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Airways Disease: Phenotyping Heterogeneity Using
Measures of Airway Inflammation
Salman Siddiqui, MRCP and Christopher E. Brightling, MRCP, PhD

Despite asthma and chronic obstructive pulmonary disease being widely regarded as heterogeneous diseases, a consensus for an

accurate system of classification has not been agreed. Recent studies have suggested that the recognition of subphenotypes of

airway disease based on the pattern of airway inflammation may be particularly useful in increasing our understanding of the

disease. The use of non-invasive markers of airway inflammation has suggested the presence of four distinct phenotypes:

eosinophilic, neutrophilic, mixed inflammatory and paucigranulocytic asthma. Recent studies suggest that these subgroups may

differ in their etiology, immunopathology and response to treatment. Importantly, novel treatment approaches targeted at specific

patterns of airway inflammation are emerging, making an appreciation of subphenotypes particularly relevant. New developments in

phenotyping inflammation and other facets of airway disease mean that we are entering an era where careful phenotyping will lead

to targeted therapy.
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A sthma and chronic obstructive pulmonary disease

(COPD) are the commonest respiratory diseases

managed by pulmonologists. The incidence of asthma

and COPD continues to rise.1 By 2020, COPD is expected

to be the third largest cause of global mortality and

currently accounts for 3.5% of global disability-adjusted

life-years.2 Exacerbations of airway disease, particularly

those that lead to hospital admissions, result in consider-

able morbidity and mortality as well as an enormous

economic burden within health care systems.

Asthma and COPD are characterized by the presence of

symptoms of cough, wheeze, and breathlessness with airflow

obstruction and underlying airway inflammation.

Traditionally, they are distinguished by the presence of

variable airflow obstruction, reversibility, and airway

hyperresponsiveness (AHR) in asthma and fixed airflow

obstruction in COPD. However, neither is specific, and

considerable overlap exists, with fixed airflow obstruction a

feature in some patients with severe asthma and partial

reversibility a frequent feature of COPD. Both diseases are

composed of a variety of different domains, for example,

airflow obstruction (fixed, reversible), AHR, atopy, and

airway inflammation. Each patient with airways disease has

elements from each domain that contributes to the disease.

Within an individual, features from different domains may

be associated and change together in response to treatment

but may also be dissociated. For example, inflammation is

often dissociated from the degree of airway responsiveness in

asthma or degree of airflow obstruction in COPD, and a

similar disparity may be observed with symptoms.3,4 For

these reasons, it is important to characterize patients using a

composite of measures that describe an individual patient.

In this review article, we concentrate on airway

inflammation as a distinct disease domain in asthma and

COPD and highlight the clinicopathologic importance of

defining phenotypes of disease based on airway inflamma-

tion. We also describe new techniques that attempt to

combine outcomes from different domains to define

patients more accurately and how this may impact on

future disease classification and treatment.

New Era of Inflammometry

The ability to obtain an induced sputum sample using

hypertonic saline5 has been a major advance in airways

disease. Sputum induction is a well-tolerated, safe, and

repeatable procedure even in patients with severe disease.6,7

A number of other techniques, including the measurement
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of exhaled gases such as nitric oxide (eNO), as well as

inflammatory markers in exhaled breath condensates, have

been used to characterize airway inflammation in asthma

and COPD; however, the clinical utility of these techniques

remains to be proven. Measuring airway inflammation has

led to the recognition of new asthma phenotypes, identified

patients who respond best to corticosteroids, and, most

importantly, can reduce exacerbation frequency by targeting

anti-inflammatory treatment.

Induced Sputum Eosinophilia Predicts Response to
Inhaled and Oral Corticosteroids in Asthma and
COPD

Inhaled corticosteroids (ICSs) have been advocated in all

international guidelines for asthma and COPD, with

overwhelming evidence for improvement in lung function

and symptom scores/quality of life, as well as a reduction

in exacerbation frequency.8–13 However, despite regular

use of ICSs, a large number of patients with asthma

continue to have persistent symptoms14 and exacerbate

symptoms without prior deterioration in day-to-day

symptoms. Furthermore, the long-term use of high-dose

ICSs in asthma and COPD is associated with clinically

important side effects, such as a reduction in bone mineral

density and adrenal suppression.15,16 Therefore, a strategy

aimed at identifying both physiologic and clinical

responders to ICSs is clinically important.

