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Abstract

The probability of point mutations is expected to be highly influenced by the flanking nucleotides that surround them,
known as the sequence context. This phenomenon may be mainly attributed to the enzyme that modifies or mutates the
genetic material, because most enzymes tend to have specific sequence contexts that dictate their activity. Here, we
develop a statistical model that allows for the detection and evaluation of the effects of different sequence contexts on
mutation rates from deep population sequencing data. This task is computationally challenging, as the complexity of the
model increases exponentially as the context size increases. We established our novel Bayesian method based on sparse
model selection methods, with the leading assumption that the number of actual sequence contexts that directly
influence mutation rates is minuscule compared with the number of possible sequence contexts. We show that our
method is highly accurate on simulated data using pentanucleotide contexts, even when accounting for noisy data. We
next analyze empirical population sequencing data from polioviruses and HIV-1 and detect a significant enrichment in
sequence contexts associated with deamination by the cellular deaminases ADAR 1/2 and APOBEC3G, respectively. In
the current era, where next-generation sequencing data are highly abundant, our approach can be used on any pop-
ulation sequencing data to reveal context-dependent base alterations and may assist in the discovery of novel mutable
sites or editing sites.
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Introduction
Single-base modifications, which include point mutations and
DNA or RNA modifications, are often caused by enzymatic
activity. Base alterations can include either standard point
mutations or modifications such as cytosine methylation at
the DNA level (Cooper and Krawczak 1989), or adenine to
inosine at the RNA level (Wulff et al. 2011). For DNA/RNA
modifications, specific sequence contexts influence the prob-
ability the enzyme will modify a base within this context
(Lehmann and Bass 2000; Feltus et al. 2006; Wang et al.
2013). This is reflected by hotspots of mutation in different
genomes driven by specific sequence contexts (Hwang and
Green 2004; Hodgkinson and Eyre-Walker 2011; Aggarwala
and Voight 2016). One well-known example is that of C!T
mutations that occur at high rates in vertebrate genomes by
spontaneous deamination of methylated cytosines in CpG
positions, that is, positions in which a guanine follows a cy-
tosine (Coulondre et al. 1978; Razin and Riggs 1980).
Moreover, specific cellular enzymes belonging to the
APOBEC3 family increase the rate of deamination of cytosine

bases as a means of viral restriction. These enzymes increase
the mutation rate of HIV by several orders of magnitude, at
specific sequence contexts (Cuevas et al. 2015). Nevertheless,
most evolutionary models commonly assume that every po-
sition evolves independently. This implies that neighboring
positions do not affect the rate of mutation in a given posi-
tion. Here we present a novel Bayesian method for the anal-
ysis of deep population sequencing data, which detects the
effect of context on the rate of single-base modifications.

Previous efforts for detecting the effects of context on
substitution rates were often phylogenetic-based methods
(Siepel and Haussler 2003). In order to keep the number of
parameters small and computationally tractable, most such
methods consider two to three sites (Krawczak et al. 1998;
Dunson and Tindall 2000; Lunter and Hein 2004; Hernandez
et al. 2007; Zhang et al. 2007; Rodrigue et al. 2009, 2010;
Simmonds et al. 2013; Sung et al. 2015; Figliuzzi et al. 2016;
Harris and Pritchard 2017) (but see Berikov and Rogozin
1999). Notably, methods which attempt to find both local
and global explicit context dependencies usually suffer from
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high false positive rate, and hence require more statistical
validations (Rogozin et al. 2005).

Recently, novel models for analyzing context from poly-
morphism data in humans were suggested (Aggarwala and
Voight 2016; Zhu et al. 2017). However, these models are very
high-dimensional, and in essence, assume that a very large
number of sequence motifs may influence the rate of substi-
tution. An additional complication is that within the high-
dimensional space of sequence motifs, there is a high level of
correlation between motifs, which could lead to faulty infer-
ences of context effects (but see Aikens et al. 2019). For ex-
ample, the motif CGCXX is contained within the motif
XGCXX (where X is any one of the four nucleotides) and
this could lead to difficulty in inferring which motif truly
has an effect.

Here, we develop a model that addresses these problems
and includes two main novelties. First, it is tailored for next-
generation sequencing (NGS) of population data, which are
becoming more and more abundant. Notably, our method is
inspired by ours and other experiments that sequence virus
populations at great depth (Acevedo et al. 2014; Stern et al.
2017); typically such experiments result in over 100,000–
1,000,000 sequenced viral genomes, with sequencing accuracy
that allowed detection of mutations present at a frequency as
rare as 10�6. Moreover, in these experiments the very high
mutation rate of the viruses is the predominant force: Genetic
drift is mitigated by the large population size (but see
Discussion), and the short time frame of the experiment
mostly allows for only one mutation per genome. The second
novelty is the use of Bayesian variable selection methods to
identify the few sequence contexts that significantly influence
the substitution rate, thereby addressing the combinatorial
increase in parameter number with a larger context. This
approach relies on the biological motivation that only a lim-
ited number of enzymes influence the rate of base alteration
and they are often defined by a very specific context. For
example, adenosines in mRNA may be methylated by a meth-
yltransferase enzyme but only in the context RGACU (where
R is a purine) (Narayan et al. 1994). There are over 1,000
possible contexts in a window size of 5 (k ¼ 5Þ, but as only
two of them exert an effect, this is an assumption worthwhile
taking into consideration.

