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Abstract: Thanks to the achievements in sanitation, hygiene practices, and antibiotics, we have
considerably improved in our ongoing battle against pathogenic bacteria. However, with our in-
creasing knowledge about the complex bacterial lifestyles and cycles and their plethora of defense
mechanisms, it is clear that the fight is far from over. One of these resistance mechanisms that has
received increasing attention is the ability to enter a dormancy state termed viable but non-culturable
(VBNC). Bacteria that enter the VBNC state, either through unfavorable environmental conditions or
through potentially lethal stress, lose their ability to grow on standard enrichment media, but show a
drastically increased tolerance against antimicrobials including antibiotics. The inability to utilize
traditional culture-based methods represents a considerable experimental hurdle to investigate their
increased antimicrobial resistance and impedes the development and evaluation of effective treat-
ments or interventions against bacteria in the VBNC state. Although experimental approaches were
developed to detect and quantify VBNCs, only a few have been utilized for antimicrobial resistance
screening and this review aims to provide an overview of possible methodological approaches.

Keywords: viable but non-culturable; VBNC; antimicrobial resistance; antibiotic resistance; tolerance;
bacterial viability; live /dead; viability PCR

1. Introduction

Humanity's history is a continuous battle between us and microbial pathogens and for
the most part, we were on the losing side with bacterial and viral infections being among
the major causes of morbidity and mortality worldwide. Thanks to the development and
improvement of sanitation, hygiene practices, and especially the discovery of antibiotics
and vaccinations since the early 20th century, deaths from infectious diseases have declined
markedly which can be considered one of the biggest success stories in human history [1].
However, although the burden of disease has been drastically reduced, public health threats
posed by microbes are still present and new challenges demand new solutions. Over the
last years, an increase in infectious diseases has been observed in almost all countries,
regardless of their economic development, with a rising incidence of foodborne illness
and nosocomial infections [2-5]. For effective prevention and intervention measures, the
assessment of microbial viability is crucial in determining the safety of food and drinking
water, as well as the environmental and medical sector. Together with the rising drug
resistance of pathogens against traditional antibiotic therapies, the WHO has defined this
problem as one of the most serious public health challenges [6-8]. Figure 1 highlights the
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use of antibiotics in human medicine, animal husbandry, agriculture, and the subsequent
circulation between these applications and the environment leading to an increase in the
prevalence of antibiotic resistant bacteria in different ecological niches.
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Figure 1. A schematic overview of the ecology of antibiotics, showing how these drugs are circulated between different

environments, such as the medical environment, agricultural settings, the aquacultural environment, the pharmaceutical

industry and the wider environment, adapted from [9].

During the last decades, a plethora of antibiotic resistant bacterial genotypes have
been reported and as a result, research has intensified to identify novel antibacterial agents
and antibiotics [9-11]. While coming to the fore recently, the impact of phenotypic plasticity
on antimicrobial and antibiotic resistance has been far less studied. Phenotypic plasticity
describes the ability of bacteria to change their phenotype (in this case their antimicrobial
resistance profile) without underlying genetic changes. While phenotypic plasticity in
bacteria has been known for a long time already, the understanding of the underlying
adaptive and regulatory processes, as well as their role in the infectious process has only
recently been significantly expanded [6,12].

In order to preserve viability and adaptability in constantly changing environmental
conditions, bacteria have developed various mechanisms for switching from a vegetative
to a metabolically inactive, but highly resistant and persistent state. The most studied type
of such cellular dormancy is sporulation of sporogenous bacteria, while in recent years,
the viable but non-culturable (VBNC) state for many bacterial pathogens has gained more
attention [12-16]. The VBNC state is a condition of reduced metabolic activity, induced in
response to conditions of stress. Entry into the VBNC state can be facilitated by a number
of environmental factors, such as a lack of nutrients, temperature shifts, or the presence
of antibiotics, disinfectants, and sanitizers [12,17-19]. When a microorganism enters the
VBNC state, both the morphology and physiology of the cell changes to allow its survival
under adverse conditions. Then, once the environmental conditions return to normality,
the cell can get back to its culturable state, through a reactivation process, which is referred
to as “resuscitation”.

This widespread, or almost universal, occurrence of bacterial cellular dormancy can
lead to serious diagnostic and safety problems. Bacteria in the VBNC state represent a
diagnostic challenge, due to the simple fact that the majority of current tests are either
entirely culture based or need at least one cultivation step, thus failing to detect non-
growing VBNC cells [15,20-22]. As a result, the absence of growth in culture-based methods
does not always mean non-viability, but can also be interpreted as: (i) Incorrect culture
medium; (ii) stress or damage of cells leading to a dormant state, (iii) low population
density thus leading to no visible growth; and (iv) slow-growing cells and no visible
growth. We want to emphasize that the reason for our ongoing dependency on culture-
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based methods is of course their proven efficiency and cost-effectiveness as diagnostic
tools for many years. However, given their inability to detect dormant cells, it is important
to point out that the growth and division of cells is not the only accepted parameter
in assessing bacterial viability. In addition to reproduction, metabolic activity as well
as an intact cell membrane are accepted general parameters for viability assessment of
microorganisms, with the latter two having the advantage of being growth independent
(Figure 2) [12,23,24]. While the issues of non-culturability, natural occurrence, induction,
and resuscitation of the VBNC cell, as well as the underlying molecular mechanisms and
the detection of dormant cells from environmental samples are of extreme importance,
these topics have been recently reviewed [15,17,24,25] and therefore, will not be the main
focus of this article. Rather, in this article, we want to elucidate one of the major problems
associated with dormant cells, namely their high tolerance and resistance against a wide
range of antimicrobials, biocides, and antibiotics [12]. Their elevated tolerance enables
cells in the VBNC state to withstand antimicrobial interventions in medical, as well as
food-processing environments allowing resuscitation from the VBNC state and possible
recontamination of those environments [26-32]. Phenotypic plasticity needs to be considered
when performing antimicrobial efficacy testing. It is clear that the evaluation of antimicrobial
treatments or interventions solely on cells in the logarithmic growth phase, combined with
subsequent growth based quantification methods, has some significant blind spots which
need to be addressed to ensure public health in the medical, as well as food production
sector [20,21,33].
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Figure 2. Overview of currently available methods for measuring different bacterial cell viability parameters, adapted

from [34].

Although antimicrobial resistance is generally recognized as one of the major chal-
lenges posed by VBNC cells, the overall number of studies investigating this effect remains
sparse. It is our opinion that the main reason for this is the technical and experimental
difficulty of investigating antimicrobial resistance of dormant cells in a quantitative way.
Therefore, this article aims to provide an overview of the currently available approaches,
which could be used for antimicrobial effectivity testing of bacteria in the VBNC state.