In asthma, sputum eosinophilia is associated with a

good response to corticosteroids.17,18 Little and colleagues

demonstrated that a sputum eosinophilia of . 4% had a

positive predictive value of 68% for predicting a . 15%

forced expiratory volume in 1 second (FEV1) response to a

2-week oral corticosteroid trial.19 Furthermore, a sputum

eosinophilia correlates positively with the degree of

improvement to inhaled and oral corticosteroids and

seems to be more closely associated with clinical response

than eNO or sputum/peripheral blood eosinophilic

cationic protein.17 Even with so-called refractory asthma,

it is questionable whether patients with eosinophilic

inflammation have a real corticosteroid resistance.

Indeed, a double-blind, placebo-controlled study of

intramuscular triamcinolone in severe asthmatics on

high-dose inhaled and oral corticosteroids revealed that

after 2 weeks of triamcinolone, the sputum eosinophil

count was markedly attenuated from a median of 12.6 to

0.2% (p , .001). Within the triamcinolone group, changes

in sputum eosinophilia correlated strongly with improve-

ment in postbronchodilator FEV1 and reduced use of

rescue medication.20

A number of clinical studies have demonstrated that

sputum eosinophilia predicts a response to corticosteroids

in COPD. In a single-blind, sequential, placebo-controlled

study, treatment with a short-term prednisolone trial

had no effect on markers of neutrophilic inflammation

(sputum neutrophils, supernatant myeloperoxidase/

elastase); however, a marked reduction in sputum eosino-

phil count and supernatant eosinophilic cationic protein

(ECP) was observed. A subgroup with sputum eosinophils

. 3% had the greatest improvement in FEV1 and quality

of life scores.21 A randomized, placebo-controlled, double-

blind, crossover trial comparing a 2-week course of

prednisolone with placebo demonstrated a significant

sixfold reduction in the sputum eosinophil count after

prednisolone. Stratification of the baseline eosinophil

count into tertiles in this study revealed that postbronch-

odilator FEV1 and symptom scores improved progressively

compared with placebo from the lowest to highest

eosinophil tertile.22 These findings have been confirmed

with ICSs in a randomized, double-blind, crossover trial of

inhaled mometasone in stable COPD.23 Although no

treatment benefit was observed overall in terms of

symptom scores, a reduction in sputum eosinophilia, or

postbronchodilator FEV1, after stratification into tertiles

according to the baseline sputum eosinophil count,

postbronchodilator FEV1 increased progressively com-

pared with placebo from the least to the most eosinophilic

tertile. In contrast, Leigh and colleagues demonstrated that

4 weeks of treatment with inhaled budesonide in patients

with moderate to severe airflow obstruction and stable

COPD at a more potent beclomethasone dipropionate

(BDP)-equivalent dose (2,000 mg/d) normalized sputum

eosinophilia compared with placebo and led to significant

improvements in dyspnea, postbronchodilator lung func-

tion, and quality of life.24

Therefore, induced sputum eosinophilia may be used

to predict the clinical and physiologic responses to inhaled

and oral corticosteroids in asthma and COPD.

Induced Sputum Eosinophilia: Preventing
Exacerbations in Asthma and COPD

Exacerbations represent an enormous health care challenge

in asthma and COPD. Corticosteroid reduction studies

have consistently shown that induced sputum eosinophilia

precedes asthma exacerbations,25–27 suggesting that stra-

tegies targeting sputum eosinophilia can effectively reduce

exacerbations.

Three clinical studies have compared symptom- and

guideline-based asthma management to a sputum eosino-
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phil–based strategy.28–30 Green and colleagues conducted a

randomized, placebo-controlled study in which 74 patients

with moderate to severe asthma were assigned to standard

clinical management according to national guidelines or a

sputum-based strategy group with treatment targeted at

normalizing the sputum eosinophil count.28 Patients in the

sputum management group had significantly fewer asthma

exacerbations compared with the guideline management

group (35 vs 109; p 5 .01) and significantly fewer patients

were admitted to hospital (1 vs 6; p 5 .047). Furthermore,

the average daily dose of inhaled or oral corticosteroids did

not differ between the two groups primarily owing to the

identification of a group of patients with noneosinophilic

asthma (NEA) in whom corticosteroids were reduced

without evidence of deterioration in asthma control.