The problem of detecting contexts that affect the rate of
base alteration is a special case of the standard statistical
problem of identifying a subset of, possibly correlated, cova-
riates that affect the response variable. One example is quan-
titative trait locus (QTL) mapping, where the objective is to
detect a limited set of markers that affect a specific pheno-
type, and our method is inspired by Bayesian variable selec-
tion solutions to this problem (see, e.g., Yi 2004). We test the
method on simulated data generated to mimic an increase or
decrease of mutation rate caused by specific nucleotide
motifs, in a population of replicating viruses, and show that
the method accurately captures these changes in the simu-
lated data. We next analyze data from NGS experiments of
polioviruses and HIV-1 and describe how our method cap-
tures intriguing biological signals. Finally, we discuss the ap-
plicability of our method to any type of NGS data.

Theory
In brief, our method searches for a correlation between the
presence of sequences motifs surrounding a site and ele-
vated/decreased mutation frequencies at that site. The
method uses a Bayesian approach to infer the parameters
of the model and employs sparse shrinkage to account for
the fact that only a small number of motifs affect the muta-
tion rate.

Context-Dependent Base Alteration Model
For the sake of simplicity, we hereby refer to a base alteration
as a mutation. This is often convenient because a base alter-
ation may be captured in NGS experiments as an observed
mutation (e.g., adenine to inosine alterations are observed as
adenine to guanine mutations following sequencing
[Levanon et al. 2004]). Let the full sequence (e.g., the genome)
we are interested in be denoted as G ¼ ðg1; . . . ; gnÞ, where
gi 2 A; C;G; Tf and Gj j ¼ n. Note that upon analyzing RNA
genomes T is replaced by U, however, for convenience, we
keep the notation of T through the text. We denote the k-

long context of a focal position, i; as the k
2

� �
nucleotides

flanking the position, that is, the sequence
gi� k

2b c; . . . ; gi; . . . ; giþ k
2b c, where k is assumed to be an odd

number. For example, for k ¼ 3 and G ¼ AGGAT there are
three distinct contexts, AGG; GGA, and GAT (fig. 1).

We can further decompose sequence contexts into motifs
(which will be the features in our feature selection algorithm).
In the example above, a possible motif would be AGX (where
X is any of the four nucleotides). For k¼ 1, there are four
motifs (the four possible nucleotides), for k¼ 3 there are

3� 4 motifs consisting of one nucleotide,
3
2

� �
42 motifs

consisting of two nucleotides, and 43 motif consisting of three

FIG. 1. Model definitions. For the labeled focal position with nucleo-
tide A, we present its genomic context for k ¼ 5, and illustrate the
context, the context together with a mutation, and a possible motif
embedded in this context. Motifs are associated with a context pat-
tern, such that X 2 fA; C; G; T=Ug: We exemplify how enzymatic
activity operating on a specific sequence context may result in an
increase in the mutation rate at this context.
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nucleotides. In general, for k-long contexts, there are m ¼
Pk
i¼1

k

i

 !
4i motifs (fig. 1 and table 1). Next, we consider a mu-

tation operating on a context, l ¼ ða! bÞ, to be an or-
dered pair, where a; b 2 A; C;G; Tg; and a 6¼ bf . For
simplicity, we denote this as a context þ mutation (fig. 1).

Now, let X
ðkÞ
c�m be a matrix that indicates, for each con-

text þ mutation, the motifs it contains such that:

xij ¼
1 the ith context contains the jth motif

0 otherwise
;

(

where c is the number of all unique contextsþmutations in
genome G� c is at most 3 � 4k (because not all contexts
may be present in a given genome), and m is defined above as
the number of possible motifs (table 1).

We assume sequencing of a population of homologous
genomes and the availability of a known reference genome
(fig. 2). These assumptions allow us to uniquely define which
mutation occurred at what sequence context. We can define
the vector y

!
to be the empirical count of contextsþ muta-

tions for each type of mutation. We define l
!

to be a vector of
the total observed number of occurrences of each context in
the sequencing data (so that l

!

i is the sequencing coverage of
the context). In other words, we pool all the mutations that
have the exact same context across different positions in the
genome so that in figure 2 we would count three mutations
for the red context. Note that when using counts we implic-
itly assume lack of genetic drift which may have increased the
copy number of an allele in the population. Alternatively, the
input data may be the number of polymorphic loci with a
specific context, that is, a position is then counted at most
once. Accordingly, in figure 2 we would count two polymor-
phisms for the red context. The former representation fits our
viral data set; however, the latter enables flexibility for other
data sets as well, supporting the method’s general applicabil-
ity. Table 1 illustrates an example showing X, y

!
, and l

!
for a

context of size k ¼ 3 for simplicity, using the pooled muta-
tion approach.

Model
We introduce CIPI—context-based inference of point-
mutation influence. We will use a logistic regression model

with the latent variables a 2 R, r 2 Rþ, b
!
2 Rm; and c

!

