.emdmillipore.com
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MRS2500 was purchased from Tocris Bioscience, www. 
tocris. com. All other reagents and chemicals purchased were 
of analytical grade or better.

Results

Human gastric antrum muscles express Mfge8, α8 
integrin, and β1 integrin

Since Mfge8 and α8 integrin expression in human gastric 
antrum muscles has not been reported, we examined homoge-
nates of human gastric antrum muscles for Mfge8 and α8 
integrin protein expression, along with β1 integrin protein 
expression. Similar to murine gastric antrum muscles, human 
gastric antrum muscles express Mfge8 (43 kDa), α8 integrin 
(118 kDa), and β1 integrin (89 kDa), as shown by the Wes 
analysis of human gastric antrum muscle lysates in Fig. 1.

Human gastric antrum muscles contain α8β1 
integrin heterodimers and Mfge8

Because it was reported by Khalifeh-Soltani et al. (2016) 
that Mfge8 binds to α8 integrin in α8β1 integrin heterodi-
mers in murine gastric antrum muscles, we used in situ PLA 

Fig. 1  Mfge8, α8 integrin, and β1 integrin are expressed in human 
gastric antrum smooth muscles. Representative Wes image of Mfge8, 
α8 integrin, and β1 integrin proteins in gastric antrum smooth mus-
cle by chemiluminescence immunodetection using anti- Mfge8 (100X 
dilution), α8 integrin (100X dilution), and β1 integrin (100X dilution) 
antibodies in duplicate as described in the Methods. 5.0 µg lysate pro-
tein per lane. Anti-LC20 (1:500 dilution) immunodetection was used 
as the loading control. (n = 5.)

Fig. 2  α8β1 integrin heterodimers and Mfge8 interactions with α8 
integrin in human gastric antrum smooth muscle shown by in  situ 
PLA. Representative confocal microscopy images from gastric 
antrum smooth muscle sections. A Section immunostained with 
enteric γ-actin (green), and then probed with anti- α8 integrin and 

β1 integrin antibodies for PLA immunostaining (red spots). B Sec-
tion immunostained with β1 integrin (green), and then probed with 
anti- Mfge8 and α8 integrin antibodies for PLA immunostaining (red 
spots). Cell nuclei were stained with DAPI (blue). (n = 5.). (Color fig-
ure online)

http://www.tocris.com
http://www.tocris.com
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to determine whether Mfge8 binds to α8 integrin in α8β1 
integrin heterodimers in human gastric antrum muscles. We 
also immunostained enteric γ-actin2 to localize smooth mus-
cles cells in the antrum smooth muscle sections. The PLA 
results and enteric γ-actin immunostaining in Fig. 2A show 
that a8β1 integrin heterodimers are present in human gastric 
antrum smooth muscles. We then carried out in situ PLA 
using anti α8 integrin and anti Mfge8 antibodies to deter-
mine whether human gastric antrum smooth muscles con-
tain Mfge8 bound to α8 integrin. We also immunostained β1 
integrin to localize smooth muscle cell plasma membranes in 
the antrum smooth muscle sections. The PLA results and β1 

integrin immunostaining in Fig. 2B show that Mfge8 is likely 
bound to α8 integrin in human gastric antrum smooth mus-
cles. Particle analysis of the PLA spots using FIJI suggests 
that the number of a8b1 heterodimers (954 ± 78 spots per 
µm2) is significantly greater than the number of a8 integrins 
bound to Mfge8 (318 ± 47 spots per µm2) (P < 0.01, n = 5).

Exogenously added Mfge8 inhibits CCh‑evoked 
contractions of human gastric antrum muscles

We next determined if Mfge8 can regulate human gastric 
antrum muscle contractile responses. Figure 3 shows the 

Fig. 3  Exogenously added Mfge8 inhibits CCh-evoked contractions 
of human gastric antrum smooth muscle. Representative tension 
recordings of the contractile responses to 5  µM CCh alone (A), or 
in the presence of 100 µg/ml laminin (B), or 100 µg/ml Mfge8 (C). 

