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Population displacement may occur after natural disasters, per-
manently altering the demographic composition of the affected
regions. Measuring this displacement is vital for both optimal
postdisaster resource allocation and calculation of measures of public
health interest such as mortality estimates. Here, we analyzed data
generated by mobile phones and social media to estimate the weekly
island-wide population at risk and within-island geographic hetero-
geneity of migration in Puerto Rico after Hurricane Maria. We com-
pared these two data sources with population estimates derived from
air travel records and census data. We observed a loss of population
across all data sources throughout the study period; however, the
magnitude and dynamics differ by the data source. Census data pre-
dict a population loss of just over 129,000 from July 2017 to July 2018,
a 4% decrease; air travel data predict a population loss of 168,295 for
the same period, a 5% decrease; mobile phone-based estimates pre-
dict a loss of 235,375 from July 2017 to May 2018, an 8% decrease;
and social media-based estimates predict a loss of 476,779 from Au-
gust 2017 to August 2018, a 17% decrease. On average, municipalities
with a smaller population size lost a bigger proportion of their pop-
ulation. Moreover, we infer that these municipalities experienced
greater infrastructure damage as measured by the proportion of un-
known locations stemming from these regions. Finally, our analysis
measures a general shift of population from rural to urban centers
within the island. Passively collected data provide a promising sup-
plement to current at-risk population estimation procedures; how-
ever, each data source has its own biases and limitations.
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In the aftermath of natural disasters, both short-term population
displacement and longer-term migration may occur, leaving

some affected regions permanently altered (1–3). Measuring
population displacement is a priority in the immediate days and
weeks after an event like a hurricane or flood for the provision of
aid and other supplies to communities in need. It is also critical to
inform mortality estimates and other measures of public health
interest that require an up-to-date denominator since census es-
timates may be rendered inaccurate (4, 5). Measuring shifts in
demographic composition and the geographic distribution of
populations on longer timescales is also critical to rebuilding ef-
forts and to the development of frameworks for building resilience
to future disasters. Currently, however, few data sources can be
used to rapidly assess and monitor population displacement in the
short- and medium-term timescales after disasters happen (6).
In the absence of reliable migration data in the wake of nat-

ural disasters, the population size estimate used by government
agencies and researchers generally relies on census estimates and
assumes a linear change in population size between intervals or a
constant population size since the most recent estimate (7, 8).
New approaches to estimating fluctuating denominators in near
real time would greatly improve disaster response and the as-
sessment of local needs in the short- and long-term aftermath.
Rapid censuses conducted in short intervals before and after a
disaster are both logistically and financially impractical. In an

increasingly digitally connected world, however, passively col-
lected digital records are often maintained by technological
services providers for billing or marketing purposes. These data,
such as flight information, mobile phone data, or social media
traces, can provide insight into the fluctuation of their respective
populations at a high temporal and geographic resolution, both
before and after a disaster. Assuming that appropriate steps are
taken to anonymize and aggregate these data streams in secure
ways, novel data streams offer ways to assess the needs of pop-
ulations more accurately (9, 10).
Hurricane Maria made landfall in Puerto Rico as a category 4

storm on 20 September 2017, becoming the third costliest hur-
ricane in US history (11, 12). In the ensuing weeks, the damage
to infrastructure caused by the storm resulted in a widespread
lack of access to electricity, communication, and health services
(13, 14). Population displacement off the island and within
Puerto Rico was widespread, although this was difficult to monitor
directly. Direct and indirect mortality caused by the storm also
increased in the months after the hurricane (8, 13–17), but esti-
mating mortality was made more complicated by the migration of
populations because the population at risk in different parts of the
island was shifting over time. Due to Hurricane Maria, the US
Census Bureau ceased operations of the Puerto Rico Community
Survey (PRCS; a monthly survey of 36,000 housing units across the
island) from October to December 2017. Operations resumed in
January 2018, with early results showing an island-wide increase in
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out migration in 2017 compared with 2016 (18). The most recent
updates from the PRCS show a continued increase in out migra-
tion with a general population that decreased by 4% from 2017 to
2018 (19).
In this study, we evaluate two passively collected data sources