2 0; 1mf (where m is the number of all possible motifs),
which relates motifs in a context to the probability of observ-

ing a mutation in the context, defined as pl
!
2 Rc, where l

was referred earlier as a mutation type. We assume
pl

i ¼ logit�1ð
Pm

j¼1 bjcjxij þ a). For convenience, from now

on we will denote pl
i simply as pi given that the inference is

performed per mutation type. The introduction of the c
!

indicator vector allows us to better penalize models with a
large number of influencing motifs, that is, it will allow us to
use shrinkage in the model to avoid overfitting. We further

introduce j, a factor that can control for shrinkage that is
elaborated on below. Thus, our logistic regression model is
defined by �c, a vector of indicator variables indicating
whether the ith variable contributes significantly to the

model or not, b
!

, the vector of regression coefficients that
increase or decrease the probability of a mutation in a con-
text, a, the baseline mutation rate in the absence of any
context, and j, a shrinkage factor. We use the properties of

the logit�1 xð Þ ¼ exp xð Þ
exp xð Þþ1 which maps logit : R! 0; 1ð Þ

which guarantees that pi is always a valid probability.

Inference
We will use Bayesian variable selection to estimate c

!
. Our

approach is similar to classical methods used for QTL map-
ping. These methods aim to identify correlations between a
set of genetic markers (e.g., single nucleotide polymorphisms)
and a continuous phenotype (Yi 2004). There is usually a very
large number of single nucleotide polymorphisms (which
take the role of features) in a sample and a much smaller
number of samples. Moreover, often the different features are
correlated, mainly due to linkage in a genetic cross or linkage
disequilibrium in outbred populations. In our case, the motifs
are the features and the number of possible motifs is often
much larger than the number of mutations observed in a
given genome, especially when considering microbial
genomes that tend to be relatively small. Furthermore, there
is also a strong correlation between the different motifs (fea-
tures), as these may be nested within each other or may be
mutually exclusive. We address these problems by assigning a
prior distribution to each latent variable. The model is too
complex to allow analytical solutions, but we can infer the
posterior distribution using a Markov chain Monte Carlo
(MCMC) algorithm.

Posterior Probability Calculations
The posterior probability of the four latent variables can be
written as:

FIG. 2. Population mutations as a factor of the genomic contexts in
the ancestral genome. We start with an ancestral genome (also re-
ferred to here as a reference genome). In this original genome there
are several sequence contexts, three of which are illustrated here in
colored boxes; the red context, the blue context, and the yellow
context. A context might be present in the genome once (e.g., blue
and yellow contexts), might have multiple appearances (the red con-
text), or not to be present at all. After t generations the population is
no longer homogenous, and mutations might arise in different con-
texts (colored x marks). Elevated mutation rate or genetic drift may
lead to more mutations at a specific locus (see text for more details).
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pðc! ;b
!
; a; r;jjX; y;! l

!
Þ ¼

pðX; y;! l
!
jc! ; b

!
; a; r; jÞ � pðc! ; b

!
; a;r; jÞX

c0;b0; a0;r0;j0
pðX; y;! l

!
jc0
!
; b0
!

; a0; r0; j0Þ � pðc0
!
; b0
!

; a0; r0; j0Þ
/

pðX; y;! l
!
jc! ;b

!
; a; r; jÞ � pðc! ; b

!
;jÞ

¼ pðX; y;! l
!
jc! ; b

!
; a; r; jÞpðb

!
jc! ;rÞpðc! jjÞ

� pðjÞpða ÞpðrÞ:

The expressions in the numerator can easily be computed

when values for the latent variables are given: pðX; y;! l
!
jc! ;

b
!
; a; r; jÞ ¼

Yc

i¼1

li
yi

� �
p

yi

i ð1� piÞli�yi where pi is de-

fined above, c is defined above as the number of context þ
mutations, and we assume that yi � Binomial li; pið Þ.
Notice that we assume here that the number of mutations
observed for each context is small so that different mutations
in the same context are approximately independent of each
other. On the other hand, calculating the sum in the denom-
inator is intractable for all possible combinations of

c
!
; b
!
; a; r;j.

Prior Probability Specification
Prior for �
j is the model shrinkage factor controlling the model’s spar-
sity. Small j values will result in no signal at all (shrinkage is
too high); however, larger j values will increase the model
complexity. We define a uniform prior on j, such that
j � Uð10�200; 10�2Þ. The boundaries were set in order to
allow high shrinkage.

Prior for �
!

We define a simple Bernoulli prior probability distribution for

each element of c
!

so that Pr c
! jj
� �

¼ jq � 1� jð Þm�q,

where q is the number of “1” entries in c
!

. Taking j ¼ 0:5

defines a prior that gives equal weight to any c
!
: In practical

estimation, the collinearity between the predictors can lead
to instability. The collinearity for this problem has been de-
scribed previously as a “dilution” effect (George 2010). For

example, if XXCGX is a feature that increases the mutation
rate for C!T mutations, naı̈ve estimation of effects by count-
ing might also find that AXCGX significantly increases the
mutation rates, as the AXCGX motif contains the XXCGX
motif. To address this problem, we add a penalty to the prior

for c
!