2. Current Explanations of Antimicrobial Resistance of Bacteria in the VBNC State

In addition to the special case of sporulating bacteria, there are a few different mani-
festations of phenotypic plasticity in microbes resistant to traditional antibiotic therapy:
L-forms (L-transformation, cell wall deficient bacteria, CWD), persister cells, and VBNC
bacteria [6]. While it is often hard to draw a clear line between the two states of cellular
dormancy, VBNC and cellular persistence, the latter is a more broader term and has been



Antibiotics 2021, 10, 115

40f24

recently reviewed extensively [14,18]. Although many of the methods and experimental
approaches described in this article could be also utilized to investigate the antimicrobial
resistance of persister cells, as previously mentioned, this article focuses on bacteria in the
VBNC state.

When talking about dormant or VBNC cells, a lot depends on the perspective with
which we approach this topic. VBNC cells are defined as microbes that fail to cultivate
on routine media on which they usually grow and yet are still alive, a phenomenon that
has been first described by Xu et al. in 1982 for Vibrio (V.) cholerae [12,35,36]. Thus, the
VBNC state could either be described as a “failure of the culture dependent technique” (as
in hindering the bacterial growth), or as a dormant state in which the proliferation of the
microbes is blocked until they get a “wake up call” [19,37]. As is so often the case when
using such broad terminology as dead, alive, or dormant, it is not easy to draw simple
singular conclusions.

For instance, for V. vulnificus the VBNC state can be categorized as a failure of the
growth-based approach. In this case, researchers found that as a response to storage at 4 °C
without nutrients, the bacteria significantly reduce their metabolism and important enzyme
pathways are effectively downregulated [38,39]. One of these downregulated pathways
is connected to the resistance against oxidative stress such as H,O,. Consequently, V.
vulnificus cells lose the ability to withstand naturally occurring H,O, concentrations present
in standard growth media, resulting in their non-culturability. Recognizing this effect has
immediately led to the addition of either catalase or pyruvate to the growth medium,
reducing the effective HyO, concentration, and thus allowing the culturability of “VBNC”
cells [39].

However, such “failures of the culture-dependent approach”, as described above, are
by far the exception regarding VBNC induction and resuscitation. More often, exposure to
either unfavorable environmental conditions or significant stress induces a dormant state
that cannot be reversed through media adaptations or, as is done in typical antimicrobial
efficacy testing, by removing the respective stress condition or addition of a neutralizer.
Unfortunately, little is known about the underlying molecular mechanisms, but one well
described system for the VBNC/dormant form of bacteria was triggered by the discovery
of type II toxin-antitoxin systems (TAS), first described for the hipA gene in Escherichia (E.)
coli [40,41]. TAS are thought to be a general mechanism of genetic control over the formation
of dormant bacteria and also play an important role in the formation and organization of
biofilms, in which the VBNC state also often occurs [14]. These systems usually contain
two genes encoding for the stable toxin and the unstable antitoxin, the latter being sensitive
to degradation by cellular proteases [42]. Under normal conditions, the toxin and antitoxin
are bound to each other, forming the non-toxic complex. Under stress, caused by adverse
environmental conditions, antitoxins are degraded. The released toxin causes a sharp
decrease in translation, replication, and cell growth inducing persistence, as well as the
VBNC state thus dramatically increasing the antimicrobial resistance of the bacteria [42,43].
It has been reported that TAS are widely spread among bacterial chromosomes and recently
a detailed review regarding TAS has been published by Andryukov et al. [6]. In addition
to TAS systems, there are also other regulators known, such as rpoS or oxyR, that control
the bacterial VBNC state as a response to stress exposure [12,44]. RpoS is a sigma factor
known to control up to 10% of the E. coli genome and plays an important role in the
survival of bacteria in the stationary phase, as well as under adverse conditions. OxyR
and some other regulated genes, are one of the most important regulation systems in
the oxidative stress response. However, it has to be pointed out that their role in VBNC
induction and resuscitation is still largely unknown [12]. What these regulators and TAS
have in common, is the fact that they are an immediate response to adverse environmental
conditions. Therefore, this response can be seen more as a part of the phenotypic plasticity
of bacteria in comparison to genetic antimicrobial resistance mechanisms such as efflux
pumps or membrane modifications [6,43,45,46]. Indeed, it seems to be the combination of
phenotypic changes with a low metabolic activity of cells in the VBNC state, which causes
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their elevated resistance, while still being able to resuscitate and initiate infection. Given
their potential health hazard, it is paramount that we learn more about the underlying
molecular mechanisms and regulatory pathways [12,26,47,48].

3. Methodological Approaches for Antimicrobial Effectivity Testing of VBNC Bacteria

Given their impact and potential health hazard, a correct evaluation of antimicrobial
effectivity against VBNC bacteria is crucial, but necessitates improving our methodological
approach, which is predominantly growth based. This article aims to provide an overview
of the currently available methodological approaches, which can be used for antimicrobial
effectivity testing for bacteria in the VBNC state. While there is a certain overlap regarding
methods used for the detection and antimicrobial effectivity testing of VBNCs, we
will not include methods that can currently be used only for the detection of VBNC
bacteria as these have been recently reviewed [24]. As previously outlined, cell growth,
metabolic activity, and cell membrane integrity are accepted parameters for assessing
the viability of microbes with the latter two having the advantage of being growth
independent (Figure 2) [12,23,24]. Therefore, it comes as no surprise that current methods
for studying VBNCs aim at detecting one of the three parameters (Figure 2). In terms
of antimicrobial effectivity testing capability, different methodological approaches for
assessing the respective viability parameters have been published and their background,
advantages, and limitations will be detailed in the respective sections.

In this review, we focus on the applicability of the presented methods for antimicrobial
effectivity testing of VBNC cells with standard lab equipment and therefore, very laborious
and time-consuming, as well as methods which require complex, rare, and expensive
equipment were excluded. This includes mRNA transcription assays [38,49,50], isothermal
microcalorimetry (IMC) [51-54], Fourier transform infrared spectroscopy [55], or assays
which can hardly distinguish between viable and dead cells such as many enzymatic assays.

3.1. Cell Proliferation

A successful cultivation is probably the clearest and most accepted indication that an
organism is alive while, as has been previously pointed out, an unsuccessful cultivation
does not prove the lack or absence of life [23]. Still, microbial culturability is the gold
standard to prove viability and therefore, resuscitation of bacterial cells from the VBNC
state is the most straightforward experimental approach to perform antimicrobial effectivity
testing against VBNCs.