and compare them with data on air travel and census data to
evaluate the effects of Hurricane Maria on large-scale population
fluctuation in Puerto Rico. We investigate the ability of these data
sources to estimate the island-wide population at risk postdisaster
and identify within-island geographic heterogeneity in population
migration after the storm. We observe a nonlinear change in pop-
ulation at risk following Maria and show that this difference is af-
fected by rurality. These passively collected data sources also provide
insight into regions that are more heavily affected by disasters and
can augment the resources available to first responders. Each data
source has its own limitations and biases and could be used in
conjunction with traditional census-based population estimates to
improve the response to natural disasters, and to understand how to
build more resilient systems in anticipation of future events.

Results
Data Sources. We compared four independent datasets to esti-
mate population changes over the course of a year after the
hurricane. First, we obtained the intercensal yearly population
estimates provided by the American Community Survey (ACS)
for 2010 to 2018, a yearly survey conducted by the US Census
Bureau. The ACS estimates are for 1 July of each year. We
considered this estimate to be our gold standard.
Second, we extracted data from Disaster Maps provided by

Facebook’s Data for Good team. Specifically, for a group of
people determined to be living in Puerto Rico the week before
Hurricane Maria, weekly estimates from 21 August 2017 to 30
July 2018 on the number of these users residing in 77 of the 78
municipalities on the island were available. Note that these data
are a closed cohort of known individuals, so no new users appear
in the data, and there is a constant rate of attrition of users
expected. However, this is also the only dataset on a munici-
pality, rather than an island-wide, level.
Third, Teralytics provided island-wide daily population pro-

portion estimates from 31 May 2017 to 30 April 2018 based on

cell phone usage patterns, analyzed in partnership with an un-
named mobile operator on the island. Since we do not know
which operator the data are from, it was impossible to assess the
geographic bias in ownership in this group. The proportions were
calculated relative to a baseline population determined by Ter-
alytics using a method unavailable to the authors. Due to the
unreliability of data for the 4 wk after Hurricane Maria, pre-
sumably due primarily to low connectivity, proportion estimates
were not provided for this time period.
Finally, we obtained Airline Passenger Traffic (APT) data from

the US Bureau of Transportation Statistics (BTS) through the Puerto
Rico Institute of Statistics. The data are composed of monthly counts
of passengers who arrived and left the island per month from January
2010 to February 2018. These data are unbiased, but they have a
coarse temporal and geographic scale and cannot account for the
same individuals on repeated trips or distinguish Puerto Rican resi-
dents from short-term aid workers and other visitors.
Details on how each of these datasets was constructed are

included inMethods, and a side-by-side comparison is found in SI
Appendix, Table S1.

Population Decreased after Hurricane Maria. We found agreement
across all data sources of a consistent loss of population from 1
July 2017 to 1 July 2018; however, the dynamics and magnitude of
the loss differ between data types (Fig. 1). The ACS predicts a
population loss of 129,848, a 4% decrease; the APT data predict a
population loss of 168,295, a 5% decrease; the Teralytics data
predict a population loss of 235,375, an 8% decrease; and the
Facebook data predict a 17% decrease, which equates to a total
estimated population loss of 475,779 on the island. In all cases, we
observed a sharp drop after the hurricane. Both the APT data and
Teralytics data show a rebound in population and stabilization
after 31 December 2017. The Facebook data do not show stabi-
lization until April 2018. We note that Facebook data are based
on a closed cohort that is not able to measure population increases
due to immigration to Puerto Rico. However, it does represent the
cohort that likely experienced Hurricane Maria since the selection
criteria used by Facebook’s algorithm ensure that transient pop-
ulations, such as tourists, are not included in the closed cohort.