. We use a method based on determinantal point pro-
cess (DPP) that has been shown to be effective in other
Bayesian variable selection problems (Ro�ckov�a and George
2014; Kojima and Komaki 2014, 2016). According to the DPP
method, the prior is weighted by powers of the determinant

of the correlation matrix, Pr c
! jj
� �

/ XT
c Xc

��� ���wjq

� 1� jð Þm�q, where Xc is a c� q matrix including only

the columns fijci
! ¼ 1g from the original matrix X and w

2 Rþ is a weight factor. The weighting provides a computa-
tionally tractable approach for mitigating the effect of the
dependencies between the features. If all features are

completely independent XT
c Xc

��� ��� ¼ 1, whereas in the case of

full dependency (collinearity) between at least one pair of

vectors the matrix will be singular and XT
c Xc

��� ��� ¼ 0.

Prior for �
We define the prior probability for the regression coefficients,
b
!
jc! ; r, as:

p b
!
jc!

� �
¼
Ym
j¼1

p bjjcj ¼ 0
	 
I cj¼0ð Þ

p bjjcj ¼ 1
	 
I cj¼1ð Þ

;

Where I �ð Þ is the indicator function, p bjjcj ¼ 0
	 


¼ N 0; r2ð Þ;
and p bjjcj ¼ 1

	 

¼ N 0; C2r2ð Þ for some variance r2 and

some constant C: It is possible to either infer r2 from the
data or to define it as a constant; here we chose to infer it
from the data. Notably when cj ¼ 0; the regression coeffi-
cient is undefined and bj is unidentifiable.

Prior for �
a represents the mean rate of base modification, which we
refer to here as the base mutation rate. We assume a is nor-
mally distributed p að Þ ¼ Nðrmean; r2

SDÞ where
ri ¼ yi

li
for i 2 1 . . . cgf , and use the empirical mean and

Table 1. An Example of Sequencing Data and Associated Breakdown into Context, Motifs, and Counts.

Context and 

muta�on …

(counts of all 

muta�ons 

with a given 

context)

(number of 

observa�ons 

at the given 

context)

1 0 … 0 110 20000

0 1 … 1 84 202

…

NOTE.—The main variables, X, are shaded in gray, representing the indicators for presence/absence of motifs within a context. In the first row of this example, we observe C!T
mutations within the context ACA in 110 of the individuals in the population sequenced, out of a total of 20,000 sequences (reads) covering all ACA contexts.
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variance inferred from the data, thus

rmean ¼ Riri

m ; rSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri rmean�rið Þ2

m�1

q
:

Prior for �2

r2 can be set as a hyperparameter or can be inferred from the
data with a variety of possible priors. A simple prior for r2 is
the uniform prior r2 � U low; highð Þ, where “low” and
“high” are set arbitrarily.

MCMC Implementation
To traverse the posterior distribution, we chose to use MCMC
using a Metropolis–Hastings method (Hastings 1970).

Our MCMC algorithm works as follows:

(1) We start from an arbitrary point (b0; c0; a0; r0; j0Þ.
(2) We then define a transition kernel, that is, the set of

probabilities for proposing a new parameter value
given the previous value. Let the parameters in
the ith step be bi; ci; ai; ri; ji:A new set of parameters
b�i ; a

�
i ; r
�
i are sampled based on Gaussian distribu-

tions for each variable: b�i � N bi; Imð Þ; a�i � N
ai; 1ð Þ; r�i � N ri; 1ð Þ: For ci

� the update kernel

assumes ci � c�i
�� �� ¼ d � Pois kð Þ for some k and

randomly choose d entries to flip. For j�i we sample
based on a Gaussian distribution;

j�i � N ji; minð10�1; ji � 102�kÞ
	 


; where k is the

number of accepted steps in the previous 100 itera-
tions, doubled since there are two possible directions
(i.e.,increasing or decreasing j). As we aim for lower
kappa values,we set a lower bound on the distribu-

tion’s standard deviation. The use of ji � 102�k will re-
sult in bigger steps upon extensive acceptance, and
smaller steps towards convergence.
Then we accept b�i ; c

�
i ; a
�
i ; r
�
i ; j
�
i with probability of

min 1;
Pr X; y

!
; l
!
jb�i ;c�i ;a�i ;r�i ;j�i

	 

p b�i ;c

�
i ;a
�
i ;r
�
i ;j
�
ið Þ

Pr X; y
!
; l
!
jbi ;ci

;a
i
;r

i
;ji

	 

p bi ;ci

;a
i
;r

i
;jið Þ

 !

where p �ð Þ is the prior.
(3) After the chain has completed a predetermined num-

ber of iterations (burn-in), we use the ergodic averages
of each parameter to approximate the posteriors.

