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The functional synthesis uses experimental methods from molecular biology, biochemistry and structural biology to decompose

evolutionarily important mutations into their more proximal mechanistic determinants. However these methods are technically

challenging and expensive. Noting strong formal parallels between R.A. Fisher’s geometric model of adaptation and a recent

model for the phenotypic basis of protein evolution, we sought to use the former to make inferences into the latter using data on

pairwise fitness epistasis between mutations. We present an analytic framework for classifying pairs of mutations with respect to

similarity of underlying mechanism on this basis, and also show that these data can yield an estimate of the number of mutationally

labile phenotypes underlying fitness effects. We use computer simulations to explore the robustness of our approach to violations

of analytic assumptions and analyze several recently published datasets. This work provides a theoretical complement to the

functional synthesis as well as a novel test of Fisher’s geometric model.
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A mutation’s effect on phenotype commonly depends on the pres-

ence or absence of other mutations in the genome, a phenomenon

called epistasis. This word was coined 100 years ago by William

Bateson (1909) to describe departures from the Mendelian 9:3:3:1

ratios expected in the F2 generation of a dihybrid cross involv-

ing unlinked loci (Phillips 1998, 2008). The principled analy-

ses of such departures can yield insights into the mechanisms

that determine phenotype (Avery and Wasserman 1992; Griffiths

et al. 2002; Roth et al. 2009). For example in the blue-eyed Mary

(Collinsia parviflora), crossing true-breeding plants with white

and magenta flowers yields 100% blue flowers in the F1, and

blue, magenta, and white flowers at ratios 9:3:4 in the F2. Thus, a

mutation at one locus is masked in organisms homozygous mutant

at the other, implying that the gene product of the masked locus

acts downstream of the gene product of the masking locus.

Mendelian phenotypes are discrete, but epistasis is also

widespread in continuous phenotypes and has important implica-

tions for human medicine, agriculture, and evolutionary biology

(Mackay 2001). Population genetics traditionally define epistasis

for fitness between two mutations i and j as

εi j = W0 Wi j − Wi W j , (1)

where Wx is the absolute fitness of an organism carrying muta-

tion(s) x and W0 is the fitness of the ancestor. We further partition
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epistasis (ε �= 0) into positive and negative epistasis (meaning that

the fitness of the double-mutant is higher and lower, respectively,

than expected).

The principled analyses of the sign of fitness epistasis be-

tween deleterious mutations in pairs of genes can also yield

insights into the topology of an organism’s metabolic network.

Building on the metabolic control analysis of Kascer and Burns

(1973), Szathmáry (1993) showed that mutations in pairs of genes

whose products act in the same linear pathway should exhibit pos-

itive epistasis, whereas mutations in pairs of genes whose prod-

ucts act in parallel, redundant pathways should exhibit negative

epistasis (Segrè et al. 2005; D. M. Weinreich, unpubl. ms.). Re-

cently, this reasoning has been used with remarkable success to

correctly reconstruct metabolic networks from microbial growth

rate data for pairwise gene deletions estimated computationally

(Segrè et al. 2005) or measured experimentally (Costanzo et al.

2010; He et al. 2010).

Although metabolic control analysis suggests that deleterious

mutations in the same gene should only exhibit negative fitness

epistasis (Szathmáry 1993), experimental work illustrates that the

situation is more complicated (e.g., Lunzer et al. 2005a; Weinreich

et al. 2006; Bridgham et al. 2007; Lozevsky et al. 2009). Indeed,

these results have stimulated experimental interest in developing

a quantitative understanding of how mechanistically more proxi-

mal phenotypes drive protein evolution (the functional synthesis

of Dean and Thornton 2007). We therefore sought a theoreti-

cal perspective complementary to this recent empirical work. We

were specifically motivated by the fact that in many systems high-

throughput reverse genetics and fitness assays are now practical,

whereas the dissection of the underlying molecular biology of

fitness effects remains more challenging. Our approach yields in-

sight into more proximal determinants of fitness using only data

on pairwise epistasis between deleterious mutations.