Fig. 1. Population estimates for each data source.
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Small Municipalities Lost a Larger Portion of Their Population
Compared with Large Ones. Facebook provided municipality-
level data that allowed us to assess within-island migration. For
each municipality, the data included weekly counts of individuals
still in the municipality and new to the municipality. For privacy
protection, the new to municipality data were not included if the
number of users was below a prespecified threshold (Methods has
details on the data imputation techniques used, as well as a
sensitivity analysis comparing different imputation approaches).
We found that the share of users belonging to each municipality
was highly correlated with the baseline population size of each
municipality (SI Appendix, Fig. S1). On average, municipalities
with a smaller population size lost a bigger proportion of their
population during the study period (Fig. 2). The municipality of
Toa Baja was a large outlier (SI Appendix, Fig. S2) due to a
reported surge of new individuals moving there at the end of the
study period. Possible explanations for Toa Baja being an outlier
are provided in Discussion. Apart from this outlier, San Juan,
which is the capital of Puerto Rico, is the only municipality with
more individuals at the end of the study period relative to
baseline.

Within-Island Migration Shifted Populations from Rural to Urban
Regions. All municipalities experienced loss of their baseline
resident populations. Much of this loss is explained by off-island
immigration (Fig. 3). However, the locality gaining the most new
residents was San Juan (Fig. 3). In fact, for urban areas, the
baseline resident population loss was compensated by in migra-
tion from other municipalities. For example, San Juan experi-
enced a 19% loss of its baseline resident population but ended
the study period with a 7% increase in total population, sug-
gesting an in migration of 26% by the end of the study period.
Another appealing aspect of these data is that they provide in-
formation on the destination of those displaced (Fig. 3B). Note
that the top two destinations for Facebook users in our cohort
were Miami, FL, and Jacksonville, FL, respectively. These results
taken together suggest a migration pipeline from rural to urban
municipalities and likely off island.

Infrastructure Damage Was Greater in Rural Areas. Disaster Maps
provided information about the proportion of people whose lo-
cation is unknown for a particular week. Unknown locations may
be the result of 1) people stopping use of Facebook, 2) people
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Fig. 2. Small municipalities lost a larger portion of their population compared with large ones. (A) Relative change in the population of Facebook cohort
members per municipality. Each curve corresponds to a different municipality. Population size in July 2017 is denoted by color. (B) Average percentage change
in population at the end of the study period, relative to baseline, compared with the ACS population size of the municipality at baseline. The geographical
regions are presented in SI Appendix, Fig. S5. We fitted a linear model to each population curve and computed the average percentage change using the first
and last fitted values. The vertical line corresponds to the day when Hurricane Maria made landfall in Puerto Rico.
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having changed their Facebook behavior, or 3) loss of electricity
and communication infrastructure. In the first full week of data
collection immediately after the hurricane, approximately half of
the cohort members did not register a location (Fig. 4A), likely
due to the widespread loss of infrastructure. During this week, the
proportion of users with reported unknown locations was sub-
stantially higher in the rural areas compared with in urban areas
(Fig. 4B and SI Appendix, Fig. S3). We focused our analysis to only
include the week immediately following the impact of Hurricane
Maria to ensure that any loss of individuals in a region was not
likely to be due to population migration. This is especially im-
portant as there was widespread damage to roads and loss of
transportation infrastructure during this time (12).
In SI Appendix, Table S2, we show the top 15 municipalities that

had a greater proportion of cohort members with their location un-
known compared with the island-wide average. While rurality is di-
rectly linked with availability of infrastructure, the Facebook data
highlight the heterogeneity in loss of access to resources in the im-
mediate aftermath of a disaster. Some municipalities continued to
havemissing data relative to the island-wide average for manymonths.