Resuscitation

Of special relevance are experimental approaches, in which a complete and repro-
ducible induction into and resuscitation from the VBNC state is possible without a sig-
nificant CFU/mL reduction (Figure 3A) [28]. A major advantage of the approach is its
exclusion of possible regrowth of surviving culturable cells during the resuscitation condi-
tions. Overnight cultures of V. vulnificus are diluted 1:100 into % strength artificial seawater
and then either are immediately exposed to physical or chemical challenges or placed at
5 °C to induce the VBNC state. For resuscitation, V. vulnificus cells were simply incubated
overnight at room temperature in nutrient-free artificial seawater without the addition
of any supplements or growth media. Therefore, the possible regrowth of a number of
surviving culturable cells below the detection limit can be excluded [28,35]. Such approach
allows antimicrobial effectivity testing against VBNC cells by means of a quantitative
CFU/mL reduction after resuscitation, in a similar manner to “normal” efficacy testing
with culturable cells. Due to its easy, quick, and quantitative resuscitation, V. vulnificus
is the perfect model organism for this kind of experiment. After successful induction,
VBNC cells can be exposed to varying stress conditions and the CFU/mL log reduction is
determined after resuscitation in comparison to the non-treatment control by the standard
plate count (Figure 3B,C) [12,28].
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Figure 3. Antimicrobial effectivity screening of V. vulnificus (bars represent results of two different strains) in the viable but
non-culturable (VBNC) state (adapted from [28]). (A) Resuscitation from the VBNC state. Shown is the culturability of the
various cell populations examined. “Pre-VBNC” represents log-phase cells, “VBNC” represents culturability of these cells

following induction into the VBNC state, and “resus” represents culturability of VBNC cells following resuscitation at 21 °C

in artificial seawater. (B,C) Susceptibility of V. vulnificus exposed to different stresses. “Pre-treatment” represents control

logarithmic and VBNC cells of V. vulnificus not exposed to any treatment. “Post-treatment” represents logarithmic and
VBNC cells of V. vulnificus subjected to challenge. The star represents plate counts below the detection limit (<10 CFU/mL).

In addition to the quantitative resuscitation approaches described for Vibrio species,
there have been other studies, in which resuscitation has been utilized as a proof of
survival of antibiotic treatments. Rivers et al. [56] showed that VBNC E. coli were present
in mice during urinary tract infections and could be resuscitated after they stopped the
antibiotic treatment. The authors demonstrated that culturable pathogenic E. coli in mice
that were inoculated and received the antibiotic treatment dropped to undetectable levels
within 1 week, although a viable population of E. coli remained which could be recovered to
culturability within 65 days [56]. Pasquaroli et al. [57] managed to resuscitate Staphylococcus
(S.) aureus after the vancomycin treatment of biofilms. Different S. aureus biofilms were
treated with different vancomycin concentrations until a complete loss of culturability,
while viable cell populations remained constant. After removal of antibiotic stress, bacteria
could be resuscitated in a rich medium supplemented with sodium pyruvate or with a
late-log-culture filtrate.

Applicability for antimicrobial effectivity testing:

The methodological approach based on cell proliferation is able to quantify either
viable cells or VBNC cells after a successful resuscitation. A successful resuscitation of
VBNC cells is defined by the reoccurrence of culturable cells from a VBNC sample in
which no culturable cells could be detected before. The approach is not able to detect
viable and VBNC cells at the same time from the same sample and dead cells are not
actively detected, but rather inferred by a viable cell reduction. Antimicrobial effectivity
testing based on cell proliferation of VBNC cells such as resuscitation inhibition or CFU
reduction offers the advantage that identical methodological approaches can be used for
both culturable and VBNC cells and no additional normalization of analytical methods has
to be performed. In order to obtain reliable results based on cell proliferation it is of the
utmost importance to distinguish the real resuscitation of VBNC cells from the regrowth of
possible surviving “culturable” cells. Ideally, resuscitation should be performed in nutrient
poor environments that would not allow the regrowth of surviving culturable cells to levels
that would interfere with the interpretation of resuscitated cells.

Limitations:

The main limitation for this experimental approach for antimicrobial effectivity testing
against VBNC:s is the fact that from over 100 species known to enter the VBNC state,
only a small number of pathogens have been successfully and reliably resuscitated [58].
Therefore, it is not surprising that only a few publications are available using resuscitation
to specifically analyze the antimicrobial tolerance of VBNC cells. Although resuscitation-
based investigations on VBNC tolerance are the most preferential approach, there is a need
of alternative methods for tolerance testing of non-resuscitating VBNC pathogens.
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3.2. Integrity of the Cell Membrane

The existence of an intact and functional cell membrane is considered to be one
of the three necessary aspects of microbial viability [23]. In addition to defining each
individual cell, the outer cell membrane provides a physical, chemical, and biological
barrier against the environment. A compromised membrane would result not only in the
entry of harmful chemicals, but also in the leakage of important proteins, cellular energy,
or genetic information, and finally in the death of the respective cell. There are different
methods available to measure the membrane integrity such as fluorescence staining or PCR
based approaches [23], which are being regularly used to determine the viability of cells in
the VBNC state and thus will be discussed in detail below.

3.2.1. Fluorescence Microscopy

Several fluorescence-staining procedures were applied to enumerate the total viable
bacterial count including VBNC cells in food and environmental samples or pure cultures.
In addition to differential fluorescence-staining assays using acridine orange (AO) [59-62]
or a double staining with tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC)
and 4,6-di-amidino-2-phenylindole (DAPI) [63-66], the LIVE/DEAD ® BacLight™ bacteria
viability kit, developed by Molecular Probes, is the most common assay to discriminate
viable bacterial cells from membrane compromised dead cells [25,67]. Cell membrane
integrity is an important hint to identify viable cells. Nevertheless, a combination of
different staining methods to additionally measure the metabolic activity is necessary to
identify cells in the VBNC state [68-70].

The BacLight™ is composed of the nucleic acid-binding stains SYTO 9® and propidium
iodide (PI) which differ in their spectral characteristics, as well as in their ability to penetrate
bacterial cells. SYTO 9® penetrates bacterial membranes resulting in a green fluorescing
signal, whereas Pl is membrane impermeant and penetrates cells with damaged membranes
only. The combination of the two stains results in red fluorescing cells indicating dead
cells, while PI reduces the SYTO 9% fluorescence when both stains bind [67,71], enabling
the enumeration of viable cells, membrane compromised dead cells, and total counts in a
single double staining step (see Figure 4). This kit can be easily used by different detection
methods, for example, direct fluorescence microscopy [72,73], microplate reader [68,74,75],
flow cytometry [69,76-78], or spectroscopic systems such as an optrode [79-81]. Robertson
et al. [81] published an optimized and faster LIVE/DEAD BacLight™ protocol, in which
cultures are grown and stained in the same media without an additional washing step
including an adjusted emission spectrum and dye ratio. Another optimized protocol was
published by Feng et al. [82] to assess the antibiotic susceptibility for Borrelia burgdorferi in
comparison with microscopic counting, whereas SYTO 9® was replaced by SYBR Green 1.