Chlumsky and colleagues conducted a prospective, rando-

mized, controlled study of sputum-based management

targeting eosinophils versus standard clinical asthma

management in 55 patients with moderate to severe

persistent asthma.30 Targeting eosinophilia led to a

significant reduction in exacerbations (defined as a

doubling in symptom frequency/bronchodilator use)

compared with the control group (0.22/patient/yr vs

0.78; p 5 .013). Furthermore, lung function (FEV1/forced

vital capacity) was significantly improved in the sputum

group compared with the control group at the end of the

18-month study period. There was no difference between

the two groups in ICS use over the study duration. In 117

subjects, Jayaram and colleagues conducted a 2-year,

follow-up, multicentre, randomized, parallel-group effec-

tiveness study.29 Treatment directed at normalizing the

sputum eosinophil count also led to a reduction in

exacerbations (79 vs 47; p 5 .04) and increased the time to

first exacerbation by 213 days. This benefit was not at the

expense of increased therapy in the intervention group. In

this study, the inflammatory phenotype of the exacerba-

tions was characterized, and in the sputum guidelines

group, eosinophilic, but not noneosinophilic, exacerba-

tions were reduced. Interestingly, the noneosinophilic

exacerbations were more common (56%). The reduction

in exacerbations was more apparent in those with

moderate to severe disease. This suggests that it is probably

most appropriate to apply this technique to the manage-

ment of difficult-to-treat or refractory asthma but that its

use may not be applicable to a primary care population of

milder asthmatic patients.

COPD has been traditionally associated with neutro-

philic and CD8+ T cell–mediated inflammation at all levels

of the airway tree.31,32 However, eosinophilic inflamma-

tion has been observed in 20 to 40% of patients with stable

COPD.21–23,33,34 Furthermore, during acute exacerbations,

the number of eosinophils in bronchial biopsies increases

by a factor of 30-fold, with only a 3-fold increase in

neutrophils.33 The presence of sputum eosinophilia and

not neutrophilia or neutrophil elastase has been associated

with the presence of emphysema and high-resolution

computed tomography (HRCT) emphysema scores in

stable COPD.35,36 However, neutrophilic inflammation

was associated with small airway changes assessed by

HRCT.36

Siva and colleagues conducted a randomized trial of

traditional British Thoracic Society (BTS) guideline-based

management of COPD versus an induced sputum–based

strategy, based on eosinophilic airway inflammation.37

Eighty-two patients, ages ranging from 45 to 82 years, with

a mean (SD) percent predicted FEV1 of 38.2 (15.3), were

randomized. The frequency of severe exacerbations

(requiring hospital admission) in the sputum management

group was significantly less than that in the guideline

management group (0.2 exacerbations/patient/yr vs 0.5),

with a mean reduction of 60% (95% confidence interval

[CI 5]: 72%; p 5 .04). The average dose of ICS used

cumulatively did not differ between study groups,

suggesting that the reduction in exacerbation frequency

was not simply related to treatment alone. Further

prospective studies are awaited to confirm these findings.

Targeting sputum eosinophilia in secondary care is

therefore a key strategy in preventing exacerbations in

asthma and COPD and is a cost-effective measure for

health care providers.28

NEA: A Distinct Clinicopathologic Disease Entity

NEA is defined by clinical symptoms of asthma and AHR

in the absence of sputum eosinophilia,38,39 defined by a

sputum eosinophil count of , 1.01% (95th percentile

value of a healthy population). Noneosinophilic inflam-

mation extends across the entire spectrum of asthma

severity, and the phenotype is unlikely to be simply related

to corticosteroid treatment.40–43 Corticosteroids appear to

have limited efficacy in NEA.18 A recent double-blind,

placebo-controlled, crossover trial of inhaled mometasone

400 mg once daily in eosinophilic asthma (EA) versus NEA

demonstrated that patients with EA had a significant 5.5

doubling-dose improvement in the concentration of

methacholine required to cause a 20% fall in forced

expiratory volume in 1 second (PC20FEV1) after 8 weeks

of mometasone compared with placebo versus a 0.5

doubling-dose improvement in patients with NEA.43

Furthermore, in the EA group, there was a net 1.0
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improvement in the juniper asthma quality of life score