Discussion
We show that passively collected data sources for estimating
population displacement may provide insights into the dynamics

of migration following a natural disaster that cannot be obtained
using traditional methods. Our results point to a consistent and
long-term loss of population in Puerto Rico after Hurricane
Maria. In the Teralytics data and the flight data, the decrease in
population levels off in December 2017, and in January 2018, we
see a rebound in Puerto Rico’s population. In the Facebook data,
the population loss continues until April 2018, resulting in the
lowest overall population estimate. Both datasets provided island-
wide population estimates that were lower than the ACS vintage
2018 point estimate. The discrepancies in population estimates are
explained, in part, by the different sources. For example, the
Facebook data constitute a closed cohort, whereas the Teralytics
and flight data are two open cohorts with different inclusion and
exclusion dynamics, and ACS data are based on surveys carried
out on the island (SI Appendix, Table S1). Nevertheless, taken
together, these data sources highlight the dynamic and consistent
population displacement in the wake of the hurricane.
The decline in the population before Hurricane Maria may

seem surprising but a closer inspection of the context yields two
explanations for this phenomenon. 1) The dwindle in population
coincides with the end of summer; hence, we expect tourists and
visitors to leave the island around this time (20). Note that this is
captured by both the Teralytics and APT data, which is expected.
2) The sharp decrease beginning a few weeks before the storm

A

B

Fig. 3. Immigration of Puerto Rican Facebook (FB) cohort members within and outside of Puerto Rico. (A) Top six municipalities in Puerto Rico in terms of influx
of FB cohort members who were located elsewhere before Hurricane Maria. (B) Top five destinations of FB cohort members after Hurricane Maria. The “Others”
curve corresponds to the influx of all other destinations together. The vertical lines correspond to the day when Hurricane Maria made landfall in Puerto Rico.
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may be explained by the close encounter with Hurricane Irma,
which scraped the northeastern part of the archipelago (21).
Population displacement estimates based on the demographic
balancing equation yield similar results (22). Although each has
its own biases, these passively collected data estimates follow
similar trends and show dynamic population fluctuations. In all
cases, this decrease in population is markedly different from the
trend since 2010 (SI Appendix, Fig. S4).
Our findings further suggest a rural–urban shift in population.

Using Facebook data to analyze within-island movements, we
observed persistent migration from rural to urban areas of Puerto
Rico. This may be explained by individuals migrating from rural to
urban areas in search of basic needs in the short term and staying
due to increased access to resources in the long term. Out migra-
tion from rural areas continued in the Facebook cohort throughout
the available data, becoming more concentrated in urban areas.
Previous household surveys suggest greater out migration among
younger individuals, potentially changing the demographic distri-
bution of rural vs. urban regions in important ways (14).
In the immediate aftermath of a disaster, electricity, commu-

nication, and transportation are often affected, leading to sparse
information on the areas most heavily affected. Assuming that
individuals will continue to use services like mobile phones and
Facebook if they had access, the lack of interaction with these
services could serve as a proxy for damage from the hurricane.
Spatial and temporal granularity in these immediately available
datasets could augment satellite imagery and primary data sources

to more readily target priority areas for response. In the Facebook
data, we can see that in the weeks immediately following Hurri-
cane Maria, we identify areas that had larger proportions of co-
hort members whose locations were unknown compared with San
Juan. Travel in most of these areas was impossible due to debris
that was blocking streets and highways. Hence, this finding is not
confounded with the rural–urban shift in the population described
above. These areas coincide with rural municipalities found to be
some of the first declared as disaster zones posthurricane (23).
Passively collected data provide a promising supplement to

current at-risk population estimation procedures; however, each
data source has its own biases and limitations. The population
estimates from Facebook vs. Teralytics diverged significantly
both before (by >9,500 people on 20 September 2017) and after
(by >210,000 people on 20 April 2018) the hurricane. These data
are not necessarily comparable since neither the market share of
mobile phone providers nor Facebook users are likely to be
perfectly representative of the overall population. In general, we
expect those not included in the Facebook or Teralytics sample
to be those without phones or internet access, which would likely
include children, the elderly, and the very poor (24).
For privacy reasons, we were unable to analyze the demo-

