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a b s t r a c t 

Peroxisomes and pexophagy have gained increasing attention in their role within the central nervous system 

(CNS) in recent years. In this review, we comprehensively discussed the physiological and pathological mech- 

anisms of peroxisomes and pexophagy in neurological diseases. Peroxisomes communicate with mitochondria, 

endoplasmic reticulum, and lipid bodies. Their types, sizes, and shapes vary in different regions of the brain. 

Moreover, peroxisomes play an important role in oxidative homeostasis, lipid synthesis, and degradation in the 

CNS, whereas its dysfunction causes various neurological diseases. Therefore, selective removal of dysfunctional 

or superfluous peroxisomes (pexophagy) provides neuroprotective effects, which indicate a promising therapeu- 

tic target. However, pexophagy largely remains unexplored in neurological disorders. More studies are needed 

to explore the pexophagy’s crosstalk mechanisms in neurological pathology. 
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. Introduction 

Peroxisomes are small, single-membrane-bound organelles, which

ere first discovered by Christian De Duve in the 1960s [ 1 , 2 ]. They

re dynamic and ubiquitous. Besides, the peroxisomes directly interact

ith other organelles, such as endoplasmic reticulum (ER), mitochon-

ria, or lysosomes [3] . Peroxisomes exert different functions in vari-

us cells through both the catabolic and anabolic pathways. The main

unctions of peroxisomes can be categorized as reactive oxygen species

ROS) metabolism, lipid metabolism, and ether-phospholipid biosynthe-

is. Moreover, peroxisomes also play important roles in inflammatory

ignaling and the innate immune response [ 4 , 5 ]. 

In the central nervous system (CNS), peroxisomes are important in

he synthesis of myelin sheaths and cellular membranes. Besides, ether

hospholipids, synthesized by peroxisomes, are essential in keeping the

ormal functions of neurons and glia [ 6 , 7 ]. Unsurprisingly, peroxisome

ysfunction reportedly caused devastating damage to the neural cells,

nd is associated with neurological diseases, such as peroxisome biogen-

sis disorders (PBDs), stroke, PD, etc. [ 8 , 9 ]. Peroxisomes are essential

rganelles in maintaining cellular homeostasis, especially in the CNS. 
∗ Corresponding authors. 

E-mail addresses: xuweilin101108@zju.edu.cn (W. Xu), jhzhang@llu.edu (J.H. Zh
1 These authors contributed euqally to this work. 

ttps://doi.org/10.1016/j.fmre.2023.04.016 

667-3258/© 2024 The Authors. Publishing Services by Elsevier B.V. on behalf of Ke

Y-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
Peroxisomes maintain their normal functions by developing a set of

ophisticated mechanisms to control their quality and quantity [ 10 , 11 ].

ovel peroxisomes are generated through the growth and division of

re-existing peroxisomes or through de novo synthesis from mitochon-

ria and ER. Abundant or dysfunctional peroxisomes are degraded via

elective autophagy (pexophagy) [12] . All the generation and degrada-

ion processes are mediated by peroxisome biogenesis factors, known

s peroxisomal membrane proteins (PMPs) and peroxins (PEXs) [13] .

elective autophagy of cellular organelles is an important process that

aintains homeostasis during various internal and external stress re-

ponses. Pexophagy, the selective autophagy of peroxisomes, is impor-

ant in maintaining peroxisome homeostasis [ 14 , 15 ], and a growing

umber of studies have demonstrated that pexophagy plays an impor-

ant role in the pathology of neurological diseases [16] . 

Peroxisomes are quite important in maintaining cellular redox home-

stasis and lipid metabolism in the CNS. However, the physiologic and

athologic roles of peroxisomes in CNS remain poorly understood when

ompared with other organelles. Therefore, we extensively reviewed

he current understanding of peroxisomal metabolism in neurological

iseases. 
ang) . 

