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Abstract

Background: Inositol 1,4,5trisphosphate (IP3) and diacylglycerol (DAG) are important intracellular signalling molecules in
various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms
one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1
and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of
Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel
mutations of these genes compatible with life after birth need to be found.

Methodology/Principal Findings: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3
(Plcd3mNab) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation
leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry
one or two mutant Plcd3mNab alleles are phenotypically normal. However, the presence of one Plcd3mNab allele exacerbates
the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles
affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3mNab mutations
survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some
structural genes and shortened phases of proliferation in hair follicle matrix cells.

Conclusions/Significance: The Plcd3mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest
that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.
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Introduction

Phosphoinositide metabolism provides an essential intracellular

signalling system involved in a broad spectrum of key events in

organ development and function. Phosphoinositol 4,5 bispho-

sphate (PIP2) is converted by phosphoinositide-specific phospho-

lipase C (PLC) to inositol 1,4,5 trisphosphate (IP3) and

diacylglycerol (DAG), which function as second messengers in

the cell. DAG activates protein kinase C, and IP3 causes the

release of calcium ions from intracellular stores, which makes PLC

enzymes key regulators of intracellular calcium [1–11]. The

starting material of this reaction, PIP2, is a signalling mediator in

its own right involved in a variety of processes such as

phagocytosis, ion channel activity and cell motility [2,12].

PLC isozymes form six 6 classes based on their functional

protein domains [10,13]. Of these, the PLC delta isoform family

(PLCD) appears to be the most basic form containing a pleckstrin

homology (PH) domain, catalytic X and Y domains, EF hand

domains and a C2 domain [13–18]. Three murine PLCD

isozymes are known to date: PLCD1, PLCD3 and PLCD4 [13–

15,17–19]. The PH domain targets PLCD proteins to PIP2 in the

plasma membrane and induces activating conformational alter-

ations of the catalytic domain, which is essential for PLCD

function [13,20–29]. The activity of PLCD1 is also regulated by

the interaction with other proteins such as calmodulin and small

GTPases [30–32], and through site specific phosphorylation by

protein kinase C alpha (PKC alpha) [29]. Some PLCD proteins

can translocate to the nucleus and PIP2 derivatives play important

roles in nuclear function [3,5–7,33,34].

The in vivo role of PLCD isozymes has been studied in mice

with functional inactivation of Plcd1, Plcd3 and Plcd4, respectively.

The lack of PLCD4 activity in genetically ablated mice causes

disturbances of liver regeneration and interferes with the acrosome

reaction in spermatozoa [35,36], while over-expression of Plcd4 in

a breast cancer cell line induces anchorage-independent growth

[37]. In contrast, the loss of the Plcd3 gene, which is located on

mouse chromosome 11, causes no phenotype suggesting that the

lack of this enzyme can be compensated for [17,38], although

knockdown experiments in vitro and in vivo provided evidence for

an involvement of PLCD3 in cortical and cerebellar neuronal
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migration and neurite formation [39]. In humans, down-regula-

tion of PLCD3 in the right ventricular outflow tract may be

associated with idiopathic ventricular arrhythmias [40] and a

genomic locus associated with hypertension has been mapped near

the PLCD3 locus [41]. Plcd3 is expressed in various human tissues

and is regulated in permanent cell lines by alterations of

intracellular cAMP and calcium levels [42,43].

Studies of mice with spontaneous or engineered ablation of the

Plcd1 gene, located on mouse chromosome 9, have revealed

important roles for this PLC delta isozyme in the normal

development and function of the skin and its appendages [44–

47]. The Del(9)olt1Pas (synonym Del(9Ctdspl-Slc22a14)1Pas) muta-

tion is the spontaneously arisen genetic defect of a recessive mouse

mutation formerly called oligotriche (olt), which shows a combi-

nation of alopecia and male infertility. Although the Del(9)olt1Pas

mutation is a large deletion on chromosome 9 encompassing the

genes Ctdspl (carboxy-terminal domain RNA polymerase II

polypeptide A small phosphatase-like), Vill (villin-like), Plcd1, Dlec1

(deleted in lung and esophageal cancer 1), Acaa1b (acetyl-

Coenzyme A acyltransferase 1B, synonym thiolase B), and a part

of Slc22a14 (solute carrier family 22 member 14), the alopecia of

the mutant has been attributed to the loss of Plcd1 [47]. Mutant

mice in which Plcd1 expression was disrupted by targeted gene

inactivation [45,46] and Del(9)olt1Pas mutant mice show varying

degrees of hair loss (alopecia) [47]. However, the disruption of

both Plcd1 and Plcd3 causes prenatal death in mice due to

vasculature defects in the placenta [38], suggesting that both genes

may co-operate with each other at least during critical phases of

development.

Here, we report on a spontaneous hypomorphic mutation of

Plcd3 caused by the insertion of an intracisternal A particle (IAP)

genome [48,49] into the Plcd3 gene, which causes the predominant

expression of a truncated PLCD3 protein lacking the PH domain.

Mice homozygous for both the Del(9)olt1Pas deletion and the novel

mutant Plcd3mNab gene live for several weeks after birth and show

total alopecia.

The hair follicle is a highly complex and dynamic part of the

integument which originates from stem cells and undergoes

recurring phases of growth (anagen), regression (catagen) and rest

(telogen), and produces the hair shaft which contributes to the

pelage [50–56]. There are several hundred mutations in mice that

cause phenotypic alterations in the pelage [51], which has been

pivotal in understanding the molecular mechanisms of hair follicle

growth and differentiation. In this report, we show that the phases

of growth and regression in hair follicles of the dorsal skin are

dramatically altered in all hair follicles of mice homozygous for

both the Del(9)olt1Pas deletion and the novel mutant Plcd3mNab

gene.

Results

Origin of oltSH and oltNH Mice
A novel pelage phenotype, which we provisionally called oltSH

(SH for sparse hair), occurred spontaneously in our stock of

Del(9)olt1Pas mutant mice (also see Figure S1). In phenotypic oltSH

mice, the loss of pelage by far exceeded the alopecia of

homozygous Del(9)olt1Pas mutant mice during hair follicle

morphogenesis, which was most pronounced on the ventral

surface (Figure 1A,B,E,F) [47]. While in Del(9)olt1Pas mutant mice

on postnatal day 14 merely the inguinal and medial femoral region

showed a pronounced loss of pelage (arrows in Figure 1F), the

oltSH mutant was virtually hairless ventrally (Figure 1F). The loss

of dorsal pelage in oltSH mice increased dramatically in the first

cycle of hair growth on postnatal day 24, until by postnatal day 28

merely some hairs remained in the dorsal midline and the face

(Figure 1C,D,G,H). Crossing of oltSH females with Del(9)olt1Pas

heterozygous males yielded phenotypic offspring of both the

Del(9)olt1Pas and the oltSH phenotypes in equal numbers,

indicating that one dose of the novel mutant allele had caused

the exacerbation of the phenotype of Del(9)olt1Pas homozygous

mutants.