graphic composition of the Facebook cohort, but these data
represent a meaningful proportion of the Facebook population
(25). Further, we showed that the percentage of users from each
municipality is highly correlated with the baseline population
size. The Facebook data also represent a closed cohort, unlike
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the other sources. Membership into this group is defined during the
5-wk precrisis period, and no individuals can enter afterward. This
means that this cohort will inherently only decrease in size. This rate
of decrease is driven by 1) the baseline mortality rate, 2) the excess
mortality due to the crisis, and 3) the baseline rate of discontinuation
of Facebook use. One important advantage of Facebook data is the
ability to analyze within-island movement patterns, which is not
possible using flight or Teralytics estimates. Teralytics analyzed mo-
bile phone data from a particular mobile operator of unknown
market share and uses a proprietary algorithm to generate their
population estimates, precluding any evaluation of primary sources or
inherent biases. In both cases, it is impossible to accurately quantify
the direction or magnitude of the biases. We have specified the
benefits and drawbacks of each data source in SI Appendix, Table S1.
Despite the limitations of each dataset, passively collected data

sources still provide a useful estimation of population displacement.
The imputation procedure and the normalization of each dataset
using baseline population values aim to ameliorate some of these
limitations (Methods). The limitations of Facebook’s data suggest
that we are underestimating the true population size. However, the
imputation procedure introduced here aims to mitigate that. Fur-
ther, Facebook has expanded and introduced new datasets that do
not suffer from the same limitations as the one used here (26).
Research is needed to assess the capability of those datasets to
estimate population size, with particular focus on expanding the
study window to include data from previous or subsequent years
and perhaps incorporate other similar regions during the same
period for comparison. Given the paucity of data available imme-
diately after a disaster, these data streams provide a clear benefit
over the gold standard estimate for humanitarian purposes.
Our data show that emigration after disasters has a nonlinear

effect on the count of population at risk and that this emigration
is heterogeneous by rurality, affecting the denominators of many
key population statistics. As interest in passively collected data
grows and these tools are further refined to overcome current
limitations, they can provide a more temporally and spatially
nuanced picture of population movements after disasters.

Methods
ACS. We obtained yearly population estimates from 2010 to 2018 from the
intercensal yearly population estimates provided by the ACS, a yearly survey
conducted by the US Census Bureau. Specifically, we have the vintage 2018
estimates that were published last year.

Facebook. Facebook is a social media company with over 2 billion monthly
active users. In 2017, the Data for Good team within Facebook launched
Disaster Maps with the goal of aiding response organizations with infor-
mation vital to optimal resource allocation in postdisaster settings. These
maps are built using privacy-preserving techniques including aggregation
and deidentification that protect individual privacy. The Harvard team
accessed these data free of charge through Data for Good’s standard license
agreement, which allows partners working in humanitarian operations and
research to improve their work through the use of Disaster Maps.

For this study, we used the original version of Facebook’s Displacement
Maps, a specific product within Disaster Maps (27), which has since been
updated to improve its data sources and methodology. However, work is
needed to assess the functionality of these improvements in the context
described here. Displacement Maps are generated by first defining a geo-
graphic bounding box along with an index date defining the disaster event
of interest. In this case, the geographic bounding box consisted of the entire
island of Puerto Rico, and the index date was 20 September 2017, the day
that Hurricane Maria made landfall on the island. In these data, Puerto Rico
is divided into 188 nonoverlapping geographical tags (geotags), and users are
assigned a home location defined as the geotags where they had the most
interactions with the Facebook platform through a browser during the 5 wk
prior to the index date. In the original Displacement Maps methodology, the
location of these interactions was determined from associated internet pro-
tocol addresses; the new methodology instead utilizes location-based data
from cell phones. Displacement Maps generate a closed population consisting
of people using Facebook satisfying the following two conditions: 1) they
registered an interaction with Facebook services from in the geographic

bounding box during the 5 wk preceding the index date, and 2) they were
present in their home location during the week before the disaster (28).