We begin here from the observation (Weinreich 2010) that

a principled model of protein evolution first proposed by De-

Pristo et al. (2005; see also Camps et al. 2007; Gu 2007; Tokuriki

et al. 2008) bears strong formal similarities to Fisher’s geometric

model (Fisher 1930; hereafter the FGM). The FGM maps from

an abstract representation of the space of all conceivable organis-

mal phenotypes to fitness, and recently Martin et al. (Martin and

Lenormand 2006; Martin et al. 2007; Chevin et al. 2010) have

developed quantitative predictions for patterns of pairwise fitness

epistasis under the premise of this abstract phenotypic space. We

inverted this logic by asking whether data on fitness epistasis

might allow us to quantitatively characterize the actual pheno-

typic space of the FGM in specific experimental systems. Note

too that although motivated by a model of protein evolution, our

approach can be applied at any level of organismal organization.

We first present a novel analytic framework that uses epistatic

interactions to characterize pairs of deleterious mutations with re-

spect to similarity of phenotypic effect in the FGM. In addition,

given data on pairwise epistatic interactions among some set of

deleterious mutations, our framework yields an estimate of the

total number of mutationally labile dimensions in the phenotypic

space of the corresponding FGM. We then use computer simu-

lations to explore the robustness of results to violations of ana-

lytic assumptions. Finally, we examine several published datasets.

Taken together this study offers a novel theoretical complement to

ongoing efforts at dissecting the phenotypic determinants of fit-

ness as well as a quantitatively rigorous examination of Fisher’s

geometric model.

PROTEIN EVOLUTION AND FISHER’S GEOMETRIC

MODEL

DePristo et al. (2005) assert three facts about protein biology.

First, that in addition to affecting functional properties (e.g., cat-

alytic activity of an enzyme or binding specificity of a transcrip-

tion factor), mutations in protein coding genes influence organ-

ismal fitness via several other molecular phenotypes. These may

include gene transcription and message translation rates, the pro-

tein’s native-form folding kinetics and thermodynamics, and its

misfolding, aggregation, and degradation rates. Second, many of

these phenotypes are commonly under stabilizing selection, that

is intermediate values are optimal. For example, although too little

folding stability might render most copies of an enzyme nonfunc-

tional, too much stability will also hinder function (Malcolm et al.

1990) as some flexibility, termed “breathing,” is essential. (Zhou

et al. 1998; Wang et al. 2002; Tomatis et al. 2005) (But see Bloom

et al. 2005; Zeldovich et al. 2007 for an alternative perspective.)

Finally, many mutations act pleiotropically within a protein (e.g.,

Raquet et al. 1995; Sideraki et al. 2001; Wang et al. 2002; Toma-

tis et al. 2005). Thus, DePristo et al. (2005) argue that protein

evolution is influenced by stabilizing selection acting on multiple

phenotypes responding pleiotropically to mutation. Those authors

note that fitness epistasis emerges as a consequence of the non-

linear mapping from phenotype to fitness inherent in stabilizing

selection (see also Brodie 2000; Martin et al. 2007).

These facts are illustrated in Figure 1 with data for two

missense mutations in the TEM-1 β-lactamase allele, responsi-

ble for bacterial resistance against β-lactam drugs such as peni-

cillin and cephalosporins. Introducing the G238S mutation (rep-

resenting serine for glycine at residue 238; amino acid num-

bering as in Ambler et al. 1991) into the TEM-1 allele in-

creases resistance against the drug cefotaxime (Wang et al. 2002;

Weinreich et al. 2006). In vitro this mutation increases catalytic

activity against this drug (Raquet et al. 1994; Sideraki et al. 2001;

Wang et al. 2002), but it reduces thermodynamic stability (Raquet

et al. 1995; Wang et al. 2002). In contrast, the M182T mutation

reduces cefotaxime resistance when introduced into TEM-1 but

increases resistance in the presence of G238S (Wang et al. 2002;
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Figure 1. Effect of two β-lactamase mutations on cefotaxime

drug resistance (minimum inhibitory concentration, in μg/mL), cat-

alytic activity (kcat/KM in M−1·s−1), -and thermodynamic folding

stability (�G in kcal/mol). Values relative to the TEM-1 wild-type

allele. M182T only conditionally improves cefotaxime resistance: it

reduces drug resistance (gray bars) on the TEM-1 background but

increases it sharply in the presence of G238S. (Data from Wang

et al. 2002; Weinreich et al. 2006; see Weinreich et al. 2005 for the

evolutionary implications of such epistasis.) In contrast, note that

for both mutations the effect on catalytic activity and thermody-

namic folding stability is roughly additive. Figure adapted from

Weinreich (2010).