Ai Communications Co. Ltd. This is an open access article under the CC 

https://doi.org/10.1016/j.fmre.2023.04.016
http://www.ScienceDirect.com
http://www.keaipublishing.com/en/journals/fundamental-research/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fmre.2023.04.016&domain=pdf
https://cstr.cn/BRID-07526.00.79391
mailto:xuweilin101108@zju.edu.cn
mailto:jhzhang@llu.edu
https://doi.org/10.1016/j.fmre.2023.04.016
http://creativecommons.org/licenses/by-nc-nd/4.0/


W. Xu, J. Yan, A. Shao et al. Fundamental Research 4 (2024) 1389–1397

Fig. 1. Peroxisomes originate from ERs or mitochondria with the help of PEXs via class Ⅰ and class Ⅱ pathways . Moreover, the PEX11 and other fission related 

proteins (Mdv/Caf4, Fis1 and Dnm/Vps1) involved in the division of peroxisomes. Reproduced with permission [ 19 ]. 
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. Biogenesis and physiology of peroxisome 

The biogenesis of peroxisomes involved formation of peroxisomal

embrane, import of matrix proteins, and peroxisomal growth, division,

nd proliferation [ 17 , 18 ] ( Fig. 1 ). Numerous proteins involved in these

arious processes have been found through studies using yeasts, animal

odels, and human cells. The majority of the proteins, which are called

eroxins or PEX proteins due to their function in peroxisome formation,

re involved in the biogenesis of peroxisomes. The current theory of

uman peroxisome biogenesis is briefly discussed here. 

.1. Development of peroxisomal membranes and import of peroxisomal 

roteins 

The endoplasmic reticulum is where the phospholipids that comprise

he peroxisomal membrane are most likely to originate [ 17,18,20–22 ].

hree peroxins, PEX3, PEX16, and PEX19, have been identified as hav-

ng a specialized role in the synthesis of peroxisomal membranes. As

n import receptor for freshly generated PMPs, PEX19, a protein that is

ostly found in the cytosol, possesses chaperone-like properties to sta-

ilize PMPs in the cytoplasm [ 23 , 24 ]. PEX19 binds to Pex3, an integral

embrane protein that is part of the Class I pathway, and forms stable

omplexes with PMPs in the cytosol that are directed to the peroxisomal

embrane [ 25–27 ]. 

PEX16, also known as the Class II pathway, serves as the membrane

eceptor in mammalian cells for PEX19 complexes with freshly gener-

ted PEX3 [ 26 ]. In the Class I pathway, PEX19 docks with Pex3 on the

eroxisomal membrane to unload the cargo PMP before moving back to

he cytosol for further PMP transport. In the absence of ATP, integra-

ion of the released PMP into the peroxisomal membrane occurs [ 28–

0 ]. Coordination between PEX19 and PEX3 makes the insertion of hy-

rophobic transmembrane regions easier [ 31 , 32 ]. It is still necessary to

mprove the molecular processes behind the cargo PMPs’ incorporation

nto the membrane. 

.2. Import of peroxisomal matrix proteins 

Peroxisome-specific proteins are produced on free cytosolic polyribo-

omes after being encoded by nuclear genes, then transported to perox-
1390
somes. The cytosolic receptor proteins, PEX5S, PEX5L [ 33 ], and PEX7,

ind freshly produced proteins in the cytosol and then route them to the

eroxisomal membrane. Differential splicing of the PEX5 gene’s main

ranscript results in PEX5S and PEX5L. To be directed to the peroxisomal

embrane, PEX7 is required to interact with PEX5L [ 33 , 34 ]. The peroxi-

omal docking complex, which is made up of the peroxisomal membrane

roteins, PEX14 and PEX13, is where the receptor proteins are loaded

ith matrix proteins dock [ 35 , 36 ]. 

.3. Peroxisome development, division, and proliferation 

Peroxisomes divide concurrently with a number of events, such as

longation, constriction, and fission, after membrane construction and

mport of matrix proteins. A membrane peroxin known as PEX11 is es-

ential for peroxisomal morphogenesis and division. Additionally, mi-

ochondrial fission factor (Mff) [ 37 , 38 ], fission 1 (Fis1) [ 39 , 40 ], and

ynamin-like protein 1 (DLP1) [ 41 , 42 ] in mammals are necessary for

eroxisomal division. Peroxisome proliferation is induced by ectopic

EX11 expression [ 43 , 44 ], whereas PEX11 knockout in mice [ 45 ] and

enetic defects in human PEX11 reduce peroxisome abundance [ 46 , 47 ].

t is hypothesized that PEX11 ′ s homo-oligomerization through its N-

erminal region is what drives the protein’s morphogenic function [ 40 ].