In order to determine the phenotype of mice being double

homozygous for the novel oltSH mutation and the Del(9)olt1Pas

mutation, we set up matings of oltSH females with phenotypically

normal males descending from oltSH females bred with Del(9)olt1-

Pas heterozygous males. Among the offspring, we found 10 mice

that had not grown any visible pelage and only a few short

vibrissae, which we provisionally called oltNH (NH for no hair)

(Figure 1, Figure S1).

Apart from the total alopecia, oltNH mice were also smaller and

weighed less than their littermates. On postnatal day 8, the body

weight of wild-type mice was 5,7 gr 60,6 gr (n = 6), of oltSH mice

4,9 gr 60,3 gr (n = 3), and of oltNH mice 3,8 gr 60,1 gr (n = 3),

and on postnatal day 25, wild-type mice weighed 11,5 gr 61,7 gr

(n = 4), oltSH mice 9,3 gr 60,4 gr (n = 3), and oltNH mice 6,7 gr

60,8 gr (n = 3). While Del(9)olt1Pas homozygous mutants and

oltSH mice have lived for more than 1 year, almost no oltNH mouse

has lived longer than 40 days (n = 21) (with one exception of 64

days). Thus, the combination of the Del(9)olt1Pas mutation with

the novel mutation had marked additive effects on the dorsal

pelage, the body mass and the longevity.

The oltSH and oltNH Phenotypes are Associated with
Altered Plcd3 Transcripts

Since we had previously identified that the Del(9)olt1Pas pelage

phenotype was caused by the lack of expression of the Plcd1 gene

[47], we examined whether the mutation causing the oltSH and

oltNH phenotypes might involve other members of the Plcd gene

family.

Southern blot analyses of BamHI digested genomic DNA from

wild-type, oltSH and oltNH mice hybridised with a probe derived

from Plcd3 intron 1 (Figure 2A) revealed a restriction fragment

length polymorphism (RFLP) showing the expected 4.1 kbp

fragment in C3H wild-type DNA (based on the Celera mouse

genome sequence), and a 4.5 kbp fragment in oltNH genomic

DNA (Figure 2A).

As this BamHI fragment in wild-type genomic DNA of C3H

mice stretches from intron 1 to intron 3 of Plcd3, we attempted to

generate short genomic fragments for sequence analyses from this

area by PCR using wild-type (C3HeB/FeJ) and mutant oltNH

genomic DNA. Using primers 1046 of Plcd3 exon 2 and 1049 of

exon 3, we amplified the expected 320 bp fragment from wild-type

genomic DNA, but a 5.4 kbp fragment from oltNH genomic DNA

(Figure 2B). The genomic DNA sequence of this 5.4 kbp fragment

revealed the insertion of an intracisternal A particle (IAP) into

intron 2 of Plcd3 (Figure 2A). The IAP contains flanking LTRs and

a gag-pol region, but no env sequences, is oriented opposite to the

transcription of the Plcd3 gene, and is in its entire length 98%

homologous to an IAP recently described (gb|FJ854359.1|) [57].

The RFLP observed in BamHI digested oltSH genomic DNA was

thus caused by the insertion of a BamHI site within the IAP

sequences (Figure 2A). We refer to this mutation as the Plcd3mNab

mutation (Nab for Neuroanatomy Bonn).

Based on the sequence data, we designed a genomic PCR

screen to identify the Plcd3mNab mutation in mice (Figure 2B). In

combination with the PCR screen to identify the Del(9)olt1Pas

mutation [47], we have so far analysed 246 mice in 37 litters and

consistently found that the genotype of phenotypically oltSH mice

Plcd1 and Plcd3 in the Murine Hair Follicle
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was (Del(9)olt1Pas) 2/2, Plcd3mNab +/2 (n = 21), while that of

phenotypically oltNH mice was (Del(9)olt1Pas) 2/2, Plcd3mNab 2/

2 (n = 24), with + referring to the respective wild-type allele. We

also identified 8 phenotypically normal Plcd3mNab 2/2 mice that

had at least one wild-type allele of Plcd1.

Northern blot analyses of total RNA obtained from dorsal skin

demonstrated that mice of the oltSH or oltNH phenotype lacked

expression of Plcd1 mRNA (Figure 2C) and expressed truncated

Plcd3 transcripts (Figure 2C). While oltSH mutants expressed both

the wild-type and the truncated Plcd3 transcripts, oltNH mutants

expressed only the truncated Plcd3 transcript.

We also performed Western Blot analyses on protein lysates

obtained from dorsal skin using monoclonal antibodies binding

specifically either to the N-terminal PH domain of PLCD3 (4H 5–

9) or to the more centrally localised catalytic domain (IF12–15)

(Figure 2D). The antibody directed against the PH domain

detected the 88 kDa full-length PLCD3 protein in wild-type and

oltSH skin lysates, but showed no corresponding band in lysates

from Plcd3mNab homozygous mice. The antibody directed against

the catalytic domain detected the 88 kDa band in wild-type mice,

and a band of approximately 75 kDa in oltNH mice. In the oltSH

mutant, both the 88 kDa and the 75 kDa protein were found

(Figure 2B). These experiments suggest that the Plcd3mNab mutation

contributed to the oltSH and oltNH phenotypes by expressing a

truncated PLCD3 protein variant that lacks the PH domain.

Altered Plcd3 transcripts and PLCD3 protein were also found in

phenotypically wild-type mice (example in lane 2, Figure 2C and

D) that expressed Plcd1 normally, confirming that the expression of

an altered Plcd3 transcript is not sufficient to cause a phenotype by

itself, but only in combination with the loss of Plcd1 expression

[38].

Thus, Plcd3 is not required for normal hair follicle morphogen-

esis in dorsal skin in the presence of at least one wild-type allele of

Plcd1, but truncation of PLCD3 in Plcd1-defective mice aggravates

the loss of dorsal pelage suggesting that Plcd3 expression may

compensate at least partially for the loss of Plcd1 expression in

dorsal hair follicles.