Summarized data of the areas under the curve of each contractile 
response (D–F). (n = 6; 2 muscle strips from 3 gastric antrums; Aver-
ages are ± SD, *P < 0.05)
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isometric contractile responses of human gastric antrum 
muscle strips to the cholinergic agonist CCh. CCh at con-
centrations of 1 µM and 5 µM dose-dependently increased 
the force of contractions, as shown in the contractile 
recordings and the summarized data. After washout of 
CCh, Mfge8 was added to the myobaths at a concentra-
tion of 100 µg/ml, and incubated with the muscle strips 
for 90 min. Laminin was added to separate myobaths at a 
concentration of 100 µg/ml, as a negative control integ-
rin RGD-binding protein (Zheng and Leftheris 2020). As 
shown in Fig. 3B and C, the addition of Mfge8 cause a 
transient contraction of the muscle strips, while laminin 
had no effect upon addition to the myobath. As shown 
in Fig. 3A and D, the contractile responses to 5 µM CCh 

90 min after the first 5 µM CCh-evoked contraction were 
unchanged. Similarly, after incubation with laminin for 
90 min, Fig. 3B and E show that the contractile responses 
of human gastric antrum muscle strips to 5 µM CCh were 
similar to the first 5  µM CCh-evoked contraction. In 
contrast, Fig. 3C and F show that compared to the first 
5 µM CCh-evoked contraction, the contractile response 
of human gastric antrum muscle strips to 5  µM CCh 
was significantly decreased (~ 50%) by incubation with 
Mfge8 for 90 min. In addition, Fig. 3C and F show that 
the contractile responses of the muscle strips to 5 µM 
CCh recovered following washout of Mfge8, as indicated 
by the increase in the AUC.

Fig. 4  Exogenously added Mfge8 inhibits CCh-evoked phosphoryla-
tion of MYPT1 in human gastric antrum smooth muscles. A Repre-
sentative Wes analysis of MYPT1 T853 and T696 phosphorylation by 
5 µM CCh alone, or in the presence of 100 µg/ml laminin, or 100 µg/
ml Mfge8. B Summary of the effects of 5 µM CCh alone, or in the 
presence of 100  µg/ml laminin, or 100  µg/ml Mfge8 on MYPT1 
T853 and T696 phosphorylation. C Representative Wes analysis of 

LC20 S19 phosphorylation by 5 µM CCh alone, or in the presence of 
100 µg/ml laminin, or 100 µg/ml Mfge8. D Summary of the effects of 
5 µM CCh alone, or in the presence of 100 µg/ml laminin, or 100 µg/
ml Mfge8 on LC20 S19 phosphorylation. GAPDH immunodetection 
was used as the loading control. (n = 6; 2 muscle strips from 3 gastric 
antrums, Averages are ± SD, #Significantly different from Control; 
*Significantly different from CCh, #*P < 0.01)
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Exogenously added Mfge8 inhibits MYPT1 and LC20 
phosphorylation in human gastric antrum muscles

It was previously determined that Mfge8 inhibits 
murine gastric antrum muscle contractions by inhibiting 
MYPT1 pT696 phosphorylation, resulting in decreased 
LC20 phosphorylation (Khalifeh-Soltani et al. 2016). 
Since we found that Mfge8 inhibits human gastric 
antrum muscle contractions, we examined whether CCh-
evoked MYPT1 and LC20 phosphorylation are inhibited 
by Mfge8. As shown in Fig. 4A and B, 5 min treatment 
with 5 µM CCh significantly increased MYPT1 T853 
phosphorylation by approximately twofold. MYPT1 
T696 phosphorylation was increased, but this increase 
was not significant. Incubation with laminin for 90 min 

had no effect on the CCh-evoked increase in MYPT1 
T853 phosphorylation and did not affect T696 phospho-
rylation. However, Fig. 4A and B show that the CCh-
evoked increase in MYPT1 T853 phosphorylation was 
significantly inhibited (~ 30% reduction) by incubation 
with Mfge8 for 90 min, and MYPT1 pT696 phospho-
rylation was significantly reduced (~ 30% reduction). 
Figure 4C and D show that LC20 S19 phosphorylation 
was consistently increased by CCh treatment, but this 
increase was not statistically significant. Laminin had 
no effect on the increase in LC20 S19 phosphorylation 
(Fig. 4C, D). In contrast, the CCh-evoked increase in 
LC20 S19 phosphorylation was inhibited by incubation 
with Mfge8 for 90 min, but this decrease was not statisti-
cally significant.