Weinreich et al. 2006). M182T reduces in vitro activity while

increasing stability (Huang and Palzkill 1997). Thus, interplay

between the pleiotropy of these mutations is thought to render

M182T conditionally beneficial because the double mutant enjoys

increased hydrolysis (Wang et al. 2002) without loss of stability

(Huang and Palzkill 1997). (See Weinreich et al. 2005, 2006 for

the evolutionary significance of conditionally beneficial or “sign

epistatic” mutations.)

Fisher’s geometric model (Fig. 2A) begins from the premise

that the fundamental attribute of adaptation are the many simulta-

neous “features of conformity” (Fisher 1930, p. 38), both within

an organism and between the organism and its environment. Fisher

first imagined a continuous, multidimensional phenotype space;

any organism can be represented by some point in this space.

The biologically optimal combination of phenotypes is at the ori-

gin, and fitness elsewhere is a declining function of the distance

to the origin. Thus, stabilizing selection acts simultaneously on

multiple phenotypes. Second, Fisher assumed that mutations dis-

place an organism in an arbitrary direction in phenotype space;

i.e., mutations usually act pleiotropically. Thus, the FGM cap-

tures the essential elements of protein evolution outlined above

(Weinreich 2010), and this point is illustrated qualitatively in Fig-

ure 2B for the G238S and M182T mutations of the TEM-1 allele

of β-lactamase. The FGM is one of the few phenotypic models of

evolution (reviewed in Orr 2005a) and has received extensive the-

oretical (Kimura 1983; Hartl and Taubes 1996; Hartl and Taubes

1998; Orr 1998, 1999, 2005b; 2006; Poon and Otto 2000; Welch

and Waxman 2003; Waxman and Welch 2005; Martin and Lenor-

mand 2006; Waxman 2006; Sella 2009; Chevin et al. 2010; Le

Nagard et al. 2011; Sellis et al. 2011) and experimental (Burch and

Chao 1999; Martin et al. 2007; Tenaillon et al. 2007; MacLean

et al. 2010; Rokyta et al. 2011) attention.

Together these facts motivate this study, which explores pair-

wise epistasis for fitness between deleterious mutations under the

FGM. Specifically any two mutational vectors in phenotype space

define an angle θ between them, and θ influences their fitness epis-

tasis as illustrated in Figure 3A and B. We now invert this logic

to make inferences about the geometry of the phenotypic space

defined by the FGM from data on epistasis for fitness between

deleterious mutations.

Methods
COMPUTING PHENOTYPIC ANGLE � BETWEEN

MUTATIONS UNDER FISHER’S GEOMETRIC MODEL

We begin by making two assumptions: that fitness is a Gaussian

function of phenotypic distance from the optimum, and that phe-

notypic space is a vector space, that is that mutations are additive in

phenotype space (e.g., Lande 1980; Martin and Lenormand 2006;

Martin et al. 2007; but see computer simulations later). The first

assumption approximates many functions close to the optimum

(Lande 1980; Waxman and Welch 2005; Martin and Lenormand

2006). The second assumption is equivalent to supposing that

epistasis acts only on fitness and not on underlying phenotypes.

There is good empirical support for this assumption among mis-

sense mutations in proteins (Lunzer et al. 2005a; Zeldovich et al.

2007; although see Yokoyama et al. 2008 for an important coun-

terexample) and moreover recent theoretical results were found

to be robust to its violation (Martin et al. 2007).

Following Martin et al. (2007; see also Fig. 2 here), given

n phenotypes under selection, we represent each organism by

a column vector z whose ith component (1 ≤ i ≤ n) gives the

organism’s deviation at the ith phenotype from the optimal value.

(Thus, the optimal phenotype zopt is the column vector of all

zeros.) Similarly, we represent mutations by column vector dz,

whose ith component gives the mutation’s perturbation of the ith

phenotype. Writing the ancestral organism’s phenotype z0, the

absolute fitness of an offspring carrying mutation dz is then

W (z0+dz) = Exp
[
−1/

2(z0+dz)T S(z0+dz)
]
, (2a)

where superscript T represents transposition and S is the positive

semidefinite n × n selective covariance matrix. For notational

convenience, we shall also sometimes employ log-transformed

absolute fitness

w(z0+dz) = ln[W (z0+dz)] = − 1
/

2(z0+dz)TS(z0+dz).