Results

Simulated Data Sets
In order to verify the performance of our method, we simu-
lated population NGS data. Our aim was to mimic evolving
populations of viruses where rare mutations are often ob-
served widely across the genome. Accordingly, our simula-
tions mimicked population sequencing of oral poliovirus
(Stern et al. 2017) with a genome length of �7,500 bases at
a sequencing depth of �100,000 reads per locus. Using an
adaptation of the Moran model (Materials and Methods), we
introduced an increased or reduced mutation frequency
based on k¼ 5 contexts. We assume a given ancestral se-
quence and simulate each position independently, in line
with our short-term evolutionary experiments, in which we

do not expect more than one mutation per genome over the
course of the experiment. Fourteen generations of mutations
only (no selection) were simulated, with a population size of
N ¼ 105 and mutation rate of u ¼ 10�5. In each of 500
simulated data sets, we introduced a different number (be-
tween 0 and 3) of motifs influencing the mutation rate of a
specific mutation type. We then used our inference frame-
work to infer which were the influential motifs in each of the
simulations. We defined a threshold, t, such that if the pos-
terior probability that motif i has an effect on the mutation
rate is larger than t, pðci ¼ 1jX; y;! l

!
Þ > t, we predict that

motif to affect the mutation rate. The posterior probability of
ci ¼ 1 is estimated as the average occupancy time of the
Markov chain in the state ci ¼ 1.

Figure 3 summarizes the results of the simulations for given
different thresholds of t. We will consider a motif as a true
positive if it was originally simulated and determined as hav-
ing an effect on mutation rate for a given threshold t, and
consider a motif as a false positive if it was not originally
simulated but detected as having such effect. A motif that
was not simulated and was not determined as effecting mu-
tation rates will be considered as a true negative. All in all, the
accuracy rate was very high across all thresholds tested, dem-
onstrating the power of the approach to accurately detect the
influence of a motif on the rate of mutation. High accuracy is
contributed due to remarkably high true negative rate (spe-
cificity) as expected from imbalanced data predictions. This
means that given a set of all possible motifs for a chosen k,
the number of influencing motifs which satisfy pðci ¼ 1jX;
y;
!

l
!
Þ > t for a large enough t will be miniscule compared

with the noninfluencing ones. For example, a model that
predicts ci ¼ 0 for all i will naturally result in high true neg-
ative rate (most motifs are eventually labeled as 0) and con-
sequently high accuracy. Thus, we choose to use precision
and recall as our evaluation metrics. We obtained the preci-
sion ( TP

TPþFPÞ and recall ( TP
TPþFN), also known as sensitivity and

used the F1 score, which is the harmonic mean of precision
and recall (2 � p�r

pþrÞ, to evaluate the trade-off between preci-
sion and recall.

In order to approximate the false discovery rate (FDR), we
measured the Bayesian FDR defined as the expected proba-
bility of labeling a motif as nonsignificant given that the motif
is considered significant by a threshold t. More formally:

Bayesian FDR ¼ E P ci ¼ 0jX; y
!
; l
!
; �ci � t

� �h i
for all i

Where �ci is the ergodic average calculated to approximate
the posterior as defined in the MCMC implementation.

Given a threshold of 0.8, our false positive rate is <3%,
suggesting that the method has high specificity, that is, we
correctly reject noninfluential motifs (fig. 3). The low false
positive rate promotes high precision; however, not all motifs
are successfully identified, leading to lower recall. When ana-
lyzing the few false positives of the method, we noticed that
the vast majority of motifs incorrectly inferred were motifs
embedded in the true simulated motif (e.g., AXXXX when the
true motif was AAXXX). This suggests that the DPP method
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used to remove correlated motifs still has its limitations, and
the incorrectly inferred motifs are still valid (see supplemen-
tary fig. S1, Supplementary Material online).

Introducing Noise into the Analysis
In the simulations above, all sites were simulated as neutral,
and the observed frequencies were assumed to be the true
frequencies. However, in real biological data, these two
assumptions will likely be problematic. For one, there is no
set of genomic sites known to be completely neutral.
Typically, synonymous sites are assumed to be neutral, yet
a subset of these sites may be under selection, particularly in

viruses (Chamary et al. 2006). Moreover, the observed muta-
tion frequencies will be affected by sampling and thus will
likely deviate from true mutation frequencies. Thus, in order
to test how our method fares with noisier data, we tested the
inference of CIPI on “noisy” data, defined here as such when
(i) a proportion of sites deviate from neutrality, and (ii) sam-
pling is applied as described above. The accuracy of inference
was examined as a function of b, the proportion of nonneu-
tral sites, and sequencing noise. Setting b to zero yields no
context effect, as

Pm
j¼1 bjcjXQj þ a ¼ a, thus we expect the

F1 score to asymptotically approach zero. We show that for
ranging bs the effects of noise are negligible.

A

B

FIG. 3. Accuracy analysis of CIPI on simulated data, as a factor of b values. (A) From left to right: F1 score, Bayesian FDR, precision, and recall. For
b ¼ 0; the F1 score is substantially low as we impose zero contribution to all motifs. Increasing beta highly improves our prediction, converging
almost to the same scores. (B) Precision–recall curve.
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We were interested in comparing our method to alterna-
tive methods. However, many methods are based on assump-
tions that are violated in our case, mostly the lack of a
phylogenetic tree for NGS data (Siepel and Haussler 2003)
or the fact we are dealing with short genomes where not all
contexts exist (Aggarwala and Voight 2016). We thus imple-
mented a naı̈ve method for inferring sequence context, where
the motifs that have the highest mutation rate are picked
(Materials and Methods). Notably variations of this naı̈ve
method are widely employed in the literature today
(Schneider and Stephens 1990; Sandelin et al. 2004; Dey
et al. 2018). We also compared our results with a model based
on “random” inference, which assigns ci ¼ 0 for all i. Our
results show dramatically superior inference to both the
naı̈ve and random approaches (fig. 4). (For precision and re-
call as a factor of threshold and performance under extreme
selection see supplementary figs. S2 and S3, Supplementary
Material online.)