dditionally, amphipathic helixes in the N-terminal region of PEX11 are

ecessary for the homo-oligomerization of PEX11 and their interaction

ith membrane phospholipids, which results in peroxisomal membrane

eformation [ 48–50 ]. Surprisingly, DHA, a polyunsaturated fatty acid

ound in peroxisomal -oxidation metabolites, causes membranes rich in

EX11 to extend, as well as peroxisomes to lengthen [ 38 ]. These find-

ngs show that PEX11 is essential for the peroxisome elongation process,

nd that its function necessitates controlled oligomerization of PEX11

ia interaction with phospholipids containing DHA in its N-terminal am-

hipathic region [ 51 ]. By moving to the locations of membrane constric-

ion, DLP1, a member of the dynamin GTPase family, is crucial for the

embrane fission of peroxisomes and mitochondria [ 42 , 52 ]. Large mul-

imeric spirals created by DLP1 are thought to mediate the fission step

 53 , 54 ]. A growing body of research indicates that PEX11 promotes fis-

ion during peroxisome division by forming a ternary fission machinery

omplex with Mff and DLP1 in the constricted membrane region of elon-
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Fig. 2. The different distributions and activities of peroxisomes (catalase) in human brain (referenced from the human protein atlas: 

https://www.proteinatlas.org/ENSG00000121691-CAT/brain ). 
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ated peroxisomes [ 51 ]. PEX11 increases DLP1 ′ s GTPase activity [ 55 ],

emonstrating the numerous roles played during peroxisome division

rocesses. 

. Peroxisome and central nervous system 

In the CNS, nearly all cell types contain peroxisomes, including neu-

ons [ 19,56,57 ], oligodendrocytes [ 58 ], astrocytes [ 57 ], and ependymal

ells [ 59 ] ( Fig. 2 ). The peroxisomes in the brain are smaller (0.1–0.2 μm)

han peroxisomes in other tissues, and are consequentially referred to

s microperoxisomes [ 60 , 61 ]. Peroxisomes were first found in the brain

f a newborn mouse and the dorsal root ganglia of guinea pig spinal

ord [ 62 ]. After that, various techniques have been applied to explore

he distribution of peroxisomes in CNS [ 63 ]. In 1995, a complete perox-

some map of the CNS was first completed by Moreno and his colleagues

ith the help of a catalase antibody [ 64 ]. 

A moderate number of peroxisomes were observed in nearly all neu-

ons of rat brains, whereas numerous peroxisomes were identified in

pendymal cells around the ventral hypothalamus [ 59 ]. In addition,

oth in the brain and spinal cord, many more peroxisomes were found

n oligodendrocytes. However, compared with neurons, very few perox-

somes were observed in astrocytes [ 59 ]. In addition, moderate numbers

f peroxisomes were reported in the satellite and Schwann cells of the

eripheral nervous system (marked by catalase staining) [ 58 ]. Singh

nd his colleagues also found that the activity of peroxisomal catalase

as higher in oligodendrocytes than astrocytes of the rat brain [ 65 ].

n human brains, with the help of PEX14 antibody, a distinct number of

euronal peroxisomes were shown in each part of the brain (cerebellum,

ippocampus, and thalamus) [ 66 ]. 

In addition, the distribution and activity of brain peroxisomes were

ltered during development [ 61 ]. For example, the number of neuronal

eroxisomes was decreased in mature neurons when compared with

ifferentiating cells. Another study found that the number of peroxi-

omes was decreased in both cerebrum and cerebellum. Purkinje cells

f the cerebellum showed the greatest change in peroxisome distribu-

ion, which increased from 4 to 8 per unit area between postnatal and

dult animals [ 58 ]. Similarly, neurons of the pons (locus coeruleus) and

pinal cord had different numbers of neuronal peroxisomes between

arly neonatal and postnatal periods, respectively [ 58 ]. Besides, during

yelination of the rat brain, peroxisomes increased in oligodendrocytes

 58 ]. Studies of immunohistochemistry using catalase antibody showed

hat peroxisomes appeared early in evolution (about 27–28 weeks after

onception) in ancient structures like the basal ganglia, thalamus, and
1391
erebellum [ 67 ]. Moreover, with increasing age, peroxisomes in the glial

ells gradually shifted from deep to superficial white matter [ 67 ]. 