A single staining method using AO allows also the differentiation of viable green from
dead orange cells. AO binds to RNA forming a red-orange fluorescence complex while
in connection with DNA a green fluorescence complex is built [62]. For environmental
samples such as drinking water, the BacLight™ staining assay produces less background
fluorescence as does AO [73]. Therefore, an additional washing step using AO is acquired
reducing a rapid detection time [67]. A quantitative analysis of both staining methods can
be performed using fluorescence reader systems [27].

The advantages of the BacLight™ staining are that it is a rapid, easy to prepare, and
well-studied method to discriminate both viable cells including cells in the VBNC state and
membrane compromised dead cells in one-step. The assay can directly and in real time
quantify live and dead cells for any given process. To estimate and quantify the bacterial
counts, various instruments such as microscopes, microplate reader, and cytometer can be
chosen [25,27,67,69,83]. The high degree of contrast between the green color of viable and
the red color of dead cells make the results easy to interpret. Studies demonstrate that the
BacLight™ staining assay resulted in the highest viable and total bacterial counts compared to
other direct count staining methods (AO, CTC and DAPI, or CTC and SYTO 9®) [68,73]. Com-
pared to other detecting methods, fluorescent staining in combination with fluorescence
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Bacteria loading

microscopy or flow cytometry is easy to use, rapid, sensitive, and visible [83,84]. However,
flow cytometry in contrast to fluorescence microscopy, is the more accurate method to
estimate bacterial counts down to 2.5% live and 20% dead cells [25,81]. Nevertheless, viable
staining methods such as the BacLight™ allows the evaluation of the physiological state of
individual bacteria regardless of their species, growth conditions, and treatments including
antibiotics [16,19,67]. Using direct fluorescence staining microscopy in combination with
the BacLight™ kit, Chaiyanan et al. [68] successfully monitored the membrane integrity of
VBNC V. cholerae O1 and O139 under chlorine, cooper sulfate, zinc sulfate, and formalde-
hyde treatment. All treatments showed a greater resistance for VBNC cells in contrast to
cells in the exponential phase [68]. Noll et al. [70] induced a VBNC state in Listeria (L.)
monocytogenes using benzalkonium chloride and showed a reduced antimicrobial effectivity
of benzalkonium chloride, ceftriaxone, gentamycin, linezolid, tetracycline, trimethoprim,
and sulfamethoxazole against VBNCs in contrast to their parent cells using flow cytometry.
During the study, benzalkonium chloride or the antibiotic substances did not influence the
fluorescence properties of SYTO 9® or PI [70].

3 dead: 63.28%
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Figure 4. Fluorescence microscopy of viable (A) and dead (B) V. cholerae [68]. VBNC cells adapted
from the flow cytometry analysis of VBNC cells (C) induced by low temperature storage in beer,
adapted from [78]. Live cells (green fluorescence, SYTO 99 and dead cells (red fluorescence, PI) are
viewed simultaneously by appropriate excitation and emission spectra.

Bamford et al. [31] monitored E. coli cells in the VBNC state via a single-cell approach
combined with the BacLight™ staining before, during, and after the ampicillin treatment.
Both VBNC and persister cells survived in contrast to susceptible cells that died and lysed
during or after the antibiotic treatment (see Figure 5) [31].

Bacteria loading : Drug treatment : Drug removal ; Live/dead staining Live/dead staining

; ) ! SL VBNC P SNL  SL VBNC P SNL
0 3 24 (h)

6 Time

Figure 5. Single-cell microfluidic analysis of susceptible lysed (SL), VBNC (VBNC), persister (P), and susceptible non-lysed
(SNL) E. coli BW25113 cells before (0 h), during (024 h), and after (24 h) the antibiotic treatment combined with SYTO 9%
and PI. Live cells (green fluorescence, SYTO 9®) and dead cells (red fluorescence, PI) are viewed by time-laps microscopy,

adapted from [31].

Applicability for antimicrobial effectivity testing:
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Staining methods to detect the cell membrane integrity in combination with fluores-
cence microscopy can be applied rapidly in already existing processes with the advantage
that no prepended incubation time is necessary. Via viable cell counts, quantitative results
can be obtained directly after sampling within half an hour regardless of the bacterial
species. Furthermore, the efficiency of bactericides can be direct quantified regarding the
cell count difference before and after the treatment of viable cells including cells in the
VBNC state using fluorescence microscopy or flow cytometry. Comparing the BacLight™
kit with traditional time intensive culture-based methods, comparable results for viable
cells can be achieved, but cells in the VBNC state cannot be detected. Therefore, viable cells
which do not grow on agar plates, but are detectable via the BacLight™ kit can be assigned
to cells in the VBNC state. Otherwise, the BacLight™ kit only differentiates into viable and
dead cells.

Limitations:

The major limitation of the BacLight™ staining is the differentiation between viable
and dead cells solely based on bacterial membrane integrity. Therefore, the applicability of
the BacLight™ is limited by the decreased membrane permeability or by the insufficient
accumulation of the dyes to become detectable [85]. SYTO 9® penetrates all cell membranes
in contrast to PI, which only stains nucleic acids in membrane-compromised cells. There-
fore, the physiological state of the bacteria affects the binding site of the dyes. For example,
chlorine reacts with the cell membrane increasing the membrane permeability and facili-
tates the penetration of PL. Fluorescing signals from yellow to orange, in addition to the
typical signals of red and green are the results and make a clear evaluation more difficult.
The intermediate colors are due to the varying amounts of PI, which reflect the different
stages of membrane damage [73]. Similar observations were shown by Zhao et al. [86]
using fluorescence microscopy after a treatment of VBNC state E. coli O157:H7 cells with
sonication. Therefore, the total viable cell count was estimated by flow cytometry with
regard to the florescence signal of SYTO 9® [86]. With regard to monitoring VBNC cells
under the treatment with antibiotics that interfere with the bacterial cell membrane, similar
effects as reported for chlorine are possible. Therefore, an underestimation of viable cells
may lead to an incorrect conclusion. Contrary to the decreased membrane permeability,
there are also cells with an intact cell membrane, but without a metabolic activity [87].
These metabolically inactive dead cells can lead to an overestimation of the viable cell count.
Berney et al. [69] described using the BacLight™ staining such an overestimation including
intermediate color signals and attributed it to the physiological properties of the cells
dependent on the low cytoplasmic membrane permeability next to a metabolic inactive
cell. Gram-positive bacteria such as Enterococcus faecalis showed no clear differentiation
in contrast to Gram-negative bacteria after an UV-A treatment [69]. Cai et al. [88] showed
that after an UV-A treatment of S. epidermis and Streptococcus mutans, as well disagreements
using the BacLight™ staining compared to CFU counting and metabolic activity assays.
The cell membrane after an UV-A treatment is still intact while the cellular functions are
totally lost [88].