Oral Polio Vaccine Virus Experimental Evolution Data
Set
To further examine the biological applicability of the method,
we applied it to oral poliovirus 2 (OPV2) sequencing data
(Stern et al. 2017). The experiment was designed to record the
mutation frequencies of OPV as it was serially passaged in
tissue culture. Notably, the very high sequencing depth of this
experiment, spanning 105 � 106 reads per position, com-
bined with very high mutation rates of the virus (spanning
10�4 � 10�5 mutations per base per replication cycle), made

these data perfect for our model. In order to rule out the
effects of selection that can easily mimic the effects of in-
creased or decreased mutation rate, our analysis focused only
on synonymous mutations that are mostly (although not
always) neutral. We further focused only on transition muta-
tions, as transversions are less frequent and hence inferred
with less reliability. We analyzed the last and seventh passage,
which corresponded to 14 viral replication cycles.

Table 2 presents the resulting motifs detected in passage 7,
at a threshold of t ¼ 0:8 for the probability that the motif
affects mutation rates. Intriguingly, many of the motifs
detected are compatible with editing by the enzymes
ADAR1 or ADAR2 (Eggington et al. 2011). Both enzymes
edit adenosine to inosine, which is detected as a A!G mu-
tation, and prefer A or U (T) upstream to the edited A. As
polioviruses copy both the positive and negative RNA strand
syntheses in the cell (Schulte et al. 2015), a T!C mutation on
the reverse-complement negative strand will be read as an
A!G on the positive strand (which is the reference genome
against which all reads are mapped). Accordingly, table 2
shows enrichment for A!G and T!C mutations as com-
pared with the composition of the OPV2 genome (P< 0.001,
Fisher exact test).

APOBEC Signatures Discovered in HIV-1 Data Set
To demonstrate the applicability of the method on different
types of NGS data, we obtained sequencing data of HIV-1
knowing to contain strong APOBEC3G signatures (Pollpeter
et al. 2018). APOBEC3G (A3G) is an antiviral host factor with

FIG. 4. Performance comparison for analysis of noisy and non-noisy simulated data sets. F1 scores (upper panel) and Bayesian FDR (lower panel) are
shown for nonnoisy (solid lines) and noisy data (dashed lines) for our CIPI model (left panels). Mid and right panels, respectively, demonstrate
reduced performance of a random model (Luck) and a naive model (main text).

Bayesian Framework for Inferring the Influence of Sequence Context . doi:10.1093/molbev/msz248 MBE

899

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz248#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz248#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz248#supplementary-data


cytidine deaminase activity, which in our terms is a C!U (T)
mutation. A3G was shown to deaminate the nascent minus
DNA strand of HIV-1, leading to an observed G!A hyper-
mutation on the þRNA genomic strand (Harris et al. 2003).
The DNA editing function of A3G is known to be context
dependent, where a focal G is observed to be followed by a
“G” or an “A” (GG or GA). We set out to analyze data from an
experiment that measured A3G activity directly on nascent
DNA strands (Pollpeter et al. 2018), and ran our inference
with k ¼ 5. Out of seven significant motifs, four were related
to the A3G context with b � 3, suggesting that we are also
capable of recognizing known enzymatic signatures on em-
pirical data with strong selection effects. The results are pre-
sented in table 3.

Running Times and Resources
We report running times of our method, obtained for a
2.5 GHz Intel Core i7 processor with 16 Gb of RAM. The anal-
ysis ran with a constant rate of 400 iterations per second, and
running 106 steps in one chain required�50 min for a�7,000-
base-long genome and utilized �300 MB of available RAM.

Discussion
We developed here a novel approach for the detection and
evaluation of sequence context on mutation rates. Our prime

motivation was to develop a method that is able to analyze
high-resolution deep sequencing data sets. One of the main
challenges in these data sets is the high dimensionality of the
data when accounting for sequence context. Thus, one of the
main novelties of the new approach is the use of Bayesian
shrinkage to take into account the fact that the number of
sequence motifs that affect mutation rates is likely much
smaller than the number of possible motifs. We conclude
that the method provides highly accurate results on simu-
lated data. In particular, we precisely identify the motifs which
do not influence mutation rate. Our remarkably low false
positive rate promotes high confidence in inferring influenc-
ing motifs; however, we also fail to detect some true motifs,
suggesting that our method is conservative. We believe that
this trend is due to a combination of the combinatorial com-
plexity of the inference and the Bayesian shrinkage leading to
a sparse c

!
vector. Too strong shrinkage might cause the

dilution of an existing effect, as setting the initial c
!

vector
to zero will show no effect at all.

Our analysis of empirical poliovirus data revealed the
potential effect of ADAR, a known protein known to edit
virus genomes. Remarkably, we were able to detect this
effect despite very low mutation frequencies of ADAR-
associated motifs (table 2). Further experimental work is
required to validate this finding. We also demonstrated
that our method fares well with other types of empirical

Table 2. Motifs Affecting Mutation Rates Detected in Empirical Data of Passage 7 of OPV2.