Fig. 5  Exogenously added Mfge8 inhibits the CCh-evoked increase 
in actin F/G ratios in human gastric antrum smooth muscles. Dif-
ferential ultracentrifugation of muscle homogenates indicates Mfge8 
inhibits the CCh-induced increase in filamentous (F-actin) to globular 
(G-actin) ratios (F/G ratio). Representative Wes analyses of γ-actin2 

(A), γ-actin1 (B), and β-actin (C) levels in the 100,000×g superna-
tant (S, G-actin) and pellet (P, F-actin). D F/G Actin ratios from the 
chemiluminescence intensity values of the actin bands. (n = 4 gastric 
antrums, Averages are ± SD, #Significantly different from Control; 
*Significantly different from CCh, #*P < 0.01)
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Exogenously added Mfge8 inhibits the increase 
in F‑actin evoked by CCh stimulation of human 
gastric antrum muscles

Agonist-induced actin polymerization associated with the 
cortical actin cytoskeleton in smooth muscle cells occurs 
during a contractile stimulus (Mehta and Gunst 1999; Gunst 
and Zhang 2008; Kim et al. 2008; Lehman and Morgan 
2012). Therefore, we investigated the effects of exogenously 
added Mfge8 on the actin F/G ratios in CCh-stimulated mus-
cles. In human gastric antrum muscles, the contractile enteric 
γ-actin2 isoform (ACTG2) is the most highly expressed actin 
isoform (Table 1), comprising approximately 80% of the 
total actin. The cytoskeletal β-actin (ACTB) and γ-actin1 
(ACTG1) isoforms are present at much lower amounts, with 
β-actin isoform expression (~ 17% of total) almost tenfold 
higher than γ-actin1 isoform expression (~ 0.2% of total) 
(Table 1). As shown in Fig. 5D, the ratio of F/G actin for 
γ-actin1 is a little over 20:1, approximately fourfold higher 
than the F/G actin ratios of β-actin and γ-actin2. CCh stimu-
lation increased the β-actin F/G ratio by almost fourfold, 
and increased the γ-actin1 F/G ratio by almost twofold, but 
only slightly, and not significantly, increased the F/G ratio 
of enteric γ-actin2. Exogenously added Mfge8 significantly 
inhibited the CCh-evoked increase in the F/G ratios of 
β-actin (~ 50%) and γ-actin1 (~ 30%), and had a slight effect 
on the CCh-evoked increase in the F/G ratio of γ-actin2.

Discussion

It was previously reported that Mfge8 inhibits antral muscle 
contractions and slows gastrointestinal motility in mice by 
specifically binding to α8 integrin in α8β1 integrin heter-
odimers, resulting in reduced phosphorylation of the inhibi-
tory MYPT1 subunit of MLCP, and consequentially reduced 
LC20 phosphorylation (Khalifeh-Soltani et al. 2016). In 
addition, either smooth muscle-specific deletion of Mfge8 
or α8 integrin resulted in an increase in gastric antral con-
tractile force, more rapid gastric emptying, and faster small 
intestinal transit times (Khalifeh-Soltani et al. 2016). These 
findings revealed a novel inhibitory mechanism regulating 