They then followed this cohort through July 2018 and calculated the most
commonly occurring geotag each week, aggregating total numbers of cohort
members per geotag. Geotags with fewer than 100 people at baseline were
excluded to protect privacy. Then, for each of the 49 wk after the index date,
the dataset includes the number of crisis-affected people in their home lo-
cation, the number of new users, and the number of unknown users for each
geotag. Cohort members were defined as having an unknown location if
they did not register an interaction during the week for which data were
aggregated. For our results, we assumed these people with unknown loca-
tions were in their home location. We then combined geotag counts into
Puerto Rico’s 78 municipalities. Due to low counts, the municipality of Las
María had no data. Below, we describe how we imputed other missing data.

Teralytics. Teralytics is a tech company thatworks with governments and private
clients to assess human movement by partnering with mobile network opera-
tors. Specifically, the partnership allows the company to access and analyze the
data that cell towers receive from mobile devices. From them, we obtained
island-wide daily population proportion estimates relative to an undisclosed
baseline from 31 May 2017 to 30 April 2018, based on all subscribers of a major
undisclosed telecom company that created events in Puerto Rico. Events were
defined as signal exchanges between a cell phone and the nearest cell phone
tower. These signal exchanges occurred, for example, when a phone call was
made or a text message was sent. The data were filtered by the provider, and
only subscribers with activity all over the Teralytics analysis period were con-
sidered (31 May 31 2017 to 30 April 2018). Activity was defined as an event on
at least 10 d/mo for all 12 mo. Due to the unreliability of data, proportion
estimates for 4 wk after Hurricane Maria were not provided. For every day, a
distinct number of subscribers in Puerto Rico is computed by considering events
generated from different mobile devices. It is important to note that Teralytics
is a commercial company that operates by competitively sourcing, cleaning, and
preprocessing these data. Therefore, much of this analytic pipeline is proprie-
tary and a black box to researchers. We have taken measures in our analysis to
more readily index and compare this source with others; however, as noted in
SI Appendix, Table S1, all of these sources have their benefits and drawbacks.

Aviation Records. Finally, through the Puerto Rico Institute of Statistics we
obtained APT data from the US BTS. The data are composed of monthly
counts of passengers who arrived and left the island per month from January
2010 to February 2018. The per-month difference between these two
numbers will be referred to as net migration. We added the monthly net
migrations to the vintage 2017 population estimates corresponding to the
same date and interpolated using a linear model between these data points.
This resulted in daily population estimates from July 2010 to July 2018 that
account for flight passenger movement (29).

SI Appendix, Table S1 has a side-by-side comparison of all of the data
sources. This research proposal was reviewed by the Harvard T. H. Chan
School of Public Health Institutional Review Board and was deemed exempt
as nonhuman subjects research.

Estimating Population Size. We estimated island-wide population sizes using
each of the four data sources. For the ACS data, we simply interpolated the
points for each year (SI Appendix, Fig. S3). For the other three sources, we
defined population size estimate Nt for time t using the following:

Nt = N0 × mt

m0
,

where N0 = 3,325,001, the ACS population estimate for 1 July 2017; mt is a
source-specific measurement for time t; and m0 is a source-specific baseline.
For the APT data, baseline was defined as 1 July 2017, mt corresponds to the
sum of N0 and the cumulative net passenger movement for month t, and m0

is the sum of N0 and the cumulative net passenger movement at baseline.
The formula above, therefore, is simply the cumulative sum, starting on 1
July 2017, of passengers arriving and passengers leaving:

m0 = N0 + (passengersout0 − passengersin0)

mt = N0 +∑
t

i=0
(passengersouti − passengersini),

where i represents the ith month after baseline and passengerouti and
passengerini are the passengers leaving and entering Puerto Rico in month i,
respectively. For the cell phone data, the baseline was also defined as 1 July
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2017; mt and m0 represent the proportions provided by Teralytics for time t
and the proportion corresponding to baseline, respectively. Finally, for the
Facebook data baseline was defined as 21 August 2017, which corresponds to
the first observation in the dataset. Here, mt corresponds to the Facebook
population at time t, and m0 represents the Facebook population at baseline.