Hair Follicle Morphology of oltSH and oltNH Mutant Mice
The absence of visible pelage in oltNH mice and its sparseness in

oltSH mutants is not caused by the absence of hair follicles, but the

disability of the hair shafts to penetrate to the surface. On

postnatal day 9, wild-type (Wt) hair shafts are straight and

penetrate through the pilary canal to the surface, irrespective of

being heterozygous (arrows in Figure 3A) or homozygous (arrows

in Figure 3B,C) for the Plcd3mNab mutation. However, distorted

hair shafts in the Del(9)olt1Pas (Figure 3D, ‘‘olt’’), the oltSH

(Figure 3E) and the oltNH (Figure 3F) mutants are bent and curled

either within the pilary canal or underneath the stratum corneum

(arrowheads in Figure 3D,E,F). While the histological aspects of

this distortion did not differ notably among the three different

mutants, the percentage of dorsal hair follicles affected did vary. In

Del(9)olt1Pas mutants 13,563% of hair shafts were distorted in the

dorsal skin, while in oltSH mutants 6665,8% of hair shafts were

affected, whereas in oltNH mutants all hair shafts were distorted

failing to penetrate to the surface (150 hair follicles counted in

3 different biopsies for each mutant). Thus, in the absence of Plcd1

expression, an increasing dosage of the Plcd3mNab mutation causes

more dorsal hair shafts to be defective.

Histological Examination of the Hair Follicle
Morphogenesis and First Cycle in oltNH Mutants

To analyse the stages of hair follicle morphogenesis and the first

hair cycle, we investigated biopsies of dorsal skin in wild-type and

oltNH mice histologically from postnatal day 2 to day 37. The wild-

type specimens showed hair follicles in anagen stages from day 2 to

day 12 (Figure 4A to E), in the catagen phase on day 17

(Figure 4F), followed by the resting phase, telogen, on day 19

Figure 1. The phenotypes of wild-type, Del(9)olt1Pas, oltSH and oltNH mutant mice. The phenotype of wild-type (Wt), Del(9)olt1Pas (olt)
homozygotes, oltSH and oltNH mice during hair follicle morphogenesis (P11 and P14) and the first hair cycle (P24 and P28). The + and – indicate the
wild-type and mutant allele, respectively. The genotypes given below the images were determined by genomic PCR assays as described in Figure 2 B.
Mutants of the oltSH phenotype have a reduced dorsal pelage on day P11 and P14 (A and B), which becomes very sparse during the first hair cycle
(C and D). Ventrally, oltSH mutants show total alopecia (E to H) compared to homozygous Del(9)olt1Pas mice (F to H), in which the coat is
predominantly reduced in the medial femoral and inguinal region (arrows in F, G, and H). oltNH mutants have no pelage.
doi:10.1371/journal.pone.0039203.g001
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(Figure 4M) and thereafter again anagen stages of the first hair

cycle (Figure 4N to R). In oltNH mutants, however, the growth

phase lasted only from day 2 to day 8 (Figure 4G to I), when the

hair bulbs became visibly narrower (Figure 4I*), and the follicles

were shorter than in the wild-type (compare Figure 4I to 4C). On

postnatal days 11 and 12, the mutant hair follicles were further

shortened (Figure 4J and K) and the dermal papilla had been

excluded from the trailing epithelial end of the regressing follicle

Figure 2. Molecular analysis of the Plcd3mNab mutation. A. Schematic representation of the genomic context of the Plcd3mNab mutation. The
Plcd3mNab mutation is caused by the insertion of 5.4 kbp of IAP sequences in intron 2 of Plcd3. Hybridisation with a probe (P) derived from intron 1
using primers 572 and 573 (Table S1) reveals a restriction fragment length polymorphism in BamHI digested genomic DNA of wild-type (+/+), oltSH
(+/2) and oltNH (2/2) mice, respectively. The wild-type allele shows a 4.1 kbp fragment and the mutant allele a fragment of 4.5 kbp. The increased
length of the mutant fragment is caused by the BamHI site (B) within the inserted IAP. The Plcd3 locus is shown in reverse orientation with respect to
the chromosomal DNA, with Plcd3 exon 1 to the left. The intracisternal A particle (IAP) has no env sequences and is inserted in intron 2 in reverse
orientation with respect to the transcription of the Plcd3 gene. B. Location of the primers used to analyse the Plcd3mNab mutant and the wild-type
Plcd3 locus (f, forward; r, reverse). On the left, electrophoresis of amplified genomic DNA fragments that are indicative of the wild-type Plcd3 and the
Plcd3mNab allele using the primers indicated. On the right, the PCR products from genomic DNA around Plcd3 intron 2 obtained from wild-type and
oltNH mice using primers f1046 and r1049 (Table S1) are shown. The 5.4 kbp long fragment in the oltNH mutant contains the inserted IAP sequence.
C. Northern blot analysis of mutant dorsal skin. A DIG-labelled probe derived from the 59 region of Plcd1 hybridises to transcripts only in
phenotypically wild-type animals. A DIG-labelled RNA probe derived from the 39 region of Plcd3 hybridises to two transcripts of 3 kb and 2.6 kb,
respectively (marked by arrowheads). oltSH mice express both transcripts, while oltNH mice show only the 2.6 kb transcript. Note that the wild-type
mouse in lane 2 shows the mutant Plcd3 transcript and expresses Plcd1. Hybridisation with a Gapdh-specific probe as loading control is also shown.
D. Western blot analysis of mutant dorsal skin using antibody IF12–15 directed against the catalytic region of PLCD3 protein and 4H 5–9 directed
against the PH domain of PLCD3. The phenotypes of the mice (Wt, oltNH, oltSH), from which the lysates were obtained, are given on top of each lane.
The 2.6 kb mutant Plcd3 transcript is translated to a truncated protein of 75 kDa, which is detected by the antibody IF12–15, but not the PH domain-
specific antibody 4H 5–9 (lanes 2 and 3). This antibody also bound to an unknown protein of 110 kDa in all samples. Arrowheads indicate the wild-
type protein. An immunoblot using antibody against actin is given below as a control. Note that the phenotypically wild-type in lane 2 is the same as
the one in lane 2 of the Northern blot in C.
doi:10.1371/journal.pone.0039203.g002