(2b)
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Figure 2. Fisher’s geometric model of adaptation for n = 2 phenotypes. (A) All combinations of phenotype values are represented in

n-dimensional space (here, the plane); the optimal value is represented by the point labeled zopt and an individual-labeled z is displaced

from this optimum (as perhaps following an environmental perturbation). To be beneficial, a mutation dz on wild-type z must yield

a phenotype z + dz lying within the circle passing through z and centered at zopt. Inset: y represents another organism with fitness

equal to that of z. Note, however, that mutation dz is seen to exhibit epistasis: it is beneficial on z but deleterious on y. (B) Mutational

interactions in TEM-1 β-lactamase between catalytic activity and thermodynamic stability in determining cefotaxime resistance (see

Fig. 1), represented qualitatively in Fisher’s geometric model. Figure adapted from Weinreich (2010).

Now writing the weighted inner product 〈dzi, dzj〉 =
dzi

TSdzj and corresponding vector norm ‖dzi‖2 = 〈dzi, dzi〉 =
dzi

TSdzi, the phenotypic angle between two mutational vectors

dzi and dzj is defined by

cos (θ) =
〈
dzi , dz j

〉
√∥∥dzi

∥∥ ·
√∥∥dz j

∥∥ = dzi
T Sdz j√

dzi
T Sdzi · √

dz j
T Sdz j

,

(3)

the right-hand side of which can in some cases be written in

terms of empirical fitness data. To see this note first that un-

der equation (2b), w(z0 + dzi + dzj) + w(z0) − w(z0 + dzi) −
w(z0 + dzj) = −dzi

TSdzj. This expression captures the epistasis

between mutations dzi and dzj, and while slightly different than

the classical definition (our equation (1), it is identical to eij of

Martin et al. (2007; see their eq. 2, although that derivation is

given in terms of relative rather than absolute fitnesses; see also

Bonhoeffer et al. 2004). Importantly, assuming a Gaussian fitness

function this empirical expression for dzi
TSdzj is correct for all

ancestral phenotypes z0 because it simply reflects the (invariant)

curvature of the function, as already noted (Martin et al. 2007).

In contrast the denominator of equation (3) can be expressed in

terms of empirical fitness data only by assuming z0 = zopt. In this

case, we invert our equation (2b) to find 2w(dzi) = −dzi
TSdzi.

Substituting these results into equation (3) yields

θFGM =

arccos

{
−w(z0 + dzi + dz j ) + w(z0) − w(z0 + dzi ) − w(z0 + dz j )√−2w(dzi )

√−2w(dz j )

}

(4)

as the phenotypic angle between mutations dzi and dzj.

Equation (4) thus uses fitness data to give insight into the

phenotypic space defined by the FGM; we write θFGM to high-

light this connection. Specifically, the cosine of θFGM is Martin

et al. (2007)’s epistasis eij between mutations i and j, normalized

by the magnitude of their individual effects. Consequently pairs

of strongly epistatic mutations are parallel or antiparallel in phe-

notype space (i.e., have correlated phenotypic effects, although

the converse is not true in general; see Results).

Importantly, our norm in phenotypic space must obey the

triangle and reverse triangle inequalities:

Max(||dzi ||, ||dz j ||) − Min (||dzi ||, ||dz j ||) ≤ ||dzi+dz j ||
≤ ||dzi || + ||dz j ||.

(5)

These bounds correspond respectively to θ = 180◦ and θ =
0◦ and are shown as heavy lines in Figure 3C. Violating this

assumption (here as a consequence of experimental error in fit-

ness assays or violations of assumptions leading to eq. 4) causes

the expression inside the curly brackets of equation (4) to fall

outside the interval [−1, 1] and will yield imaginary values of

θFGM.

However as illustrated by Figure 3D, all real and imaginary

values of θFGM lie on a continuum: values of θFGM of the form

0◦ + ci are simply more extreme than θ = 0◦ and values of

θFGM of the form 180◦ + ci are simply more extreme than θ =
180◦. (Here i is the imaginary unit defined by (−1)

1/2 and c is

some real constant.) We therefore treat such observations as cat-

egorical data lying on either side of the continuous interval [0◦,

180◦].
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Figure 3. Phenotypic angle θ between mutations dzi and dzj under Fisher’s geometric model. Placing any two mutational vectors dzi and

dzj on a common ancestral phenotype defines a plane and an angle θ between vectors. (A, B) ‖dzi‖ and ‖dzj‖ are both constant, where