(minimal clinically important difference 0.5) compared

with placebo versus a 0.2 improvement in the NEA group

(p , .05). A parallel pathologic analysis of endobronchial

biopsies revealed that patients with EA had increased

submuscosal tissue eosinophilia and thicker lamina

reticularis and reticular basement membranes compared

with patients with EA. Interestingly, the number of mast

cells within the airway smooth muscle did not differ

between the two groups but was significantly greater than

in matched healthy controls, suggesting that mast cell

smooth muscle myositis is fundamental to AHR, a finding

that has been borne out by previous pathologic studies in

asthma.44

Asthmatic smokers have been shown to have reduced

eosinophils and increased neutrophils and interleukin-8

(IL-8) in sputum compared with asthmatic nonsmokers,45

features similar to those observed in NEA. However, the

majority of studies that have assessed patients with NEA

have excluded cigarette smokers with a . 10-pack-year

history, and there is no difference in the proportion of ex-

smokers or never-smokers between NEA and EA in most

studies.42 Few studies have examined the stability of NEA

in stable disease or during an exacerbation. However, the

limited data available suggest that NEA is a stable

phenotype. Using two sputum samples over a 6-week

period, there was moderate agreement between samples

(kappa statistic [95% CI] 0.64 [0.4–0.88]).46 Perhaps more

compelling is that in a long-term reproducibility study that

examined seven NEA patients over a mean of 5.3 years, six

of seven remained noneosinophilic, indicating substantial

long-term reproducibility (kappa 0.77 [0.57–0.97]).46

With asthma exacerbations, a subgroup did not develop

eosinophilic inflammation.47 In occupational asthma,

Anees and colleagues assessed the short reproducibility of

NEA, collected duplicate sputum samples after 1 week, and

reported no change in asthma classification.48 Therefore,

NEA represents a reproducible asthma phenotype across

the entire spectrum of asthma severity, which is cortico-

steroid nonresponsive. NEA can be further divided based

on the neutrophil count into those with neutrophilic

asthma or paucigranulocytic asthma in those subjects with

a normal eosinophil and neutrophil count (Figure 1).

Neutrophilic Inflammation in Asthma and COPD

The diagnostic criteria for significant neutrophilic inflam-

mation in induced sputum are . 61% based on the 95th

percentile value in a healthy population46 or . 77.7%

based on +2 SD from a healthy population mean.49 The

differential neutrophil count in induced sputum increases

according to age,50 highlighting the importance of disease

groups well matched for age in clinical trials. The

diagnostic criterion for sputum neutrophilia based on

total counts is . 8.0 3 106 cells/g based on +2 SD from a

healthy population mean.49 The total neutrophil count is

also an important marker of neutrophilic inflammation as

the neutrophil is a labile cell and neutrophil numbers are

increased by a variety of stimuli. Total neutrophil numbers

have been shown to be significantly increased in asthmatic

smokers,51 in response to bacterial infection with common

pathogens in cystic fibrosis52 and in response to lipopol-

ysaccharide inhalation in normal subjects.53

Neutrophilic inflammation is a potentially important

clinical marker in patients with asthma. An isolated sputum

neutrophilia was associated with a poor ‘response’ in terms

of FEV1 improvement and doubling-dose improvement in

PC20 in a 2-week trial of ICSs in steroid-naive asthmatics.28

Furthermore, the clinical profile of patients with isolated

neutrophilic inflammation differs, with patients being

predominantly older, female, and more likely to be

nonatopic but otherwise having clinical and physiologic

features similar to those of other asthmatics.

Figure 1. Sputum cytospins from different subjects with asthma
illustrate the heterogeneity of the airway inflammation. In the upper
left panel, the predominant cells are macrophages with a normal
neutrophil and eosinophil count; this cytospin cannot be distinguished
from a sample from a healthy control (paucigranulocytic asthma 3100
original magnification); the upper right panel shows combined
neutrophilic and eosinophilic inflammation (3400 original magnifi-
cation); the lower left panel shows neutrophilic inflammation (3400
original magnification); and the lower right panel shows eosinophilic
inflammation (3400 original magnification). Adapted from
Brightling.98 (Romanowsky stain.)
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In neutrophilic asthma, there is evidence of neutrophil