Plcd1 and Plcd3 in the Murine Hair Follicle

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39203



Figure 3. Histology of the infundibular region and distorted hair shafts. Methacrylate (Technovit 7100) sections of representative areas in
the dorsal skin on postnatal day 9, HE stain. The phenotype (Wt, olt (i.e. Del(9)olt1Pas), oltSH or oltNH, respectively) and genotype with respect to the
Plcd1 (Plcd1* ‘‘-’’ refers to the Del(9)olt1Pas mutation) and Plcd3 (Plcd3** ‘‘-’’ refers to the Plcd3mNab allele) gene is indicated for each image. At least 4
biopsies of each genotype have been investigated. In E, Bar = 25 mm. These is no hair loss and are no distorted hair shafts neither in wild-type mice

Plcd1 and Plcd3 in the Murine Hair Follicle

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e39203



(Figure 4J* and K*). This premature regression of the mutant hair

follicles was accompanied by the appearance of numerous

granulocytes in the adjacent subcutaneous tissue (marked as G

in Figure 4I* and J*). By day 17, oltNH mutants had re-entered a

growth phase and showed anagen hair follicles still on day 19

(Figure 4L and S). After a further regression phase on days 22 and

24 (Figure 4T and U), in which the dermal papilla had been

excluded again from the lower end of the hair follicle (Figure 4T*

and U*), the mutant hair follicles entered into another growth

phase by day 30 (Figure 4V, V*, W and W*), which ended in a

telogen phase by day 37 (Figure 4X and X*).

We also quantified these observations measuring the hair follicle

length (Figure 5A) and the width of the hair bulbs (Figure 5B).

These measurements of hair follicle length corroborate that oltNH

mutant hair follicles have completed three growth phases by day

37, when wild-type hair follicles are still in the middle of the

second growth phase, i.e. the first cycle anagen (Figure 5A). They

also show that after postnatal day 6, the width of the oltNH hair

follicle bulb is significantly reduced compared to the wild-type

(Figure 5B).

Thus, all hair follicles in oltNH mutants lacking functional Plcd1

and expressing only the mutant Plcd3mNab allele show shortened

phases of growth and regression that are not synchronous with the

morphogenesis and cycle stages of hair follicles in wild-type mice.

We also examined oltSH mutants histologically on postnatal day

12. When wild-type hair follicles were in anagen and oltNH mutant

hair follicles were in regression (Figure 4E and K), oltSH exhibited

hair follicles in anagen and regression side by side (Figure 6A to C).

Inflammatory infiltrates consisting of neutrophilic granulocytes

were found at the border between dermis and in the subcutaneous

layer in the vicinity of regressing hair follicles (Figure 6D). As Plcd3

is expressed in all hair follicles during anagen, the heterogeneity of

hair follicle stages in oltSH mutants on day 12 compared to wild-

type and oltNH mutants may suggest that the isolated premature

entry into regression could possibly be caused by the limited

concentration of unknown stimulating or negative factors exceed-

ing a threshold for some, but not all hair follicles.

Proliferation and Apoptosis in oltNH Hair Follicles
As the histological investigation had suggested that oltNH hair

follicles enter a phase of regression by postnatal day 8, we

examined proliferation (Figure 7) and apoptosis (Figure 8) in

mutant and wild-type hair follicles during this critical period.

Using PCNA immunoreactivity as a marker for proliferation,

we found that cells in the matrix of wild-type hair bulbs proliferate

from days 2 to 12 (Figure 7A to E). Similar PCNA immunore-

activity was detected in oltNH mutant hair bulbs from day 2 to day

8 (Figure 7F to H). While there was still some faint PCNA

immunoreactivity in the histologically regressing hair follicles in

the oltNH mutant on day 11 (arrowheads in Figure 7I), there was

none left on day 12 (arrowheads Figure 7J). Thus, proliferation of

precursor cells in the hair bulb of oltNH mutants does not continue

beyond day 11.

Using the TUNEL assay as an indicator of apoptosis, we found

no sign of apoptosis in the oltNH hair bulb during the early anagen

stage of hair follicle morphogenesis on day 2 (Figure 8A) and the

following anagen phase on day 25 (Figure 8G), while numerous

TUNEL positive cells were found in the bulb region of mutant

hair follicles on day 6 to 13 (arrowheads in Figure 8B to F).

Throughout these stages examined in the oltNH mutants, hair

bulbs of wild-type hair follicles showed no TUNEL positive cells

(not shown), but some TUNEL positive cells in the inner root

sheath (arrowheads in Figure 8H), which has been observed before

[58]. Thus, in the oltNH hair matrix, cell proliferation and

apoptosis co-exist from postnatal days 6 to 11, which may explain

why the hair bulbs of the mutant are not the same size as those of

the wild-type after day 6. These observations suggest that

expression of Plcd1 and Plcd3 may be required for proliferation

and survival of matrix cells in dorsal hair follicles.

Expression of Plcd3 During Hair Follicle Morphogenesis
To identify cell types and developmental stages possibly affected

by the Plcd3mNab mutation in oltSH and oltNH mutants, we

examined the expression of Plcd3 during hair follicle morphogen-

esis in wild-type C57BL/6J mice using a probe covering Plcd3

sequences from exon 3 to exon 5. Plcd3 expression was found from

postnatal days 2 to 14 in the hair bulb (arrows in Figure 9A to D),

as well as in the trailing ends during catagen on day 17 (arrows in

Figure 9E) and the cells surrounding the club hair during telogen

(arrow in Figure 9F). Plcd3 is also expressed in the inner root

sheath and cortex (arrowheads in Figure 9B to D), the medulla

(insert in Figure 9C) and the epidermis (double arrowhead in

Figure 9A,B,E,F). We also detected expression in the dermis on

day 2, day 4 and day 17 (Figure 9A,B,E). The expression of Plcd3

in the hair matrix supports a possible involvement of Plcd3 in

regulating the proliferation and survival of these progenitor cells.

Expression of Structural and Regulatory Genes in oltNH
Mutants

To elucidate which cellular mechanisms might underlie the

histological characteristics associated with the oltSH and oltNH

mutations, we also investigated the expression of some genes

involved in the growth and differentiation of the hair follicle as well

as other genes encoding structural proteins of the outer and inner

root sheath, and the hair shaft (Table S2). Semi-quantitative RT-

PCR analysis on postnatal day 8 revealed no striking differences

between wild-type, oltSH and oltNH dorsal skin hair follicles with

respect to the expression of genes encoding several structural

proteins like epidermal and outer root sheath keratin Krt5, hair

shaft keratins Krt85 and Krt35, IRS keratin Krt71 and keratin

associated proteins (Krtap11-1, Krtap3-3, Krtap4-7, Krtap9-1) [59–

63]. Three important transcription factors involved in the

transcription of hair keratin and keratin associated protein

encoding genes in mice and humans [51,64–74], Foxn1, Msx2

and Hoxc13, showed unaltered expression between wild-type and

oltSH and oltNH mutants. The expression levels of genes encoding

for secreted signalling proteins Pdgfa, Pdgfb, Shh, Bmp2 and Bmp4

were also unchanged (Figure 10) [75–81]. However, Krtap12-1 (in

the hair cuticle) and Crisp1 (in the hair medulla) [82] were clearly

expressed at lower levels (Figure 10). In situ hybridisations using a

gene-specific probe revealed that Crisp1 is expressed in the medulla

of the hair shaft in wild-type, but not oltNH mice on postnatal days

6 and 8 (Figure 11) confirming our RT-PCR data.