In the brain, peroxisomes play an important role in degrading satu-

ated very-long-chain fatty acids (VLCFA) like C24:0 and C26:0, as well

s in maintaining their equilibrium in the myelin [ 68 ] ( Fig. 3 ) . Addi-

ionally, DHA, the most prevalent polyunsaturated fatty acid (PUFA) in

rain tissues, is synthesized through b-oxidation of C24:6 n-3 [ 69 ]. A

ariety of functions are performed by DHA in the brain, including cal-

ium concentration homeostasis, neurotransmission, synaptic plasticity,

nd gene expression [ 70 , 71 ]. Peroxisomes also play an important role in

lasmalogen synthesis in the brain, as the first two steps of this pathway

ake place there [ 72 ]. The major predicted roles of plasmalogens are to

ontribute to membrane fluidity, buffer oxidative stress, and serve as

eservoirs for second messengers [ 73 ]. Moreover, The peroxisomal en-

ymes play an essential role in maintaining ROS homeostasis in a cell,

nd the loss of that homeostasis can cause neurological disorders, such

s X-linked adrenoleukodystrophy (X-ALD), ischemic stroke, etc. [4] . 

. Dysfunction of peroxisome and neurological diseases 

.1. Alzheimer’s disease (AD) 

AD is one of the most common neurodegenerative diseases charac-

erized by extracellular amyloid 𝛽 (A 𝛽) peptides and intracellular neu-

ofibrillary tangles [ 74 , 75 ] ( Table 1 ). Many studies have shown the

hanges of oxidative stress level, antioxidant enzymes such as catalase

nd peroxisomal-related proteins among patients with Alzheimer’s dis-

ase [ 76 ]. For example, symptoms of dementia were correlated with

he dramatic decrease in plasmalogen levels in white and gray matter

n different regions of human brain tissue, as well as the gyrus frontalis

 77 , 78 ]. PtdEtn and PtdCho levels were significantly decreased in the

ostmortem brains of AD subjects and transgenic mice with AD [ 79 , 80 ].

n all cortical regions of AD patients, there was an increase in short- and

ong-chain fatty acids (C22:0, C24:0, and C26:0), which suggests that

unctional peroxisomes were lost [ 77 ]. Additionally, AD patients’ brain

ections were found to have a higher density of peroxisomes [ 77 ]. Fur-

hermore, increasing peroxisome proliferation and catalase activity can

educe ROS production, which plays a crucial role in AD pathogene-

is, and first established a direct link between peroxisomes and AD. A

umber of peroxisomal proteins (PMP70, CAT, PEX5, GPX1) were sig-

ificantly altered in the neocortex and hippocampus of three-month-old

g2576 mice model of AD [ 75 , 77 ]. It is interesting that supplementation

ith acetyl- l -carnitine (ALC), a metabolite synthesized in peroxisomes,

https://www.proteinatlas.org/ENSG00000121691-CAT/brain
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Fig. 3. The specialized functions of peroxisomes and neurological disorders rising due to peroxisomal dysfunction in the brain . Reproduced with permission 

[ 68 ]. 

Table 1 

Disruption of peroxisomal metabolisms in neurological diseases . 

Neurological disorder Hallmark Peroxisomal protein/function affected 

Alzheimer’s disease extracellular amyloid 𝛽 (A 𝛽) peptides and intracellular 

neurofibrillary tangles 

PtdEtn and PtdCho, PMP70, catalase, PEX5, GPX1 

Parkinson’s Disease accumulation of 𝛼-synuclein, the main components of 

Lewy bodies (LBs) 

PEX2, PUFA, Plasmalogens 

Multiple Sclerosis axonal degeneration and progressive demyelination VLCFAs; PtdEtn 

Amyotrophic Lateral Sclerosis Demyelination of motor neurons causing muscle 

weakness 

cholesterol; d -AAO 

Stroke brain is not supplied with enough blood Peroxisome biogenesis; catalase, PPAR 

Peroxisome Biogenesis Disorders (Zellweger syndrome) mutations in the PEX genes involved in peroxisome 

biogenesis 

PEX16, VLCFA, catalase, fatty acids 

Abbreviations: PEX, peroxisome; PUFA, Polyunsaturated fatty acid; VLCFA, Very long chain fatty acid; d -AAO, d -amino acid oxidase; PPAR, peroxisome proliferator- 

activated receptor. 
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ignificantly reduced A 𝛽 accumulation and tau hyperphosphorylation in

 rat AD model [ 81 ]. 