In addition, a reaction of chemicals such as chlorine with nucleic acids can also be a
reason to alter the binding sites for PI [73]. It is also known, that fluorescence dyes can
interact with carbon compounds and preservatives [89].

Given the current literature and possible problems associated with this method, it
seems to be advisable that BacLight™ staining based approaches for antimicrobial effec-
tivity testing are combined with an additional method to correctly differentiate between
viable, dead, and VBNC cells.

3.2.2. EMA/PMA-PCR

In the field of membrane-based detection methods, the polymerase chain reaction
(PCR) combined with DNA intercalating dyes is a highly rapid and, in combination with
real-time amplification, a quantitative (QPCR) method for detecting viable and VBNC
cells. In contrast, for classic PCR or qPCR assays without DNA intercalating dyes, it is not
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possible to differentiate dead from viable bacterial cells causing free DNA in PCR reagents
or DNA from dead cells leading to false-positive signals [90-93].

As bacterial cells in the VBNC state are scarcely detectable using culture-based meth-
ods, a variety of PCR and qPCR applications combined with DNA intercalating dyes have
been established in recent years for a selective detection of viable cells of human pathogens

from the food and environment, as listed in Table 1.

Table 1. PCR and qPCR propidium monoazide/ethidium monoazide (EMA /PMA) applications.

Bacteria Application Reference
Aeromonas hydrophila PMA-pPCR [94]
Arcobacter butzleri PMA-qPCR [95]
Arcobacter spp. PMA-qPCR [96]
Bacillus cereus li’l\lf/[i_fllfcclg %ZQ
Brucella spp. PMA-qPCR [99]
Campylobacter jejuni EMA-qPCR [95,100-102]
Campylobacter spp. PMA-qPCR [103-105]
Clostridium perfringens PMA-qPCR [97]
Gram-negative bacteria PMA-qPCR [106]
Enterobacteriaceae PMA-qPCR [97,107,108]
Eenterococcus faecalis PMA-pPCR [94]
Enterococcus spp. PMA-qPCR [101]
Escherichia coli Iﬂi}ﬁiﬁggﬁ [945213211—0191_61]13]
Helicobacter pylori PMA-qPCR [117]
Legionella pneumophila PMA-qPCR [118-121]
Legionella spp EMA-qPCR [122]
’ PMA-qPCR [123,124]
EMA-qPCR [109]
Listeria monocytogenes EMA/PMA-gPCR [125]
PMA-pPCR [100,126-128]
PMA-PCR [115]
Pseudomonas aeruginosa PMA-pPCR [29,126,129]
Salmonella enterica subsp.
e s Enteri i e
tori p. PMA-qPCRPMA-PCR [95,115]
T e’l’fi‘:nie:i‘l’l‘r’zr PMA-qPCRPMA-qPCR [101,119,130]
Salmong;u enterica subsp EMA-gPCRPMA-PCR [98,109,151]
. gt PMA-qPCR [132-136]
enterica serovar Enteritidis
Salmonella spp.
Staphylococcus aureus PMA-qPCR [97,119,126,137]
Vibrio cholerae PMA-qPCR [138]
Vibrio parahaemolyticus PMA-qPCR [126,139-141]
Vibrio vulnificus EMA-qPCR [142,143]
Yersinia enterocolitica PMA-qPCR [95]

The addition of DNA intercalating dyes such as propidium monoazide (PMA) or

ethidium monoazide (EMA) during the sample analysis procedure is an easy-to-perform
step prior to PCR. The principle is based on the covalent bonding of dyes to freely acces-
sible DNA and DNA from membrane-compromised dead cells via photoactivation. The
obtained photo-inducible azide groups inhibit the DNA amplification [91,144]. EMA in
contrast to PMA can also penetrate viable cells of some bacterial species due to a lower
charge. Metabolically active cells export EMA via transport pumps actively or passively
via diffusion barriers out of the cell. Nevertheless, the remaining chemical residues in
viable cells lead to a substantial loss of DNA resulting in false-negative results or inaccurate
quantification [100,144-146]. However, the organic azides from unbound dyes interfere
with the DNA polymerase during amplification and lead to a decrease in the PCR reaction
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efficiency. For the use of EMA and PMA, around 25% of organic azides were reported to
remain unbound in a PCR reaction [147]. Therefore, using an optimal adjusted dosage
of the dyes in combination with longer templates (sequences longer than 600 base pairs)
the ACq value comparing Cq values with and without DNA intercalating dyes increase.
This is due to the fact that the DNA polymerase is less affected from unbound dyes and
the dyes strongly inhibit exogenous DNA and DNA from membrane-compromised dead
cells. Furthermore, longer target sequences allow the usage of lower dye concentrations.
The disadvantage targeting long amplicons and DNA intercalating dyes is the effect of an
increased Cq value caused by a longer amplicon time. The most important benefit targeting
long amplicons is to suppress false-positive signals for a broad range of EMA /PMA-PCR
assays [107,144,147,148].

Universal primers amplifying long target sequences within conserved genomic re-
gions in combination with DNA intercalating dyes allow the simultaneous detection and
antimicrobial effectivity testing of a wide spectrum of VBNC cells from different species.
Schnetzinger et al. (2013) described a PMA-qPCR assay with a target sequence of 1108 bp
within the 16S ribosomal RNA (rRNA) region for detecting the species relevant in biobur-
den determination in the pharmaceutical industry [147]. Soejima et al. (2011) published an
EMA-qPCR assay of long DNA templates within the 165 rRNA (1490 bp) and 23S rRNA
(2840 bp) regions, which can target a broad range of Enterobacteriaceae relevant for testing
pasteurized milk [107].