Discussion

In this report, we demonstrate that mice lacking expression of

both functional Plcd1 due to a genomic deletion in the Del(9)olt1Pas

heterozygous for both mutant alleles (A), nor those heterozygous for the Del(9)olt1Pas mutation and homozygous for the Plcd3mNab allele (B), nor
others being wild-type for Plcd1 and homozygous for the Plcd3mNab mutant allele (C). Arrows indicate normal hair shafts. Arrowheads mark distorted
hair shafts in Del(9)olt1Pas (olt), oltSH and oltNH mice. The alterations of the hair shafts appear histologically similar in all three mutant specimens.
doi:10.1371/journal.pone.0039203.g003
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Figure 4. Histology of wild-type and oltNH hair follicles during hair follicle morphogenesis and the beginning of the first cycle.
Paraffin and methacrylate (Technovit 7100) sections, HE stain. Postnatal days examined are indicated. In wild-type animals, the hair follicles increase in
length during anagen from P2 to P12 and show active melanogenesis in their hair bulbs during this period (arrows in A to E). The diameter of the hair
bulb decreased from P6 to P11 and remained like this until catagen sets in on postnatal day 17 (F). In oltNH mice, however, the hair follicles decrease
in length after postnatal day 6 (G to K) and exclude the dermal papilla from the bulb on days 11 and 12 (arrows P in J* and K*). Numerous
granulocytes (G) are found in the vicinity of the mutant hair bulbs at this time (marked as G in I* and J*). The diameter of the hair bulb decreases
remarkably after postnatal day 6 (arrows in G to K). While wild-type mice have entered catagen by day 17 as shown by the long epithelial strand and
reduced hair follicle length (arrows in F), oltNH hair follicles re-enter an anagen phase on days 17 to 19 (L and S) exhibiting a broad hair matrix
(marked as M in L* and S*), a large dermal papilla (marked as P arrow in S*) and active melanogenesis (L* and S*), which is followed by a regression on
postnatal days 22 (T and T*) and 24 (U and U*). While wild-type hair follicles proceed through the first cycle anagen from day 22 to day 37 (arrows in N
to R), oltNH hair follicles re-enter anagen on postnatal day 25 (V, marked as P arrow in V*) and show continued increase in hair follicle length by day
30 (W and W*). This growth phase of the mutant follicle ends in a telogen phase on day 37 (X and X*), when wild-type follicles are still in the growth
phase (R). Three biopsies from different animals were used for each time point investigated. P, dermal papilla; SG, sebaceous gland; M, matrix; G,
neutrophilic granulocyes. Bar = 100 mm in images A to X, and 50 mm in images G* to L* and S* to X*.
doi:10.1371/journal.pone.0039203.g004
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mutant and functional Plcd3 due to a genomic insertion of an IAP

show total alopecia, weight loss and die during the first two months

of life. While Del(9)olt1Pas homozygous mutant mice show a mild

predominantly ventral alopecia due to the deletion of the Plcd1

gene [47], homozygotes of the Plcd3mNab mutant allele have no

obvious phenotype, which has also been described for mice in

which Plcd3 was inactivated by homologous recombination [38].

As experimental inactivation of both genes by homologous

Figure 5. Histomorphometric analysis of hair follicle length and hair bulb diameter. Measurements were taken from a sample of 150 hair
follicles in three different biopsies using the Image J software. Statistical analysis using the paired t-Test was performed employing the GraphPad
Prism4 software. Data are expressed as mean 6 SEM. *** signifies p,0.001. White columns depict data from wild-type mice and chequered columns
those from oltNH mice. The age of the mice is given on the X axis. Hair follicle length represents the distance from the infundibulum to the most distal
part of the hair follicle. The widest diameter of the hair bulb or distal end of the hair follicle in catagen and telogen stages is shown as ‘‘hair bulb
diameter’’. Both parameters indicate that oltNH mice terminate their first postnatal anagen by day 14 and re-initiate a growth phase thereafter, which
in turn ends by day 24. The second cyclic growth phase of oltNH hair follicles ends by day 37.
doi:10.1371/journal.pone.0039203.g005

Plcd1 and Plcd3 in the Murine Hair Follicle

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39203



recombination causes early prenatal death with defects in the

placenta [38], the novel Plcd3mNab allele described in this report

behaves like a hypomorphic mutation of the Plcd3 gene allowing

for a limited period of postnatal life. While in oltNH mutants the

bulk of Plcd3 transcripts are shorter and immunblots predomi-

nantly show a truncated PLCD3 protein in oltNH mice, apparently

normal transcripts of Plcd3 can also be amplified by RT-PCR

using primers in exon 1 and exon 5 (not shown). Therefore, we

cannot exclude that trace amounts of normal transcript, too little

to be detected in Northern blots, are expressed from the mutant

Plcd3mNab allele, just sufficient to overcome the placental defects of

the double knockout mice. Still, the oltNH mutant offers the unique

opportunity to study postnatal functions of Plcd1 and Plcd3.

Many spontaneous mouse mutations are the result of insertions

of retroviral elements, recently reviewed in [48,49,83]. Subtypes of

IAPs are particularly active in the C3H/HeJ strain of mice [84],

which is related to the genomic background of the Del(9)olt1Pas

mutant mice, in which the Plcd3m1Nab mutation occurred. Similar

IAP insertions with 98% sequence homology to the Plcd3m1Nab IAP

have recently been described in various mutant mice [57]. Due to

the promoter and enhancer elements in the viral LTRs, such

insertions into the genome can either increase or decrease the

expression of adjacent host genes, or enhance the expression from

endogenous promoters, as well as cause aberrant splicing [48,49].