.2. Parkinson’s disease (PD) 

The ROS and peroxisomal related proteins were also reported to

e dramatically changed in PD patients, which was characterized with

ccumulation of 𝛼-synuclein, the main components of Lewy bodies
1392
 82 , 83 ]. Interestingly, a reduced level of catalase was observed in

-synuclein expressing cells of mice brain [ 84 ]. As Willingham and

oworkers demonstrated, yeast cells lacking PEX2 exhibited growth de-

ects compared with yeast cells with PEX2, emphasizing the protective

oles of peroxisomes in 𝛼-synuclein-induced cellular toxicity [ 85 ]. Ad-

itionally, many studies focused on the roles of peroxisomes in lipid

etabolism [3] . The levels of lipids such as oxysterols and choles-

erol were demonstrated to contribute to the development of PD [ 86 ].
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(

esides, the levels of fatty acids, such as PUFA, were also shown to be

ownregulated in patients with PD [ 87 ]. Deficiencies in peroxisomes

horten the acyl chains in these cells, affecting the composition of lipid

roplets, which in turn affects synuclein binding. Plasmalogens were

ound to be reduced in PD patients’ frontal cortex postmortem [ 88 ].

eroxisomal enzyme glycerone-phosphate O-acyltransferase (GNPAT)

ynthesizes plasmalogens in the brain by phosphorylating glycerone

hosphate [ 89 ]. Compared to wild-type mice, GNAPT knockout mice

isplayed rapid declines in mean dopamine levels [ 90 ]. When mice

ith Parkinson’s disease were supplemented with the highly bioavail-

ble plasmalogen precursor, PPI-1011, the striatal dopamine loss was

eversed [ 91 ]. 

.3. Multiple sclerosis (MS) 

MS is characterized by progressive loss of axonal function caused

y demyelination in the central nervous system. An axonal degenera-

ion and progressive demyelination were observed in the PEX5 knockout

ice lacking functional peroxisomes in oligodendrocytes [ 92 ]. Besides,

n MS brain tissues, PMP70 expression was reduced overall. As a result,

he gray matter neurons produced elevated levels of VLCFAs (C26:0)

 93 ]. In MS patients, DHA containing PlsEtn was found to be reduced,

upporting the role of peroxisomes in MS [ 94 ]. 

.4. Amyotrophic lateral sclerosis (ALS) 

The progressive disease, ALS, primarily affects motor neurons that

ontrol voluntary muscle movement. An analysis of genome-wide ex-

ression identified genes and pathways associated with ALS, including

eroxisome-related genes [ 95 ]. Furthermore, ALS patients have report-

dly had defects in cholesterol metabolism, which requires functional

eroxisomes [ 96 ]. In the brain and spinal cord, d -proline, D ‑serine,

nd d -alanine are oxidized by the peroxisomal enzyme d -amino acid

xidase (D-AAO) [ 97 ], while impairment in the clearance of D ‑serine

reatly contribute to the pathogenesis of ALS [ 98 ]. Patients with famil-

al ALS have also been found to carry a mutation in d -AAO (R199W

 -AAO)[98]. When mutant d -AAO is overexpressed in motor neurons,

utophagy is activated and cell death occurs [ 99 ]. 

.5. Stroke 

In mouse models with ischemic brains, ROS metabolism is directly

elated to brain development. During brain ischemia, the brain is not

upplied with enough blood, resulting in cell death within neurons

 100 , 101 ]. The study found that neurons improve their antioxidant abil-

ties in response to ischemic injury in mouse models of ischemic injury. A

tudy found that ischemic injury in neurons increased peroxisome bio-

enesis, resulting in increased expression and number of peroxisomes

 102 ]. Peroxisome proliferator-activated receptor (PPAR)-activation re-

uces expression of NOS and COX2 as well as proinflammatory cy-

okines, making it a potent therapeutic target for treating ischemic

troke [ 103 ]. By using WY14643, oxidative damage resulting from is-

hemic stroke in rats was remarkably reduced [ 104 ]. In one of our own

tudies, we found that the functions of peroxisomes were compromised

n the animal model of subarachnoid hemorrhage, which reversely ex-

cerbated cerebral white matter injury via thioredoxin-binding protein

TXNIP) and GNPAT pathways [ 44 ]. 