activation with increased neutrophil elastase and IL-8 in

induced sputum.54 Importantly, there is associated activa-

tion of the innate immune response with increased

expression of Toll-like receptors 2 and 4 and CD14.55

These changes are similar to those observed in bronch-

iectasis, suggesting that exposure to infection or endotoxin

may be important in the pathogenesis of neutrophilic

asthma. This is supported by the finding that endotoxin

levels were increased in neutrophilic asthma.55

Cigarette smoking may be an important modulator of

neutrophilic inflammation in asthma. Smoking induces

neutrophilic airway inflammation, which correlates directly

with the number of pack-years smoked and inversely with

postbronchodilator FEV1.45 Smoking cessation in asthma

leads to a reduction in neutrophilic inflammation.56

In COPD, a variety of studies have demonstrated

neutrophilic inflammation in sputum,57–61 bronchoalveo-

lar lavage (BAL),62,63 and biopsies in COPD.64–66

Neutrophilic inflammation in sputum has been associated

with both airflow obstruction and FEV1 decline in

COPD.67 Cigarette smoking is associated with neutrophilic

inflammation in COPD, but inflammation persists after

smoking cessation. Both inhaled and oral corticosteroids

have also been shown to have little effect in modulating

neutrophilic inflammation in sputum in stable COPD.68,69

Bacterial colonization is also associated with neutrophilic

airway lumen inflammation in COPD independently from

cigarette smoking, suggesting that disordered host defense

is an integral driver of neutrophilic inflammation in

COPD.70

Neutrophilic inflammation is not very susceptible to

current anti-inflammatory therapy, and new treatments

are required. In recent years, selective phosphodiesterase

(PDE) inhibitors (cilomilast, roflumilast) have been

developed to selectively block type 4 PDE, which is

expressed abundantly in inflammatory leukocytes, includ-

ing neutrophils.71,72 PDE4 inhibitors have a variety of anti-

inflammatory effects on neutrophils, including inhibition

of chemotaxis,73 suppression of proteolytic enzyme release,

inhibition of proinflammatory cytokine release, particu-

larly IL-8 and leukotriene B4,74,75 and inhibition of CD11b

integrin expression.73 In a placebo-controlled trial of 1,411

patients with stable COPD, roflumilast 500 mg once daily

was shown to reduce exacerbations by 34% and signifi-

cantly improve postbronchodilator FEV1 compared with

placebo.76 Furthermore, the drug was well tolerated, other

than class-specific side effects such as nausea, headache,

and diarrhea. Cilomilast has been shown to improve

symptoms, postbronchodilator lung function, and the

percentage of exacerbation-free weeks compared with

placebo in stable COPD77 and reduces the submucosal,

but not sputum, neutrophil count.78

Macrolides may also modulate neutrophilic inflamma-

tion,62 but there are conflicting data, with one study

showing a reduction in sputum total cell count and IL-863

and the other showing no effect.79

Neutrophilic inflammation is an important prognostic

marker in asthma and COPD; it may exist independently of

cigarette smoking and contribute toward FEV1 decline and

airflow obstruction. Therefore, neutrophilic inflammation

identifies an important inflammatory phenotype, and

identification of a sputum neutrophilia will be able to direct

future therapies targeted at neutrophilic inflammation.

eNO: Utility in Predicting Eosinophilia, Preventing
Exacerbations, and Predicting Response to
Treatment

Assessment of eNO has the appeal of being a simple and

repeatable investigation to assess lower airway inflamma-

tion,80,81 with the additional advantage of being easy to

perform and quicker than induced sputum analysis. eNO

may have utility in supporting the diagnosis of asthma. An

eNO value of . 16 ppb at a flow rate of 200 mL/s has a

specificity and positive predictive value of . 90% for

predicting asthma (defined as a PC20 , 8 mg/mL and

bronchodilator reversibility of . 12%).82 However, the

utility of eNO in asthma diagnosis in primary care based

on asthma symptoms and peak flow variability has not

been assessed.

Although eNO seems to correlate closely with eosino-

philic airway inflammation in sputum and mucosal tissue,

a raised eNO has little utility in predicting a clinically

significant sputum eosinophilia . 3%.83,84 There are a

number of possible explanations for the discordance

between eNO and sputum eosinophilia. It may be possible

that neutrophilic inflammation modulates eNO; further-

more, nasal contamination of bronchial eNO (the levels of

eNO are 100-fold higher in the upper airways) output may

be a confounder despite the traditional notion that

bronchial eNO values are obtained with a closed glottis.