As in the case of the Plcd3m1Nab mutation, the IAP is integrated in

reverse orientation with respect to the transcription of the Plcd3

gene, it is most likely that it causes its effects by enhancing

transcription from cryptic promoters. The Plcd3 transcript variant

ENSMUST00000128650 starting in exon 5 would be predicted to

have a molecular weight well within the range of the oltNH mutant

Figure 6. Histological aspects of oltSH mutants on postnatal day 12. Methacrylate (Technovit 7100) sections of representative areas in the
dorsal skin on postnatal day 12 oltSH mice, HE stain, bar = 100 mm in A, bar = 25 mm in B to D. Boxed areas in A are shown at higher magnification B,
C, and D respectively. Four different animals were investigated. A. The overview shows hair follicles in anagen (box B) and catagen (box C) side by
side. B. The hair follicle shows active melanogenesis as a hallmark of anagen (arrowhead). C. The hair follicle is in catagen and has excluded the
dermal papilla (arrowhead). D. Accumulations of neutrophilic granulocytes (arrowhead) are seen in the vicinity of follicles in catagen.
doi:10.1371/journal.pone.0039203.g006
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PLCD3 protein detected in our immunoblots. This truncated

PLCD3 protein would have no PH domain, which is important for

the targeting of the enzyme to the substrate in the plasma

membrane [23,25].

Mutant mice homozygous for the Del(9)olt1Pas mutation [47],

oltSH and oltNH mutants (this report) exhibit a similar histological

aspect of fragile hair shafts, but differ with respect to the

distribution of this defect over the body surface. Similar fragility

of hair shafts has been found in mice with altered expression of

Foxn1 and Hoxc13, which are directly involved in the expression of

hair keratins and keratin associated proteins [60,61,64–73,85,86].

The co-expression of Foxn1 and Plcd1 in the pre-cortical zone of

the hair bulb and the down-regulation of Plcd1 in nude mice

suggested that Plcd1 has some function downstream of Foxn1

[46,68,73]. We found that the expression domain of Plcd3

encompasses the entire hair bulb during anagen including and

exceeding the domain of Plcd1. It is therefore possible that Plcd3

can compensate for some aspect of Plcd1 function. Since we

demonstrated that on postnatal day 8 the medulla-specific,

Hoxc13-regulated gene Crisp1 is down-regulated in oltNH mice,

but not in oltSH mice, some hair shaft-specific genes may depend

strictly on the expression of Plcd3. This may imply that in the

absence of normal Plcd1 expression, Plcd3 could possibly play a

role in the Hoxc13– Foxq1 axis of gene regulation in the hair

medulla [82,86].

It has previously been suggested that the alopecia of mice with

functional inactivation of Plcd1 develops in the context of an

inflammatory response [44]. We also observed neutrophilic

granulocytes in oltNH skin, but also in oltSH mutants, in which

at least some hair follicles were apparently in anagen. As the

infiltrates in day 12 oltSH skin were associated with hair follicles in

premature catagen, the influence of the inflammatory response is

possibly very locally elicited and operative, but may contribute to

the sustenance of the abnormal hair follicle regression in the

mutant.

Recently, Plcd1 was shown to exert direct effects on adipocytes.

Knockdown of Plcd1 in an adipocyte cell line interfered with lipid

accumulation during differentiation, which was also observed in

primary cells obtained from Plcd1 defective mice [87]. This serves

to explain the reduced body mass in mice lacking Plcd1 expression.

Further studies will reveal whether Plcd3 is also involved in

adipocyte differentiation and function in order to explain, why

oltNH mice show an even more dramatic reduction in body mass

than mice lacking functional Plcd1 alone. Inflammatory infiltrates

in oltNH mice were usually found in the subcutaneous adipose

tissue near the dermis, where adipocyte precursors are located.

Most recently, the stimulatory activity of BMP (bone morphoge-

netic protein) and PDGFA (platelet-derived growth factor A)

secreted by subcutaneous fat cells and their precursors, respec-

tively, has been highlighted with respect to their stimulating

activity for hair follicle stem cells and the sustenance of anagen

[88]. The inflammatory response in the subcutaneous adipose

layer of oltNH mice could possibly negatively interfere with the

stimulatory activity of this tissue, which could contribute to the

curtailment of the growth phase in the mutant hair follicle.

Phospholipase C delta isozymes are associated with signal

transduction processes involved in cell cycle regulation and cell

proliferation [2,7,30,31,35,89–92], and are altered in various

Figure 7. Proliferation in wild-type and oltNH hair follicles. Proliferation in the hair follicles of wild-type (A, B, C, D, E) and oltNH (del(9)olt1Pas
2/2, Plcd3mNab 2/2) (F, G, H, I, J) dorsal skin on postnatal day 2 (A, F), day 6 (B, G), day 8 (C, H), day 11 (D, I), and day 12 (E, J) is visualised by PCNA
immunoreactivity (red signal). DAPI was used as a nuclear counter stain (blue signal). Paraffin sections. Bar = 50 mm for all images is given in A. White
arrowheads mark the hair bulb. Three biopsies from different animals were used for each time point investigated. In wild-type mice, PCNA
immunoreactivity is detected in the nuclei of the matrix cells of the hair bulb throughout the period examined (arrowheads in A to E). In the oltNH
mutant, the PCNA immunoreactivity is prominent in the matrix on days 2 and 6 (arrowheads in F and G), while already on day 8 some hair bulbs show
much fainter immunoreactivity (right arrowhead in H). In the trailing ends of the hair follicles on days 11 the immunoreactivity is very faint
(arrowheads in I), and on day 12 undetectable (arrowhead in J). Note that there is no PCNA immunoreactivity in the cells of the dermal papilla.
doi:10.1371/journal.pone.0039203.g007
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tumours and tumour cell lines [93–97]. PLCD1 protein can also

translocate to the nucleus and exert direct effects in the nuclear

compartment [6,7,33,34,98]. We found that growth in the hair

follicle bulb is uniformly short-phased in the oltNH mutant after

birth and ceases on postnatal day 12, while anagen was less

shortened in the lower ventral body region of Plcd1 defective

Del(9)olt1Pas mutants, where the alopecia of this mutant is most

pronounced [47]. Since Plcd3 is expressed in the hair bulb during

this critical period, Plcd1 and Plcd3 may possibly play additive roles

in the sustained growth during hair follicles morphogenesis after

birth.

Materials and Methods

Ethics Statement
The animals were sacrificed according to 14.3 of the German

law for the protection of animals (Tierschutzgesetz) (file number

50.203.2-BN 6/02). The mice were killed by cervical dislocation

avoiding unnecessary pain.