S. Lee and Bae (2018) used the PMA-qPCR assay for viability testing of VBNC Pseu-
domonas (P.) aeruginosa cells induced by an antibiotic exposure of different types of an-
tibiotics. They showed that aminoglycosides such as gentamicin, which cause protein
synthesis inhibition by targeting the 30S rRNA region, induce the VBNC state [29]. Further-
more, the induced VBNC cells persist over 24 h under the antibiotic treatment without a
reduction in the cell number. Therefore, the treated cells of P. aeruginosa PAO1 with 12 and
24 pg mL~! gentamycin were identified as viable in the PMA-qPCR and unchanged in their
ACt values over 24 h indicating that the cell membrane might be still intact. In addition,
the intact cells were not detectable on culture-based methods over the time meaning that
the cells were potentially identified as VBNC cells, which are resistant against gentamycin
concentrations up to 24 pg mL~! over 24 h [29]. Moreover, Kobayashi et al. (2010) reported
for S. aureus and S. epidermidis constant positive ACt values after 24 h under the treatment
with gentamycin indicating that the number of viable cells was still present [30].

PCR assays in combination with DNA intercalating dyes are an “end-point” method
for detecting target gene sequences of viable bacterial cells and are currently used in com-
bination with gel electrophoresis, quantitative real-time PCR (qPCR), reverse transcription
PCR (rt-PCR), isothermal amplification PCR assays up to next-generation sequencing ap-
plications [149-151]. In contrast to stable DNA based applications, RNA degrades rapidly
after the cell death, which makes it more challenging to handle. Messenger RNA is only
produced by metabolically active cells indicating viable cells. Lu et al. (2015) observed
in VBNC cells of V. parahaemolyticus RIMD2210633 an upregulation of genes related to
non-metabolic functions and a downregulation of genes involved in the metabolic activity
compared to exponential and early stationary phase cells [152]. Nevertheless, mRNA
degradation can occur by RNA-degrading enzymes during sampling and storage resulting
in false-negative signals [153]. On the other hand, mRNA is stable for an unknown period
of time so that false-positive results may occur [154].

Applicability for antimicrobial effectivity testing:

PCR in combination with DNA intercalating dyes is a highly rapid, species specific,
and sensitive method for the quantification of viable and VBNC cells with an intact cell
membrane, while free DNA and cells with a compromised cell membrane are not detected.
PCR applications can be applied after an evaluating step using control strains in already
existing processes. Existing protocols are applied to a wide variety of bacterial species
detecting a wide range of genetic target sequences. In addition to specific bacteria, gene
targets within conserved genomic regions allow a simultaneous detection of a broad



Antibiotics 2021, 10, 115

12 of 24

range of bacterial species from food and environmental samples. The addition of DNA
intercalating dyes to samples as a pre-treatment step before the DNA extraction is simple to
perform and quantitative results using real-time amplification can be obtained via standard
curves including the target gene sequence. Results can be specified in log copy numbers,
as well as a log concentration. Furthermore, the efficiency of bactericides on culturable
bacterial cells and cells in the VBNC state can be quantified by ACq values calculated
through subtracting the Cq value before and after the treatment. When combined with the
plate count method for quantification of culturable cells, the methodological approach can
be used to quantify viable, dead, and VBNC cells and for antimicrobial effectivity testing.

Limitations:

As for fluorescence microscopy, EMA /PMA-PCR assays measure the integrity of the
cell membrane and could have limitations for discriminating VBNC cells obtained from
conditions that damage the cell membrane. On the one hand, an intact cell membrane is
not always an unequivocal identification for viability and provides no information on the
metabolic activity of the cells. Therefore, some treated bacterial cells might seem to remain
viable using EMA /PMA-PCR assays having an intact membrane, thus being impermeable
to EMA or PMA, but are already dead at the metabolic level with the loss of membrane
integrity occurring only after hours or days. A rapid loss of viability by inducing DNA
damage followed by a slow decay of cellular components without directly affecting the
cytoplasmic membrane can lead to false-positive signals. In this case, membrane damage
is a secondary effect with an unknown time span when cells are susceptible to the dye
uptake [33,91,93]. This effect is described for physical inactivation methods including UV-C
decontamination [94,126,155-157], solar light-initiated photoinactivation [158-160], and
low-temperature pasteurization [111,161-163], as well as for the antibiotic treatment with
aminoglycosides, macrolides, rifampycin, and quinolones [30,93].

On the other hand, sublethal damaged bacterial cells with a perforated membrane
lead to a false-negative result causing an inhibited DNA amplification considered by the
uptake of the DNA intercalating dyes [67,154]. Lee and Bae (2018) observed that antibiotics,
which interfere with the cell wall and periplasm membrane synthesis such as carbenicillin
and colistin, might affect the membrane impermanent dyes that intercalate to DNA from
membrane-compromised cells considering dead cells [29]. Kobayashi et al. (2010) showed
similar results using PMA-qPCR to identify viable S. aureus and S. epidermidis after a
treatment with vancomycin inhibiting a substantial proportion of PCR amplification [30].
For these reasons, that DNA intercalating dyes differentiate between membrane intact
and membrane compromised cells, the method might be incapable for detecting VBNC
cells from other membrane damaging conditions such as cationic surfactants [163,164],
oxidative disinfectants, e.g., chlorine and ozone [117,163], as well as organic solvents and
heat [162,163].

An additional limitation of the viability PCR is the time investment to establish and
evaluate the method as a diagnostic tool. The necessary optimizing steps include sample
preparation, internal amplification controls, as well as standard curves to estimate the
detection limit. The mentioned parameters have to be established and evaluated for every
individual gene target or when chemicals in the PCR reaction are replaced [78].

3.3. Active Metabolism-Cellular and Metabolic Properties as a Biomarker for Viable Bacteria
and Resistance

Without the presence of cellular metabolism or energy, a cell (with the exception of
spores) can be considered dead and therefore, it comes as no surprise, that these parameters
have been widely used for the viability assessment of bacterial cells in the VBNC state.
There have been efforts of using the uptake and subsequent degradation of fluorescent
2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), which is
comparable to glucose, to measure the active cell metabolism [70,165]. However, the vast
majority of studies involving VBNC cells have used either the respiratory activity, or the
presence/production of ATP as a measure to determine cell viability and will be the focus
in the subsequent chapters.
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3.3.1. Cellular Energy

Adenosine triphosphate (ATP) is the energy source for metabolic activities in all living
organisms and can be used as a viability indicator [23,24]. Many commercially available
ATP detection kits have been used for cell viability determination for decades, including
in the food industry, for drug discovery, assessment of drinking water quality, or in soil
samples [50,126,166-168].

The application typically involves the addition of a reagent to lyse cells and release
ATP, which, in the presence of luciferase, reacts with the substrate, D-luciferin, to produce
light. The light intensity is then measured as relative light units (RLU), which is interpreted
as a measure of ATP concentration [50,169]. It is difficult to establish a correlation between
the total number of cells and RLU to provide a reasonable estimate of cellular activity.
However, if combined with other tools such as live/dead staining, the concentrations of
bacterial ATP in different aquatic microbial communities, for example, correlate well with
the concentrations of living cells [168].