.6. Peroxisome biogenesis disorders (Zellweger syndrome) 

A group of autosomal recessive inherited disorders involved in perox-

some biogenesis are known as PBDs. Cerebro-hepato syndrome (CHS)

r Zellweger syndrome (ZS) is caused by mutations in the PEX genes

nvolved in peroxisome biogenesis [105] . In Zellweger patients, accu-

ulation of branched and very long chains of fatty acids leads to brain
1393
ysfunction [106] . Neuronal migration defects led to cerebellar malfor-

ations and abnormal Purkinje cell positioning in ZS patients’ postna-

al cerebellums [107] . A disordered neuronal migration has also been

ssociated with abnormalities in the cerebral hemispheres and cerebel-

um [108] . Hypotonia and craniofacial dysmorphism are common in

ewborns with ZS [2] . The ZS abnormalities were studied in mice with

nockouts of PEX2, PEX5, and PEX13 [109–111] . The study reported ab-

ormalities in cerebellum development and subsequently in brain for-

ation, as well as hypotonia, growth retardation, and impairment of

ranule cell migration. As a result, there is an increase in cell death

ithin days of birth [109–111] . In ZS patients with a PEX16 mutation,

LCFA levels were elevated and catalase levels were decreased, suggest-

ng that the peroxisomal functions were abnormal [112] . 

. Pexophagy: molecular and cellular mechanisms 

In 1997, Klionsky described pexophagy for the first time [113] . The

acropexophagy and micropexophagy modes of pexophagy were later

iscovered by researchers [114–116] . The macropexophagy of mam-

als is defined as single peroxisomes being engulfed by autophagosomes

o form pexophagosomes, which are then fused with lysosomes and de-

raded for recycling. As a result of micropexophagy, vacuolar sequester-

ng membranes (VSMs) and micropexophagy-specific apparatus (MIPA)

ngulf the peroxisome [117] , in which the peroxisomes are cradled by

up-shaped VSMs [118] . 

In addition to the proteins that form the core of autophagy machin-

ry, pexophagy reportedly involves a number of specific proteins. One

s autophagy receptors. NBR1 and SQSTM1/p62 reportedly act as au-

ophagy receptors in mammalian cells [119] . Two functional domains

re shared by these receptors. One is LIR, which binds to LC3, de-

ivering peroxisomes to autophagosomes, and the other is ubiquitin-

ssociated domain. The other domains are ubiquitin-associated, which

nteract with ubiquitinated residues on peroxisomes [120] . In spite

f SQSTM1 ′ s contribution to pexophagy, it is not required for pex-

phagy when NBR1 is sufficient. Despite this, SQSTM1 can raise NBR1-

ediated pexophagy’s efficiency by binding to NBR1 [121] . Moreover,

hese two receptors have also been reported to participate in mitophagy,

ysophagy, and ER-phagy as well [122–124] . PEX14 also reportedly in-

eracts directly with LC3-II under conditions of nutrient deprivation to

acilitate pexophagy [125] . Moreover, NBR1 and/or SQSTM1/p62 fa-

ilitate interactions between PEX14 and LC3-II by altering its confor-

ation, enabling LC3-II to interact with transmembrane domains of

EX14 [126] . It has been found that PEX5 ubiquitination is one of the

echanisms that initiate pexophagy when some stresses occur, such

s dysfunctional peroxisomes or oxidative stress. Furthermore, ataxia-

elangiectasia mutated (ATM) kinase is another significant factor. Ac-

ivation of ATM could phosphorylate and activate PEX5, which leads

o PEX5 self-ubiquitination and finally promotes pexophagy [ 127 , 128 ]

 Fig. 4 ). 
Fig. 4. The underlying mechanisms of pexophagy in mammals . 
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.1. Ubiquitination-mediated pexophagy 

In recent years, evidence has accumulated that ubiquitination of

ome proteins is one of the prerequisites for selective autophagy [129–

31] . Pexophagy is associated with PEX5 ubiquitination. Peroxisome-

ocalized ATM is phosphorylated and activated by oxidative stress,

hich in turn activates PEX5. PEX5 is then subsequently phosphory-

ated by PEX2. PEX10, or PEX12, which ubiquitinates it at K209, allow-

ng PEX5 to be targeted by SQSTM1/p62 for pexophagic degradation

127] . 