Mice
We have previously described the origin of Del(9)olt1Pas mutant

mice (synonym Del(9Ctdspl-Slc22a14)1Pas, formerly called oligo-

triche, olt) [47]. The oltSH and oltNH mice were in a mixed C3He/

Orl, C3H/HeJ and C3Heb/FeJ background, which we collec-

tively refer to as C3H in this report. The animals were kept in a 12

hour light/dark cycle with food and water ad lib.

Histology, Immunohistochemistry and In Situ
Hybridisation

Skin biopsies were taken from the dorsal mid-thoracic region of

mice after killing them by cervical dislocation. The skin biopsies

were fixed for 4 hours in Bouin’s solution, dehydrated in

increasing alcohol concentrations and embedded in paraffin as

described [47]. Histological staining with haematoxylin/eosin and

immunohistochemistry with mouse monoclonal antibodies against

PCNA (proliferating cell nuclear antigen) (Bio-Genex, MU252-

KL) diluted 1:200 and Cy3-conjugated goat anti mouse IgG F(ab)2

Figure 8. Apoptosis in oltNH hair follicles. Apoptosis was investigated by performing the TUNEL assay on paraffin sections. Apoptosis is
visualised by Cy3 fluorescence (red signal). DAPI was used as a nuclear counterstain (blue signal). Sections were taken from skin biopsies of oltNH
mice (A to G) from postnatal day 2 to 25. A wild-type skin section on postnatal day 13 is shown as control (H). Three biopsies from different animals
were used for each time point investigated. Arrows mark the hair bulb (B) or the trailing ends (T) of regressing hair follicles. Arrowheads point at
TUNEL positive cells. There are numerous TUNEL positive cells in the matrix of oltNH hair follicles beginning on days 6 and 8 (arrow heads in B and C)
and the regressing follicles on day 11 to 13. On day 25, the oltNH hair follicle re-enters anagen and shows no TUNEL positive cells (arrow in G).
Throughout this period, there were no TUNEL positive cells in the hair bulbs of wild-type mice (not shown), only some cells in the inner root sheath
exhibited a TUNEL positive signal (arrowheads in H), while the medulla showed unspecific autofluorescence. E, epidermis. Bar in E = 50 mm for all
images.
doi:10.1371/journal.pone.0039203.g008
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(Dianova 115-165-672) diluted 1:800 were performed as described

[47].

The TUNEL assay was performed on paraffin sections using the

Apoptag Red In Situ Apoptosis Detection Kit (Millipore

Chemicon, S7165) according to the manufacturer’s recommen-

dations. Nuclei were stained with DAPI.

Tissue sections of three different biopsies of dorsal skin of wild-

type and oltNH mice were analysed histomorphometrically with

respect to the length of the hair follicle (from the distal end to the

infundibulum) and the width of the hair bulb at its widest

diameter. 50 measurements of both parameters were taken from

each biopsy using the ImageJ software and statistically analysed

with the paired t test using PrismGraphPad 4 software.

PCR and RT-PCR
PCR experiments were performed in a TProfessional Basic

Thermocycler (Biometra). Usually 35 cycles were run with the

optimal annealing temperature chosen according to the recom-

mendation of the supplier of Phusion high fidelity DNA

polymerase (Thermo Scentific, Finnzymes, Finland). All primers

(Tables S1 and S2) were purchased from Eurofins MWG

BIOTECH AG (Ebersberg, Germany). PCR products were

sequenced by Eurofins MWG BIOTECH AG, Ebersberg,

Germany.

For RT-PCR experiments, the cDNAs were synthesised from

total RNA (RNeasy Midi Kit, QIAGEN, Hilden, Germany) or

mRNA (Oligotex mRNA mini kit, QIAGEN) from skin biopsies

using PowerScriptTM reverse transcriptase from CLONTECH

(Palo Alto, CA) with an Oligo (dT)15 primer. PCR was performed

on templates of cDNA or genomic DNA prepared from tail

biopsies (DNeasy Mini Kit, QIAGEN, Hilden, Germany) using

Phusion high fidelity DNA polymerase (Finnzymes, Finland)

according to the manufacturer’s recommendations.

The cDNA preparations synthesised from mRNA were used to

amplify expressed sequences of genes that have only one exon, e.g.

some Krtap genes. Gene-specific fragments were amplified from

1 mg of cDNA with the optimal annealing temperature chosen

according to the recommendation of the supplier of Phusion high

fidelity DNA polymerase (Thermo Scientific, Finnzymes, Finland).

The number of PCR cycles run was usually 35, or is otherwise

given in the Figure legend.

Figure 9. Expression of Plcd3 in the murine hair follicle. Paraffin sections of skin biopsies obtained from C57BL/6J mice at the indicated age
were hybridised with a probe derived from exons 3 to 5 of murine Plcd3. The DIG-labelled probe was visualised using alkaline phosphatase-
conjugated anti DIG antibody. The stained sections were submitted to a spectral analysis using a Cri Nuance VX camera and software in the
brightfield mode. The specific in situ signal spectrum is shown in red and the eumelanin signal in black. Three biopsies from different animals were
used for each time point investigated. Bar in A = 50 mm for all images. Plcd3 is expressed in the hair bulb during anagen (arrows in A to D), in the
trailing end during catagen (arrows in E) and during telogen in the epithelial cells covering the hair club (arrow in F). Expression of Plcd3 is also found
in the inner root sheath and cortex (arrowheads in B, C, D), the medulla (higher magnification insert in C) and the epidermis (double arrowheads in A,
B, E, F).
doi:10.1371/journal.pone.0039203.g009
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RNA Blot Hybridisation
Gel electrophoresis of RNA, blotting and detection of DIG

labelled probe was performed as described previously [47].

To synthesize DIG labelled cRNA probes, RT-PCR products

were re-amplified using a modified antisense primer, to which the

sequence of the T7 RNA polymerase binding site (GGATCC-

TAATACGACTCAC) had been added at its 59 end. Antisense

cRNA probes were then derived from these PCR products by in

vitro transcription in the presence of DIG-labelled dUTPs with T7

RNA polymerase from Roche (Mannheim, Germany) [47].

The cRNA probe for Northern blot hybridisations to Plcd3

mRNA was generated from skin cDNA using primers 511 (exon

11) und 512 (39UTR) (Table S1). DIG labelled probes for RNA

blot hybridisations were synthesised by PCR using the PCR DIG

probe synthesis kit (Roche). The cRNA probe for Plcd1 has been

described [47].