The use of eNO to guide response to inhaled and oral

corticosteroids is also far from convincing. Smith and

colleagues examined the use of eNO versus a conventional

symptom-based asthma management strategy to assess the

frequency of exacerbations and efficacy of ICS reduction

based on the two management regimens in a single-blind,

placebo-controlled study of 97 patients.85 Management

with an eNO-based strategy did not affect the frequency of
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exacerbations compared with the symptom management

group. The study did report a significant reduction in the

use of ICSs in the eNO group versus conventional

management (370 mg/d vs 641 mg/d; p 5 .003).

However, these results should be interpreted with caution

as the study design did not allow ICS dose reduction in the

follow-up phase (phase 2) and the mean dose of ICS in the

control group at the end of the treatment optimizing phase

(phase 1) of the study was significantly higher than in the

eNO group (567 mg/d vs 292 mg/d; p 5 .003), fixing the

control group at a higher daily dose of ICS at the onset of

the follow-up phase. Furthermore, eNO was unable to

predict significant sputum eosinophilia in approximately

one-third of patients. Two further studies, one in adults

with mild to moderate asthma86 and another in children,87

also failed to demonstrate a reduction in asthma exacer-

bations with corticosteroid therapy targeted at reducing

eNO.

Therefore, current evidence does not support the use of

eNO to target anti-inflammatory treatment. However,

studies investigating the utility of eNO in patients with

COPD and in those with severe asthma are eagerly

awaited. In addition, the role of measuring other exhaled

gases and mediators in exhaled breath condensate in the

phenotyping and management of airways disease is

unknown.

A More Complex Approach to a Complex Problem:
Generation ‘Omics’

One of the limitations of current clinical markers of

inflammation in both asthma and COPD is that they fail to

capture the complexity and diversity of the inflammatory

cascade. As a consequence, significant heterogeneity exists

in response to treatments that modulate inflammation.

An emerging approach in recent years to address this

problem has been to try to generate phenotype-specific

fingerprints of the inflammatory cascade or its genetic

regulation. Omics-based technologies—genomics, proteo-

mics, and metabolomics—offer a potential solution to the

problem of capturing inflammatory diversity in indivi-

duals with airways disease.

Genomics

With the development of complementary deoxyribonu-

cleic acid (DNA) microarrays, it has become possible to

gain information on the level of gene expression for

thousands of genes. This opens a new era of biomarker

discovery and has the potential to further develop specific

expression profiles associated with certain features of

airways disease, to predict response to treatment and

disease progression. This approach has been applied to

cancer, and whether it has applications in airways disease is

awaited.

Proteomics

A vast number of proteins mediate both the normal and

aberrant host inflammatory response. Identifying which

aspects of the proteome are associated with different

patterns of disease expression will allow us to develop

effective and selective drugs to target the inflammatory

cascade.

Surface-enhanced laser desorption ionization time-of-

flight mass spectrometry (SELDI-TOF MS) and matrix-

assisted laser desorption ionization time-of-flight mass

spectrometry (MALDI-TOF-MS), together with new

developments in more traditional two-dimensional gels,

have emerged as powerful tools to examine the proteome

and discover potentially novel biomarkers in a variety of

airway diseases.88–90 SELDI-TOF MS is a combination of

miniaturized chromatographic prefractionation on a

protein chip followed by MALDI-TOF analysis of

subfractions. The process allows capture of proteins in

biologic fluids such as BAL or induced sputum super-

natants on an immobilized chip that is designed to capture

different physicochemical aspects of protein biochemistry

(eg, hydrophobicity, metal ion affinity, cationic/anionic

properties).91 SELDI-TOF offers a variety of advantages;

outputs can be generated from very small amounts of

biologic fluid at a very high throughput.