Mutation Type Motif Reverse
Complement Motif

Mean
Gamma

Mean Mutation
Rate

Context Mean
Mutation Rate

Increase/
Decrease

A!G XXAGA TCTXX 1 0.00041 0.00079 Increase
AAfiGG XTACXXTACX XGTAXXGTAX 11 0.000410.00041 0.001130.00113 IncreaseIncrease
A!G XXAAG CTTXX 1 0.00041 0.00098 Increase
A!G CXAGX XCTXG 1 0.00041 0.00019 Decrease
AA!GG XAAGXXAAGX XXTTTXXTTT 11 0.000410.00041 0.001130.00113 IncreaseIncrease
A!G XXAGG CCTXX 1 0.00041 0.00021 Decrease
C!T GCCXX XXGGC 1 0.00072 0.00027 Decrease
C!T CXCCX XGGXG 1 0.00072 0.00025 Decrease
G!A XXGCX XGCXX 1 0.00015 0.00085 Increase
G!A XCGXX XXCGX 1 0.00015 0.00085 Increase
TT!CC TXTAXTXTAX XTAXAXTAXA 11 0.000480.00048 0.00120.0012 IncreaseIncrease
T!C AXTXG CXAXT 1 0.00048 0.0015 Increase
TTfiCC XXTAAXXTAA TTAXXTTAXX 11 0.000480.00048 0.00080.0008 IncreaseIncrease
T!C XCTXG CXAGX 0.95 0.00048 0.00016 Decrease
TTfiCC XGTTXXGTTX XAACXXAACX 0.990.99 0.000480.00048 0.000210.00021 DecreaseDecrease
T!C XTTXA TXAAX 0.83 0.00048 0.0003 Decrease

NOTE.—Motifs exceeding a threshold (mean gamma) of 0.8 are presented. Motifs in the context of ADAR are shown in bold.

Table 3. Motifs with Positive Effect on Transition Mutation Rates Detected in HIV-1 Empirical Data.

Mutation Type Motif Mean Gamma Mean Mutation Rate Context Mean Mutation Rate Increase/Decrease

GfiA AGGXX 1 0.08 0.22 Increase
GfiA TTGXX 0.93 0.08 0.1 Increase
GfiA XTGXT 1 0.08 0.14 Increase
GGfiA CXGCXGGGXX 11 0.080.08 0.430.43 IncreaseIncrease
GGfiAA TXGTXGGGXX 11 0.080.08 0.220.22 IncreaseIncrease
GGfiA XXGXXGGGGG 11 0.080.08 0.590.59 IncreaseIncrease
GGfiA XXGXXGAAGG 11 0.080.08 0.370.37 IncreaseIncrease

NOTE.—Motifs exceeding a threshold (mean gamma) of 0.8 are presented. All presented motifs are of mutation type G!A. The transitions C!T, T!C, and A!G did not
contain motifs which were significant for positive effects. The motifs in A3G context are shown in bold.
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data where the effects of selection are much stronger. We
successfully captured motifs which are associated with
APOBEC3G editing in HIV-1 data, and thus we conclude
that the method can be generally applicable to virus NGS
data.

Having said that, we would like to recognize some limita-
tions that could restrict the reliability of inferences based on
our method. The assumption of neutrality is essential to the
analysis as point mutations which strongly deviate from neu-
trality might promote the appearance of a context effect. This
might be especially true for empirical data. The more data
that are available (e.g., the more synonymous sites analyzed),
the more the effect of a handful of nonneutral sites will be
diminished.

In the analysis described here, we assumed the absence of
genetic drift by pooling counts of all mutations in a given
context. Our experiments were performed using very large
population sizes; however, the copy number of the mutations
was very low, and thus genetic drift is most likely very prom-
inent, mostly in the earlier passages of the experiment. To this
end we focused on the last passage where we noted fewer
fluctuations of mutation frequencies, associated with drift
(Zinger et al. 2019). Although random genetic drift is not di-
rectly modeled, our simulations do incorporate genetic drift.
Reassuringly, we did not observe false positives due to drift,
most likely because drift will not affect one specific context
consistently. We note that our model does allow analysis of
data where one counts polymorphisms rather than mutations;
for our setup where high mutation rates of viruses lead to a
polymorphism at most sites of the genome, this is irrelevant.

To summarize, we have developed a robust method that
has the potential and the strength to identify influential se-
quence contexts, and this may shed light upon the underlying
mechanisms of both polymerases and other enzymes that
render genetic modifications. The method is flexible, compat-
ible with a wide variety of applications and data sets and
should be fairly easily executed for the analysis of NGS data.
Although the method was designed with our recent experi-
ments of virus populations in mind, it is also generic enough
for other types of NGS data.

The python code for the method is publicly available via
GitHub under https://github.com/SternLabTAU/CIPI. The
data used in this study are available through Zenodo under
the https://zenodo.org/record/3408598 with a direct link
through the GitHub repository.