.2. Adaptor-mediated pexophagy 

The SQSTM1/p62 protein serves as an autophagy adaptor and pos-

esses two functional domains: the LIR of the motif and the UBA domain

t its C-terminus [ 123 , 132 ]. This autophagy adaptor is a key regula-

or of autophagic signaling pathways, and has always been used as a

iomarker for monitoring autophagy levels [ 123 , 133,134 ]. Pexophagy

ccurs when SQSTM1/p62 engages LC3II through the LC3-interacting

egion (LIR). And Ubiquitin-Associated (UBA) domains interact with

biquitinated peroxisome regions, followed by engulfment of peroxi-

ome [ 135 , 136 ]. 

NBR1 is another mediator for pexophagy, which also possesses an

IR and a UBA domain [ 137 , 138 ]. The NBR1 helps to transport peroxi-

ome to the lysosomes, and activates pexophagy [121] . Additionally, al-

hough p62 cannot initiate pexophagy due to a lack of juxta-UBA (JUBA)

omain, its interaction with NBR1 can increase the efficiency of NBR1-

nduced pexophagy [121] . 

. Pexophagy and neurological diseases 

.1. Pexophagy in mammals 

The roles of pexophagy in mammal cells has recently been stud-

ed and its physiological and pathological functions have also been

xplored. There have been links demonstrated between pexophagy

nd cellular aging [ 100 , 101 ], inflammation [ 44 ], cancer development

 43 , 102 ], and apoptosis [ 7 , 98 , 99 ]. For example, one study showed

hat dysfunctional peroxisomes were cleared via pexophagy, which in

urn reduced the oxidative stress and renal damage in vascular en-

othelial cells under exposure to lipopolysaccharides [ 107 , 108 ]. Fur-

hermore, cone cell retinal dystrophy may be caused by a mutation

f the pexophagy-specific protein, ACBD5 [109] . Besides, the role of

exophagy in CNS has been reviewed in recent years. Peroxisomes are

mportant in maintaining redox hemostasis of CNS. Peroxisomal dys-

unction or excessive accumulation of peroxisomes contribute greatly

o the pathogenesis of neurological diseases. Selective removal of dys-

unctional or superfluous peroxisomes provides neuroprotective effects,

hich has been firmly proven in animal models [ 139 ]. Moreover,

here are several signs of neurodegeneration caused by pexophagy gene

nockouts, including growth retardation, abnormal reflexes, premature

eath, and progressive motor deficits [ 140–142 ]. 

.2. Neuroprotection of pexophagy in neurological diseases 

Unlike other cell types, neurons rely heavily on basal autophagy,

ince they are post-mitotic and suffer from aggregation of toxic proteins,

s well as structural damage [ 143–145 ]. Growing evidence indicates

hat pharmacologically inducing pexophagy can help treat neurological

isorders. For example, in a middle cerebral artery occlusion (MCAO)

nimal model, Zhu and his colleagues found that pexophagy flux was

ecreased in TSC1 knockout mice, which showed that there were sus-

ained larger infarcts than WT mice [16] . Furthermore, doxorubicin-

ased chemotherapy decreases peroxisome production and pexophagy

n neurons [ 146 ]. However, Hydroxypropyl- 𝛽-cyclodextrin (HP 𝛽CD), a

egulator of autophagy and lysosome functions, can decrease oxidative
1394
tress and pexophagy-related damage caused by doxorubicin. Several

tudies have suggested that most peroxisome biogenesis disorders, such

s Zellweger syndrome, do not result from a failure to produce peroxi-

omes, but rather from dysfunction of pexophagy. However, more stud-

es are needed to study the functions of pexophagy in PBDs. 