In Situ Hybridisation
The 350 b Plcd3-specific cRNA probe was generated as

described above from the RT-PCR product synthesised with

forward primer 527 (exon 3) and reverse primer 1352 (exon 5)

(Table S1) and the 400 bp Crisp1 probe was generated in the same

fashion using forward primer FR634 and reverse primer FR635

(Table S2). In situ hybridisations were performed as described

[47].

Because the histochemical stain for alkaline phosphatase activity

in Bouin-fixed tissue sections gives a rather brownish colour and is

difficult to distinguish from pigmented areas, skin biopsies were

taken from C57BL/6J mice that have mostly black eumelanin and

the sections were photographed and analysed using a NuanceVX

multispectral camera (obtained from INTAS, Goettingen, Ger-

many) with the manufacturer’s software. Areas displaying spectral

characteristics of eumelanin were pseudo-coloured in black, those

displaying spectral characteristics of the specific in situ signal in

red.

DNA Blot Hybridisation
Genomic DNA was digested with BamHI (Fermentas), the

fragments separated by agarose gel electrophoresis and transferred

to positively charged Nylon membrane (Roche) by vacuum blotting

using a Model 785 Vacuum Blotter (BIORAD). Hybridisation was

carried out in Dig Easy Hyb (Roche) using 100 ng/ml of DIG

labelled probe. Washes and detection of bound DIG were carried

out as described in the Roche DIG Application Manual for Filter

Hybridisations (https://www.roche-applied-science.com/

PROD_INF/MANUALS/DIG_MAN/dig_toc.htm).

DIG labelled probes for DNA blot hybridisations were

synthesised by amplifying genomic fragments using the PCR

DIG probe synthesis kit (Roche). For hybridisations to Plcd3-

specific genomic fragments, we amplified a 900 bp fragment of

intron 1, 800 bp upstream of exon 2, using primers 572 and 573

(Table S1) (marked as P in Figure 2A).

Western Blot
Mouse monoclonal antibodies binding specifically to the

catalytic domain of the PLCD3 protein (IF12–15) or the PH

domain of PLCD3 (4H 5–9), respectively, were supplied by K.

Fukami. The hybridoma supernatant was used undiluted. The

secondary antibody, (peroxidase-conjugated goat anti mouse Ig,

Dianova) was used at a dilution of 1:30.000. Blotting and signal

detection were performed as described [47].

Supporting Information

Figure S1 Origin of oltNH mice. Pedigree showing the

breeding scheme that led to the discovery of oltNH mice. White

symbols represent wild-type mice and blue symbols mice with the

phenotype of Del(9)olt1Pas homozygotes. Red symbols represent

mice of the oltSH phenotype and yellow symbols are mice of the

oltNH phenotype. The symbols merely show the presence of such

phenotype in a litter, but do not represent the relative proportion

of phenotypes in each litter. The numbers designate the crosses

Figure 10. Expression of genes relevant to the developing hair
follicle. Total RNA or mRNA was prepared from dorsal skin biopsies of
postnatal day 8 of wild-type (Del(9)olt1Pas heterozygous and Plcd3mNab

heterozygous), oltSH and oltNH mice and gene-specific fragments were
amplified by PCR from 1 mg of cDNA. The number of PCR cycles is given
below the image. The primers are listed in Table S2. The first strand was
synthesised from mRNA preparations for all RT-PCR experiments with
Krtap genes and actin* in the Figure. The limitation of PCR cycles gives a
semi-quantitative estimate that Foxn1, Msx2, Hoxc13, Pdgfa, Pdgfb, Shh,
Bmp2 and Bmp4, as well as the hair keratins Krt35 and Krt86, and the IRS
keratin (Krt71) are expressed at comparable levels in wild-type, oltSH
and oltNH mutants on postnatal day 8, when the hair shaft in the
specimens is being formed (see Figure 4C and 4I). However, Crisp1 and
Krtap12-1, and possibly also Krtap4-2 and Krtap8-2 are expressed at
lower levels in oltNH mice compared to wild-type and oltSH mutants.
doi:10.1371/journal.pone.0039203.g010
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referred to in the following text. All mice in the F1 generation of a

Del(9)olt1Pas female mated with a wild-type C3HeB/FeJ male

(cross 1) were phenotypically normal. In the F2 generation of cross

2, (56 mice in 7 litters), we found 10 phenotypically Del(9)olt1Pas

homozygotes and one female that showed a greater extent of

alopecia, which we termed oltSH (for sparse hair). This female was

backcrossed with her father (cross 3) resulting in one litter of six, in

which 2 of 6 mice showed the oltSH phenotype. When one of these

oltSH females was crossed with a known Del(9)olt1Pas heterozygous

male (cross 4), the phenotypically altered offspring showed in equal

parts the oltSH and the Del(9)olt1Pas homozygous phenotype,

suggesting that one dose of a novel mutation could exacerbate the

Figure 11. Crisp1 expression in wild-type and oltNH hair follicles. In situ hybridisation with a gene-specific probe for Crisp1 on skin sections of
wild-type (A and C) and oltNH (B and D) mice on postnatal days 6 (A and B) and 8 (C and D). The DIG-labelled probe was visualised using alkaline
phosphatase-conjugated anti DIG antibody. Images were taken in brightfield mode with a Nuance VX camera and further processed by spectral
analysis using the accompanying software. The specific in situ signal spectrum was pseudo-coloured in red and the eumelanin spectral signal in
black. Three biopsies from different animals were used for each time point investigated. Bar = 100 mm. Crisp1 expression is detected in the medulla of
wild-type hair follicles (arrows in A and C, red signal), but not in comparable sections of oltNH mice (arrows in B and D).
doi:10.1371/journal.pone.0039203.g011
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alopecia in Del(9)olt1Pas homozygous mice. When the oltSH

founder female of the F2 generation was crossed with one of the

phenotypically normal sons in cross 5, we found altogether 52

mice with different phenotypic alterations in the offspring (n = 121

in 21 litters): the Del(9)olt1Pas mutant phenotype, the oltSH

phenotype, but also 10 mice that did not developed any visible

pelage and only a few short vibrissae, which we termed oltNH.

Further brother-sister matings of this offspring (cross 6) again

produced all three mutant phenotypes.

(TIF)

Table S1 List of Plcd3-specific primers. The oligonucleo-

tide sequences are given in 59 to 39 orientation; genome

coordinates are given according to NCBI37 mm9 July 2007;

‘‘Plcd3 genomic’’ indicates the location of the oligonucleotide

sequence in the Plcd3 locus.

(DOCX)

Table S2 List of primers used in Figure 10. The

oligonucleotide sequences are given in 59 to 39 orientation.

(F, forward, R, reverse)

(DOC)
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