Materials and Methods

Moran Model for Simulating Context Dependence
To simulate viral sequences where the rate of mutation
depends on the context, we use an adaptation of the four-
allelic Moran model previously described for simulating the
evolution of cancer cells (Zhu et al. 2011). This model is a
continuous time birth–death model. Usefully, this model
takes into account large population sizes and allows for dif-
ferent mutation rates, both of which are relevant in our case.
We simulate each position independently, while taking into

account the context of the position as described below. Each
allele is one of the four nucleotides.

Let N be the population size. For a given position i, at
time t we define a vector Vt 2 N4 s:t RjV

t
j ¼ N. Thus,

each entry Vt
j is the number of genomes with the jth allele

in the ith position. We initialize

V0
j ¼

N if the original nucleotide at position i is j

0 else

(

meaning that we start the simulations from a homogenous
population of genomes defined by the original sequence.
When an individual of type j dies it is replaced by randomly
selecting a parent from the N options and copying it. Notably,
the model we used (Zhu et al. 2011) also defines, for each

phenotype j, a different fitness value 1þ sj

	 

and different

mutation rates ljj0 for each j 6¼ j0 that changes the allele of

the individual. In the first set of simulations reported in the
Results section, we assume neutrality for all mutations, and
hence set sj ¼ 0 for every j. In order to model the influence
of context, we assume that there are different ljj0 for differ-

ent sequence contexts. For each position at a given context Q,

lQ
jj0 ¼ logit�1ð

Pm
j¼1 bjcjXQj þ aÞ, similar to the way context

was assumed to affect mutation rates in our model above.
The evolutionary process defined above is a Markov chain
and we assume that births/deaths occur at a constant rate in
time such that time can be measured continuously. At
time t the state of the chain is Vt ¼ ðVt

1;V
t
2;V

t
3;V

t
4Þ. For a

four-allelic model, we have 12 possible events that can

change the state of the chain, Vt ! Vt0 ; by decreasing the
value of Vt

j and increasing the value of Vt
j0 for some

values of j and j0, j 6¼ j0.
The rate of such a transition is

r Vt;Vt0ð Þ ¼
Vt

j�Vt

j
0 ð1þsj0 ÞP

i
vt

i
ð1þsiÞ

þ Vt
j � l

Q
jj0 .

Let R ¼
r1
. . .
r12

 !
be the rates of all 12 possible transitions

that can occur at any given point in time. Furthermore, define
a matrix S4�12 where entry i; j of the matrix equals

Si;j ¼

1 transition j increments nucleotide i by 1

�1 transition j decreases nucleotide i by 1

0 else

:

8>><
>>:

Then, the change in allele frequency through time is given
by dV

dt ¼ S� R. Using standard stochastic simulation algo-
rithms (Gillespie 1977), we then simulate this process to gen-
erate samples of genetic data. As the mutations are all
assumed to be segregating at low frequencies, which is true
for the experimental viral sequence evolution data that we
hope to emulate, we will approximate the sequence evolution
as the union of multiple independently evolving sequence
sites.
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Simulating Noisy Frequencies and the Effects of
Purifying Selection
In order to simulate mutation frequencies that underwent
sampling, we began with the set of simulated frequencies
described above which we assumed to be our true frequen-
cies and assumed N¼ 1,000,000 genomes. We then applied
binomial sampling on the frequencies and sampled 100,000
genomes for sequencing. We further tested the method when
a proportion of sites deviate from neutrality. We simulated
500 data sets with a varying number of loci under selection,
where selection coefficients were sampled based on a distri-
bution of fitness effects from an empirical data set of RNA
viruses (Sanjuan et al. 2004).

Comparison with a Naı̈ve Approach
We wished to compare our method with other approaches.
However, all existing methods were inappropriate for our
data: We cannot use any phylogenetic methods as the short
read NGS data do not allow reconstructing a phylogenetic
tree. Also, we cannot use the regression analysis described in
Aggarwala and Voight (2016), which originally was used for
analyzing the human genome, as the transition into poly-
morphisms in a small genome violates several of the model’s
assumptions. Thus, we set out to implement a naı̈ve solution
for inferring the motifs in which the mutation rate is elevated.
Given the frequencies of all mutations in a genome and a
defined mutation type, we considered the top 1% contexts
with the highest average mutation rates. Formally, for a con-
text C that appears n times in a genome we define f C

l ðiÞ as the
frequency of the mutation l ¼ ða! bÞ at position i in the
context C. Then, we average all frequencies of all positions
that share the same context.

The average mutation rate in context C will be:

�f C
l ¼

1

n

Xn

i¼1

f C
l ðiÞ:

For the top 1% most frequent contexts, we obtain all the
contained motifs and label them as significant.

Empirical Data analysis—Poliovirus Data Set
We analyzed the oral poliovirus 2 (OPV2) sequencing data
reported by (Stern et al. 2017), using mutation frequencies as
reported therein.

Empirical Data analysis—HIV Data Set
We analyzed HIV-1 data reported by Pollpeter et al. (2018).
Raw fastq files were downloaded and mapped using an in-
house computational pipeline to the HIV-1 reference genome
pNL4-3 (accession number AF324493.2) at positions 1–180,
as per the original paper. The coverage obtained matched the
paper’s description.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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