gastric antrum function, raising the question as to whether a 
similar mechanism is involved in regulating human gastric 
antrum smooth muscle contractile responses. The expres-
sion of Mfge8 or α8 integrin in human gastric antrum mus-
cles has not been described previously, thus in this study we 
determined that both Mfge8 and α8β1 integrin heterodimers 
are present in human gastric antrum muscles, and that Mfge8 
is bound to α8β1 integrin heterodimers. We also show that 
exogenously added Mfgfe8 inhibits the contractile responses 
of human gastric antrum muscles to exogenous and endog-
enous cholinergic stimuli. This inhibition of contraction 
was accompanied by inhibition of MYPT1 and LC20 phos-
phorylation, supporting a novel role for α8β1 integrins and 
Mfge8 in regulating human gastric motility by attenuating 
MYPT1 phosphorylation. We used in situ PLA to demon-
strate the interaction between Mfge8 and α8 integrin. We 
were not able to examine the effects of abrogating the bind-
ing of Mfge8 to α8β1 integrins because there is no inhibitor 
of Mfge8 binding to α8β1 integrins available. However, add-
ing Mfge8 protein to muscle strips in the myobaths signifi-
cantly inhibited the contractile responses to the cholinergic 
agonist CCh or to EFS-evoked cholinergic neurotransmis-
sion. These findings suggest that there are α8β1 integrins 
not occupied by Mfge8, and that increases in Mfge8 could 
further inhibit gastric antrum muscle contraction. The results 
in Fig. 2 showing that there are significantly greater α8β1 
integrin heterodimer PLA signals than the Mfge8-α8 inte-
grin PLA signals support this conclusion. These findings 
strongly suggest that Mfge8 is involved in the regulation of 
human gastric antrum muscle mechanical responses.

Agonist-stimulated actin polymerization, as shown by 
an increase in the F/G actin ratio, has been shown to cor-
relate with an increase in the contractile force generated 
in vascular and airway smooth muscle (Mehta and Gunst 
1999; Gunst and Zhang 2008; Kim et al. 2008; Lehman and 
Morgan 2012). In vascular smooth muscle, the cytoskeletal 
actin isoform γ-actin1, which is primarily localized to the 
sub-membranous actin cortex, is most sensitive to G-actin to 
F-actin conversion in response to vasoconstrictors, reflect-
ing changes in polymerization/ depolymerization (Kim et al. 
2008). Similarly, we found that CCh treatment increased the 
F/G ratios of the two cytoskeletal actin isoforms, γ-actin1 
and β-actin, in human gastric antrum muscles. However, 
we found that CCh-stimulation induced a larger increase 
in the β-actin F/G ratio (~ fourfold) than the γ-actin1 ratio 
(~ twofold). This may be due to the finding that β-actin is 
much more highly expressed than γ-actin1 in human gastric 
antrum muscles, and thus would comprise the bulk of the 
actin cortical cytoskeleton. The F/G ratio of enteric γ-actin2 
did not significantly change during CCh stimulation, likely 
due to its primary localization within the contractile actin 
filaments (McHugh and Lessard 1988). As expected, enteric 
γ-actin2 comprises the bulk of total actin expressed in 

Table 1  Protein expression 
levels of actin isoforms in 
human gastric antrum muscles

Data are mean ± SD and 
expressed as chemilumines-
cence intensity per ng protein 
(n = 3 gastric antrum muscles). 
One way ANOVA indicates sig-
nificant differences between the 
means (P < 0.05)

γ-actin2 β-actin γ-actin1

1028 ± 153 205 ± 79 2.6 ± 0.7
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gastric antrum muscles, followed by β-actin and γ-actin1 at 
much lower amounts.