For this reason, in the VBNC research ATP is a popular biomarker for microbial
viability as it is a fast, cheap, and easy approach to distinguish the viable from dead
cells [12,27,170]. In 2019, Robben et al. [170] compared the de novo ATP production of five
different pathogens (L. monocytogenes, E. coli, enteropathogenic E. coli, Salmonella enterica
subsp enterica serovar Typhimurium, and S. aureus) in the VBNC state, to plate count during
exposure to different heat stress and demonstrated that the ATP production of VBNC cells
was in agreement with the plate count of culturable bacteria. On a laboratory scale, this
approach can be used to determine the minimum ATP inhibitory concentration, which
is a VBNC-MIC testing approach (Figure 6). After induction of the VBNC, state cells
are exposed to a dilution series of antimicrobial compounds and incubated with species-
specific conditions. To avoid overestimation of the total ATP counts, extracellular ATP has
to be removed by filtration of the cell suspension, enzymatic hydrolysis of extracellular
ATP, or washing steps prior to an overnight incubation of the VBNC cells. Subsequently,
the de novo ATP production can be determined for antimicrobial effectivity testing and a
cut-off in ATP production shows the minimum ATP inhibitory concentration (MAIC) for
VBNC cells. Using this approach, the authors could demonstrate that bacteria in the VBNC
state showed elevated tolerance levels against antibiotics, as well as disinfectants, while
no differences were found in regard to heat stress. As the authors only compared MIC
and MAIC results, but did not determine the minimal bactericidal concentration (MBC), it
cannot be completely excluded that MBC and MAIC coincide.

Applicability for antimicrobial effectivity testing:

The methodological approach based on the de novo ATP production is able to qual-
itatively detect metabolically active cells including viable and VBNC cells. VBNC cells
are defined by a significant de novo ATP production without the occurrence of culturable
cells. The approach is not able to detect viable and VBNC cells at the same time from the
same sample and dead cells are not actively detected, but rather inferred by the reduced de
novo ATP production. The utilization of the de novo ATP production as a viability indicator
offers the chance to perform a high throughput end-point screening for antibiotic and
antimicrobial effectivity testing based on the de novo ATP production high-throughput in
a similar setup as the established micro-broth dilution assay. Especially the fact that the
de novo ATP production is a universal viability parameter for all bacterial species, makes
the methodological approach very promising, as it should be readily transferable to other
target organisms without additional adaptations. The approach is not dependent on the
successful resuscitation of the target organisms, but as is the case for cell proliferation
assays (see Section 3.1), is susceptible to the possible regrowth of culturable cells.

Limitations:

Non-microbial sources of ATP interfere with ATP measurements and may lead to
false-positive results, which limit the application to laboratory research and is hardly
applicable in industrial environments. Using solely ATP measurements, it is difficult to
distinguish between resuscitation and regrowth. Therefore, the use of adequate controls is



Antibiotics 2021, 10, 115 14 of 24

essential to make sure the VBNC induction is complete and includes the whole population.
As there are also possible signals from dying cells or other interferences, a quantitative
analysis is difficult without additional cell counting methods.
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Figure 6. Workflow of the VBNC-minimum inhibitory concentration (MIC) assay, adapted from [170]. (A) The VBNC state
is induced by a specific combination of detergent (stars) and salt (dots); after induction, cells are washed and resuspended
in a fresh Brain Heart Infusion (BHI) medium; positive control: Untreated VBNC cells confirmed by ATP measurements and
BacLight™ viability assay; negative control: VBNC cells killed at 90 °C for 15 min; minimum ATP inhibitory concentration
(MAIC) of antimicrobials is determined by measuring the de novo ATP production of VBNC cells exposed to the respective
antimicrobial, viability marker: 10° relative light units (RLU) threshold. (B) VBNC-MIC assay MIC determination for
culturable and MAIC determination for VBNC L. monocytogenes against benzalkonium chloride and ampicillin.
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3.3.2. Respiratory Activity and Membrane Potential

The respiratory activity depends on a functioning electron transport chain, which
is the main process for maintaining a membrane potential. Therefore, the presence of
the respiratory activity is a viability indicator, linking the membrane potential and the
recycling of reducing equivalents which are produced in many catabolic reactions [83,168].

There are different fluorescence staining methods available to measure the metabolic
activity via an active efflux pump system, enzyme activity, or an intact membrane poten-
tial [83]. Emerson et al. [23] described a double staining assay with the anionic fluorescent
molecule Alexa Fluor™ hydrazide (AFH) and the cationic fluorescent molecule diethy-
loxacarbocyanine iodide DiOC2 (3) or SYBR Green I to measure the membrane potential.
AFH binds on carbonyl groups of damaged proteins accessible from membrane compro-
mised aging, dying, and dead cells resulting in a blue fluorescence signal. The counter
staining with DiOC2 (3) or SYBR Green I shows an intact membrane potential when the
molecule enters the cell from a positive gradient outside to a negative gradient inside the
cell resulting in a green fluorescence signal [23,171]. Li et al. [16] described a single staining
method with the p-iodonitrotetrazolium violet (INT) to measure the uptake of the molecule
through the cell membrane via an active electron transport system. Metabolically active
cells reduce tetrazolium to a red-fluorescent formazan that accumulates within the cells
and is detectable by microscopy or cytometry. The same principle can be measured using
CTC, which is reduced to red-fluorescent 3-cyan-1,5-ditolyl formazan (CTF) [25,73,172,173].
Using the counterstaining with DAPI, the total bacterial count emit in a red and blue
fluorescence signal, whereas the viable metabolic active cells show a red fluorescence sig-
nal [65,66]. An example to measure the enzyme activity is described by Yoshioka et al. [165]
using the dye 2-NBDG. The fluorescent 2-NBDG molecule uptake into the cell is compara-
ble to glucose and the green fluorescence signal degraded continuously by an active cell
metabolism [70,165].

The different fluorescence staining methods can easily be detected by fluorescence mi-
croscopy and/or flow cytometry [174]. In addition, the use of flow cytometry enables rapid, in
situ analysis of single cells, including viruses [175], and in combination with additional fluores-
cent staining techniques such as membrane integrity staining (see Section 3.3.1), quantitative as
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well as qualitative data can be obtained with continuous measurements. A high number
of cells can be sorted and enumerated within a few seconds. Until now, flow cytometry
has been used mainly in the field of clinical research [176,177]. The detection and defini-
tion of bacterial viability have been the major microbiological issues in cytometry [178].
Using flow cytometry, it has recently been shown that four different physiological states
of bacteria can be distinguished: Reproductively viable, metabolically active, intact, and
permeabilized [179,180], but rapid approaches to distinguish between VBNC and dead
cells and especially their use of antimicrobial effectivity testing are rare until now.