The ACBD5, a human ortholog of Atg37, is localized to peroxisomes

nd participates in pexophagy [ 147 ]. According to a recent study, mu-

ant ACBD5 is associated with impaired very long-chain fatty acid oxi-

ation and leads to the white matter diseases [ 148 ]. What’s more, the

iogenesis and degradation of peroxisomes are also impaired in PD and

D. A dysfunctional peroxisome can produce ROS that contribute to

ellular degeneration, including neurodegeneration and aging. There-

ore, degrading dysfunctional peroxisomes is very important, and re-

ent studies indicate pexophagy is important for neurodegenerative dis-

ases [ 149 ]. In addition, a lack of HSPA9 increased peroxisomal ROS,

esulting in dysfunctional peroxisomes and pexophagy [ 150 ]. The PD-

ssociated mutants of HSPA9 (R126W, A476T, and P509S) failed to in-

ibit pexophagy in HSPA9-deficient neuronal cells when overexpressed,

hereas WT HSPA9 reversed the loss of peroxisomes [ 150 ]. However,

uch remains unknown about how pexophagy is affected by these dis-

ases and more studies should be conducted. 

.3. Potential clinical values of pexophagy in neurological diseases 

Pexophagy is reportedly involved in several neurological diseases,

ncluding stroke, Zellweger Syndrome, and PBDs, suggesting that pex-

phagy can be a promising target of treatment. In one clinical trial

NCT03856866), the effects of hydroxychloroquine (HCQ) are evalu-

ted for treating peroxisomal biogenesis disorders (PBD-ZSD). They hy-

othesized that HCQ will reduce pexophagy, which will arrest ongo-

ng injury in Zellweger Syndrome and PBDs caused by PEX1, PEX6,

r PEX26. However, no results have been reached currently. The study

f pexophagy in the central nervous system is still largely unexplored

nd most evidence is based on preclinical animal studies. There are

urrently several limitations for the clinical study of pexophagy. Clin-

cal translation of the drugs is still in its infancy, which is limited by

rug development. Most of the drugs have not been introduced into

linical practice. Additionally, we are unable to dynamically evaluate

utophagy in living cells. The importance of this limitation is evident

ince it determines the diagnosis and monitoring of the effectiveness

f any autophagy-based therapy. Several experimental studies have re-

orted that pairing the macroautophagy reporter, mRFP-GFP-LC3, and

ntraventricular delivery of an adeno-associated virus can be effective

n monitoring autophagy [ 151 ]. However, there are currently no clini-

ally applicable autophagy reporters. Therefore, for clinical translation

f autophagy-based drugs, it will be essential to develop methods for

onitoring autophagy. 

. Conclusion and perspectives 

In this review, we comprehensively discussed the physiological and

athological mechanisms of peroxisomes and pexophagy in neurologi-

al diseases. Several types of cells and tissues use peroxisomes, and they

ollaborate extensively with mitochondria, ERs, and lipid bodies. There

re a variety of types, sizes, and shapes of peroxisomes in different tis-

ues and cells. However, the exact impact of these differences on the

unction of peroxisomes in various cell types is unclear. 

There is a high degree of diversity in the nervous system and brain,

specially in terms of morphology, number, and function. As described

bove, several brain-related disorders are now known to be caused by

eroxisomes. Peroxisomes play an important role in oxidative home-

stasis, lipid synthesis, and degradation. The neurological diseases are

inked to altered peroxisome activities as well as decreased peroxisome

unction. However, a thorough investigation of the molecular details, as

ell as the implications, is needed. 
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Moreover, pexophagy was also discussed in relation to neurological

iseases, which is a promising therapeutic target. However, pexophagy

emains largely unexplored in neurological disorders despite its crucial

ole in cell physiology. Accumulating studies have identified the func-

ions of adaptors, such as p62 and NBR1, in mediating pexophagy. How-

ver, these adaptors do not exclusively play a role in pexophagy, and are

nvolved in other selective autophagic processes, including xenophagy

nd mitophagy. Elucidating the roles of pexophagy adaptors and perox-

somal proteins will help to enable a better understanding of the molec-

lar mechanisms of pexophagy in neurological diseases. Moreover, we

o not have any clinical evidence that pexophagy is involved in neuro-

ogical diseases as most of the evidence is based on preclinical animal

tudies. It is necessary to develop a broad range of reagents and thera-

eutic targets for manipulating pexophagy and to further elucidate pex-

phagy’s crosstalk mechanisms in the neurological pathology. 
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