For the municipality-level data, we aggregated the city-specific data from
Displacement Maps by municipality in Puerto Rico while maintaining the
temporal resolution at weeks. For all analyses, we assumed that cohort
members who were defined as unknown for the week were present in their
home town locations and were either unable to or chose not to interact with
Facebook services using a browser in that period.

To evaluate the utility of Displacement Maps, a tool to target munici-
palities for resource allocation, we evaluated the proportion of the pop-
ulation with unknown locations every week compared with baseline. Our
primary assumption here is that in the immediate aftermath of a disaster, any
discontinuation of interaction with Facebook services defined at baseline
would primarily be caused by loss of access to infrastructure, death, or other
factors related to the event. Therefore, a higher proportion of municipality-
specific cohort members whose location was unknown would be a proxy for
impacts of the disaster in that region.

Imputation. In Facebook’s dataset, Puerto Rico is divided into 188 nonover-
lapping geotags. For each geotag, the dataset contains the number of crisis-
affected people in their home location at time t, denoted here as home; the
number of new users at time t, denoted here as new; and the number of
users whose location is unknown at time t, denoted here as unknown. For
privacy-preserving reasons, geotags were excluded from the data if they had
fewer than 100 Facebook cohort members at time t. We, therefore, applied
an imputation approach along with a sensitivity analysis to provide intervals
of possible values. First, we computed the distribution of the maximum
number of consecutive new missing values for each geotag. Thus, the jth

geotag had a corresponding value, c(new)
j , that represents the maximum

number of consecutive weeks when the new variable was missing. Second,
we denote a threshold τ that corresponds to the maximum number of suc-
cessive weeks we are willing to accept and a default imputation value δ to

be used later. Then, we split the data into the geotags that comply with the

threshold and those that did not [i.e., if c(new)
j ≤ τ, then geotag j complies

with the threshold]. For the geotags that complied with the threshold, we
imputed the missing values using a linear interpolation of the observed
values. For the geotags that did not comply with the threshold, we imputed
the missing values with δ. Finally, we computed the distribution of the
maximum number of consecutive home missing values for each tag. Hence,

similar to above, the jth geotag has a corresponding value, c(home)
j , that cor-

responds to the maximum number of consecutive weeks when the home var-
iable was missing. Then, we excluded all geotags where the newly computed
statistic was greater than τ (SI Appendix, Fig. S6). For our results, we used τ = 8
and δ = 99 (SI Appendix, Fig. S7). Note that δ = 99 is the maximum number that
the missing values can take. We conducted a sensitivity analysis where δ = 0,
the minimum number that the missing values can take (SI Appendix, Fig. S8).
Our sensitivity analysis shows that the results do not change much.

Data Availability. Facebook data are available to researchers and nonprofits
pending a signed data use agreement at Facebook Data for Good (https://
dataforgood.fb.com/tools/disease-prevention-maps/). Teralytics data are avail-
able to researchers at nonprofits pending a data use agreement at Teralytics
(https://www.teralytics.net). Airline data is freely available online at Indica-
dores.PR (https://indicadores.pr/dataset/vuelos-pasajeros-aereos-y-carga-puerto-rico/
resource/fc6d7591-7ccd-4332-9d44-991559912f70). ACS data is freely available
online at US Census (https://www.census.gov/quickfacts/PR). Data to reproduce all
figures can be found at GitHub (https://github.com/RJNunez/pr-migration-
paper) (30).
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