Mfge8 (originally named lactadherin) was first identified 
in breast milk, having antimicrobial and antiviral effects, and 
playing an important role in immune defense as a secreted 
immune system molecule (Stubbs et al. 1990; Atabai et al. 
2005). Mfge8 is now known to be a ubiquitously expressed 
multifunctional protein belonging to the family of secreted 
integrin-binding glycoproteins containing the RGD integrin-
binding motif (Raymond et al. 2009). The most well known 
role for α8β1 integrin is in kidney morphogenesis where 
deletion of α8 integrin leads to impaired recruitment of 
mesenchymal cells into epithelial structures (Müller et al. 
1997; Humbert et al. 2014). α8 integrin is a member of the 
RGD-binding integrin family that is prominently expressed 
in smooth muscle coupled to β1 integrin (Schnapp et al. 
1995; Zargham and Thibault 2006; Zargham et al. 2007). 
Previous work has shown the expression of α8 integrin in 
both vascular and visceral smooth muscle, as well as the 
muscularis mucosa of the GI tract (Schnapp et al. 1995). 
In vitro studies suggest that α8 integrin promotes smooth 
muscle differentiation, and maintains vascular smooth mus-
cle in a differentiated, contractile, non-migratory phenotype 
(Zargham and Thibault 2006; Zhang et al. 2016). Mfge8 and 
α8 integrin also modulate smooth muscle contractile force. 
In  Mfge8−/− mice, or α8  integrin−/− mice, airway and jejunal 
smooth muscle contraction are enhanced in response to con-
tractile agonists after these muscle beds have been exposed 
to inflammatory cytokines but not under basal conditions 
(Kudo et  al. 2013; Khalifeh-Soltani et  al. 2016, 2018). 
Whether the origin of Mfge8 in gastric muscles is from cir-
culating Mfge8 or is locally secreted is unclear. Mfge8 can 
reach the gastric antrum smooth muscle layer by oral gav-
age, but it is not clear how Mfge8 reaches the gastric antrum 
smooth muscle layer, or how widespread the distribution of 
Mfge8 is after oral administration (Khalifeh-Soltani et al. 
2016). Determining the source of Mfge8 present in gastric 
muscle tissues is an important issue to address in future stud-
ies of gastric motility regulatory mechanisms.

Elevations in cytosolic  Ca2+ directly promote smooth 
muscle contraction by  Ca2+/calmodulin activation of MLCK 
and phosphorylation of LC20 (Somlyo and Somlyo 2003). 
Rho kinase and PKC activities contribute to MLCK activity 
by phosphorylating the regulatory subunits of MLCP to pro-
mote LC20 phosphorylation and increase the myofilament 
sensitivity to  Ca2+ (Perrino 2016). In addition, a number of 
studies have provided evidence that dynamic changes to the 
actin cytoskeleton play an important role in smooth muscle 
contraction (Mehta and Gunst 1999; Zhang et al. 2018). This 
remodeling process appears to facilitate the polymerization 
of cortical cytoskeletal actin filaments and increase the sta-
bility of focal adhesions in the membrane, allowing for the 
force generated by myofilament activation to be transmitted 

to the connective tissue of the extracellular matrix (Zheng 
et al. 1998; Mills et al. 2015). Tyrosine phosphorylation of 
protein tyrosine kinase 2 β (Pyk2) and focal adhesion kinase 
(FAK), along with the recruitment of other integrin‐associ-
ated proteins to focal adhesions, occurs during contraction 
and force development (Gerthoffer and Gunst 2001). In addi-
tion, we found that FAK also promotes gastric smooth mus-
cle contraction by activation of the PKC-CPI-17  Ca2+ sen-
sitization pathway (Xie et al. 2018).

In summary, in this study we report that the secreted pro-
tein Mfge8 inhibits the contractile responses of human gas-
tric antrum muscles to cholinergic stimuli by reducing the 
inhibitory phosphorylation of the MYPT1 subunit of MLCP, 
resulting in reduced LC20 phosphorylation. We found that 
endogenous Mfge8 is bound to its receptor, α8β1 integrin, 
in human gastric antrum muscles, and that exogenously 
added Mfge8 inhibits CCh-evoked contraction, suggesting 
that human gastric antrum muscle mechanical responses 
are regulated by Mfge8. These findings, and the findings of 
Khalifeh-Soltani et al. 2016, reveal an additional pathway 
regulating the contractile responses of smooth muscles. The 
regulation of gastric antrum smooth muscles by Mfge8 and 
α8 integrin opposes the prokinetic actions of MLCK activa-
tion, MLCP inhibition, and actin cytoskeleton remodeling. 
In this regard, Mfge8 α8 integrin signaling seems to func-
tion as a brake on gastric antrum mechanical activities, and 
suggest that disrupting Mfge8 binding to α8β1 integrins in 
gastric smooth muscles may improve or reverse abnormal 
gastric antrum muscle mechanical responses associated 
with gastric motility disorders. Further studies of the role of 
Mfge8 and α8 integrin in regulating gastric antrum function 
will likely reveal additional novel aspects of gastric smooth 
muscle motility mechanisms.
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