Lin et al. [47] and Guo et al. [181] showed that the CTC flow cytometry is a suitable

method to perform antibiotic effectivity testing and also for evaluating the UV disinfection
and chlorine-based disinfection (Figure 7).
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Figure 7. CTC flow cytometry used for tolerance testing of E.coli, adapted from [47,181]. (A) Entry of E. coli into the VBNC
state on incubation by chlorination at the dosage of 0.5 mg/L free chlorine. Shown are total cell counts (black square),
culturable counts (blue triangle), and viable counts (red circle). (B) Persistence of E. coli exposed to ampicillin. Black
circles represent E. coli in the VBNC state, while red circles represent E. coli in the culturable state. (C,D) Total, viable, and
culturable cell counts of E. coli (C) and Pseudomonas spp. (D) after the treatment by various UV fluences. The purple line
represents the number of VBNC bacteria, determined as the difference between the number of viable and culturable cells.

They found that CTC flow cytometry characterizes the essential viability of VBNC
cells although CTC is only involved in a small part of the respiratory chain and reflects only
the redox ability of the electron transport chain. Overall, the authors could demonstrate the
effectiveness of their methodological approach to perform antimicrobial effectivity testing
against bacteria in the VBNC state [47,181].
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Applicability for antimicrobial effectivity testing:

The methodological approach based on detecting the respiratory activity and mem-
brane potential can be used to quantify viable as well as VBNC cells. By combining the
approach with plate count methods, the amount of culturable as well as VBNC cells can
be quantified from the same sample. In combination with additional staining methods
(e.g., whole cell or membrane integrity), the approach can be used to accurately distinguish
and quantify viable, dead, and VBNC cells. The combination of flow cytometry and flu-
orescent dyes for the detection of the respiratory activity and membrane potential offers
the potential to perform antimicrobial effectivity testing of VBNC cells. In contrast to ATP
detection methods, this approach can obtain quantitative results and is not susceptible to
the possible regrowth of culturable cells.

Limitations:

A considerable disagreement exists to the exact value of this method for the analysis
of environmental samples [168]. One of the shortcomings of the CTC assay is that it
often requires long staining times (up to 24 h), which makes it less interesting for a rapid
microbiological assay. Such a long staining time could result in other viability changes (e.g.,
die-off, regrowth) in the samples [144,182]. In addition, for flow cytometry, it is essential
that the crystals form inside the cells, which is not always the case. Moreover, it has been
noted that not all bacteria are capable of reducing formazan salts (since not all bacteria
have a functioning electron transport chain), which raises questions about the general
applicability of the method outside laboratory environments.

4. Summary and Conclusions

In recent years, the awareness about the viable but non-culturable state of bacterial
pathogens has dramatically increased and the fact that bacteria in the VBNC state are
not visible for routine, growth based detection methods led to the development of novel
analytical methods. The majority of methodological approaches determines at least one
of the generally accepted viability parameters such as resuscitation, membrane integrity;,
metabolic activity, or a combination thereof. Thanks to these new methodological ap-
proaches, it was discovered that, due to their low metabolic activity and cellular changes in
the VBNC state, bacteria have a drastically increased tolerance against antibiotics, as well as
antimicrobials and that the methodological approaches could be utilized for antimicrobial
effectivity testing against VBNCs.

The majority of methodological approaches were originally developed with a clear
focus on the rapid and cost-effective detection of VBNC pathogens and high-throughput
methods for antimicrobial effectivity testing are still rare. However, it is our opinion that
the relevance of the topic will facilitate their development. As reviewed in this article, there
have been several different methodological approaches in order to investigate the toler-
ance and resistance of VBNC cells, measuring one viability parameter (cell proliferation,
cell membrane integrity, or metabolic activity). Based on their underlying experimental
principles and the currently available literature, each of the methodological approaches
has certain advantages, as well as limitations and for antimicrobial effectivity testing the
respective method has to be chosen carefully (Table 2).
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Table 2. Summary of the currently available methods for resistance screening for VBNCs.

Method Viability Target and Unit Advantage Limitation
Parameter
e  Directly comparable with * Oélalfl tﬁz{c}ilvfézrésﬁlsﬁ?;iion
A Cell Entire cell traditional methods q .
Resuscitation . . . . models available
proliferation [CFU] e  No bias due to comparing . .
different methods e  Only with pure cultures in a
laboratory setting possible
e  Qualitative and quantitative =~ e  Susceptible to non-lethal
. s results can be obtained membrane damages
;,hcall;/l lllt)}(ij i\r/fte;nlk‘)iiane ][:él\elﬁe copies] e  Species data can be obtained e  Time- and cost- intensive
! sty P from mixed (or validation
environmental) samples e  End-point method
e  Capability to differentiate
viable and dead cells
e  Stains can be used against a
wide range of bacterial
species
e  Potential for high-throughput . .
Fluorescence Membrane Ic\gfnn}l)k;]:;nets analysis in combination with ) ‘tl:;(;’ilrfifaelr:;zlcai:s nbetwreen
microscopy integrity and DNA flow cytometry e  Susceptible to non-lethal
[Cell numbers] ¢ Canbe combined with other membrane damages
florescence dyes (e.g., for &
active metabolism)
o  Capability to differentiate
viable and dead cells
e  No differentiation between
. Species independent analysis . .
Cellular Active . ATP Potential for bacterla.l species .
energy metabolism [RLUJ high-throughput analysis e  Only with pure cultures in a
laboratory setting possible
e  Stains can be used against a
wide range of bacterial
species
Reduction of e  High-throughput analysisin e  No differentiation between
Respiratory Active fluorescencent combination with flow bacterial species
activity metabolism dyes cytometry e  Not all bacterial species can

[Cell numbers] e  Automated analysis
Can be combined with other
florescence dyes (e.g., for
membrane integrity)

be analyzed

What also becomes clear from the current literature is a lack of comparative stud-
ies regarding the respective methods and their respective outcomes. To the best of our
knowledge, there are no studies yet available which perform tolerance testing of bacteria
in the VBNC state with different experimental approaches. Given the relative novelty of
many of the developed methods this is not surprising, but we would highly encourage
researchers to increase the collaboration on this topic. The aim should be to establish
standard protocols or guidelines regarding VBNC tolerance testing and how they could
ultimately complement existing and well-established procedures for culturable bacteria.
Furthermore, standard protocols are needed to assess the impact of decontamination effec-
tiveness against VBNC cells when novel decontaminating technologies are available. The
application and development of new methods to further investigate the VBNC state and
its tolerance is very important to generate new efficient intervention methods to ensure

water and food safety to reduce public health risks.
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