A proteomic study of human BAL fluid from smokers

with COPD combining SELDI-TOF with mass spectro-

metry profiling demonstrated that defensins 1 and 2 and

calgranulins A and B were elevated compared with

asymptomatic smokers.88 Alpha-defensins are major con-

stituents of neutrophil azurophilic granules, whereas beta-

defensins are expressed in airway epithelial cells and could

contribute to the pathogenesis of COPD by amplifying

cigarette smoke–induced and infection-induced inflam-

matory reactions, leading to lung injury.92 Calgranulins

may have an important role in neutrophil chemotaxis to

the airway and neutrophil elastase–mediated tissue damage

seen in COPD.

Large studies using SELDI-TOF-based techniques in

well-characterized cohorts of patients with COPD and

asthma are eagerly awaited and are likely to play a

significant role in drug discovery and biomarker identifi-

cation in the future. In particular, proteomic approaches
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will enable the development of specific panels of mediators

that can be assessed using new multiplex systems, such as

Luminex or Meso-Scale, that may be particularly helpful in

predicting response to treatment and prognosis.

Metabolomics

Metabolomics and the related term metabonomics can be

defined as the attempt to dynamically measure the

metabolic output within a cell, tissue, or organism in

response to interventions or changes in their environment.

Like proteomics, metabolomics offers promise in the

analysis of global inflammation from biologic fluids in

asthma and COPD and the possibility of generating a

fingerprint metabotype.93,94

Multidimensional Phenotyping in Asthma and
COPD

This review has focused on the current and potential

future use of measuring airway inflammation in pheno-

typing airway disease. However, it is important to

recognize that this encompasses a single domain of these

complex diseases. Both asthma and COPD are character-

ized by a variety of clinicopathologic domains. Airway

physiology (variable vs fixed airflow obstruction), airway

inflammation, systemic inflammation (COPD), symptoms

and quality of life, genetic predisposition, and environ-

mental/occupational triggers all contribute to the patho-

genesis of both diseases. Furthermore, each domain is

characterized by a number of measurable variables. The

number of variables varies considerably between domains;

for example, a large number of candidate genes modulate

genetic predisposition, whereas a much more finite

number of clinical parameters (eg, FEV1, PC20, peak flow)

define airway physiology.95 Most clinical studies predefine

asthma and COPD based on a single dimension, for

example, variable airflow obstruction in asthma or fixed

airflow obstruction in COPD. However, these disease

definitions are limiting and do not fully capture the

complexity of the disease or acknowledge the multi-

dimensional nature of the disease.

A variety of studies in asthma and COPD have

demonstrated that important clinical domains show

significant dissociation. Haldar and colleagues examined

271 patients with refractory asthma attending a difficult

Figure 2. Airway diseases are composed of a number of domains that can be assessed by several outcome measures. The combination of outcome
measures allows for phenotyping the heterogeneity, which impacts on clinical management and research. AHR 5 airway hyperresponsiveness; BD
5 bronchodilator; BMI 5 body mass index; CRP 5 C-reactive protein; HRCT 5 high-resolution computed tomography, PEFR 5 peak flow
reading; PFTs 5 pulmonary function tests.
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asthma clinic in the United Kingdom.96 A data reduction

technique known as factor analysis minimized 17 variables

into five distinct domains: (1) symptom scores, (2) allergy,

(3) psychosocial, (4) inflammation, and (5) variable

airflow obstruction. This suggests that asthma comprises

a number of distinct factors and that the relative

contribution of one or more of these factors in a patient

determines individual phenotype. Lappere and colleagues

studied disease heterogeneity in 114 patients with mild to

moderate COPD using factor analysis.3 Considerable

dissociation was demonstrated between airway function,

AHR, and airway inflammation assessed by induced

sputum, suggesting that these are discrete, nonoverlapping

disease dimensions.

Progress in the study of airways disease may require

deviation from the traditional definitions of asthma and

COPD.97 Furthermore, standardized, nonobjective mea-

surements of different disease-specific variables across

domains, within a network of collaborating centres,

followed by data mining and data reduction are more

likely to allow us to define important disease phenotypes

that relate to clinically important outcomes as well as

tailoring treatment toward individual patients (Figure 2).

Conclusions

The measurement of airway inflammation by induced

sputum is a useful technique in identifying important

clinicopathologic outcomes in asthma and COPD.

However, a variety of other parameters capturing the

complexity of the inflammatory cascade can now be

readily measured, and a collaborative approach between

centres with a specialist interest in airways disease

combined with advanced data mining is likely to further

our understanding of disease phenotypes in the future.
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