‖x‖ is the norm of vector x defined as xTSx. Thin circles have radii ‖dzi‖ and ‖dzj‖; heavy circles have radii ‖dzi+dzj‖. Note dependence

of ‖dzi+dzj‖ (and hence, of epistasis) on θ. (C) Maximum and minimum values of ‖dzi+dzj‖ allowed under the model (eq. 5) correspond

respectively to θ = 0◦ and 180◦. Experimental error in fitness assays and violations of model assumptions can yield imaginary estimates

of θ. Specifically when Max(‖dzi‖, ‖dzj‖) − Min(‖dzi‖, ‖dzj‖) > ‖dzi+dzj‖, the phenotypic vector representing dzi+dzj is inferred to lie

inside the inner heavy circle and the arccos(·) in equation (4) will yield θFGM values of the form 180◦ + ci. Conversely, when ‖dzi+dzj‖
> ‖dzi‖ + ‖dzj‖, this vector is inferred to lie outside the outer heavy circle and θFGM will be of the form 0◦ + ci. (D) Real (dashed) and

imaginary (solid) parts of θ = arccos(x)·180◦/π. Note that in any case we can view results as lying on a single continuum: as already

suggested in C: values of θFGM of the form 0◦ + ci lie beyond θ = 0◦ and values of θFGM of the form 180◦ + ci lie beyond θ = 180◦. See

Results and Discussion for further details.

COMPUTING THE NUMBER OF PHENOTYPIC

DIMENSIONS FROM FITNESS DATA

The distribution of values of θFGM observed also contains infor-

mation about n, the number of mutationally labile dimensions in

the underlying phenotype space. It has previously been shown that

that the probability density function for angles θ between some

reference direction and a set of vectors of random orientation in

an n-dimensional space is

f (θ) =Z sin(θ)n−2 (6)

(Hartl and Taubes 1998; Poon and Otto 2000, where Z is the

scaling constant required to get a proper probability density func-

tion over [0◦, 180◦]). This is also the probability density function

for θ between vectors sampled from a multivariate Gaussian dis-

tribution with mean 0 and covariance matrix M = c·I, where c

is any positive scalar and I is the identity matrix (not shown).

Thus, assuming this sampling scheme, equation (6) gives the ex-

pected distribution of θFGM between some focal mutation dzi and

all others in the dataset. But because this distribution is inde-

pendent of the choice of focal mutation, it applies equally to the

unconditioned distribution of θFGM across an entire dataset. Af-

ter discarding imaginary values of θFGM we thus employed this

density function in a likelihood framework to estimate n̂ together

with 95% confidence intervals (CIs).

COMPUTER SIMULATION

Computer simulations were run using MATLAB R2011a (Math-

works, Natick, MA) to confirm analytical results and to ex-

plore the effect of experimental noise in fitness assays and re-

laxations of model assumptions. All code has been archived

at https://github.com/weinreich/FGM-FunctionalSynthesis. Fol-

lowing Martin et al. (2006, 2007), we assume that the mutational

probability density function is Gaussian with covariance matrix

M. For the purpose of exploring the robustness of equation (4)

we further assume a rotationally symmetric mutational covari-

ance matrix M = m × I (because its derivation is independent

of M) with standard deviation m = 0.1 phenotypic units. We

relaxed this assumption to assess our ability to estimate pheno-

typic dimensionality. Because equation (4) is also independent of

selection matrix S, we set S = I throughout.
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SENSITIVITY OF ESTIMATES OF PAIRWISE

PHENOTYPIC ANGLE θFGM

In each run, we sampled 200 random mutational vectors dzi and dzj

and computed θtrue between each of the resulting ( 200

2
) = 19, 900.

pairs of mutations using equation (3) and S = I. We then tabulated

the mean and standard deviation for corresponding values of θFGM

(as described next) within a sliding window of θtrue values 10◦

wide. We also tabulated the frequency of each kind of imaginary

value of θFGM observed in each sliding window.

To explore the sensitivity of equation (4) to experimental

noise in fitness assays, we first added a normal deviate with mean

zero and standard deviation σnoise to fitness equation (2a). For each

pair of mutations, we then computed θFGM with equation (4) using

the average of R replicate noisy fitness measures for each muta-

tional vector. We explored values of experimental noise σnoise =
0.01 and 0.02, experimental replication R = 10 and 40, and phe-

notypic dimensions, n = 2, 5, and 20. Because fitness values in

our simulations are in the range of 0.8–1.0 (not shown), values

of σnoise here are roughly comparable to the CV values shown in

Table 1 (experimental standard error normalize by experimental

mean values, see Analysis of Empirical Data). Simulated levels

of replication are consistent with current experimental protocols

(e.g., Sanjuán et al. 2004), and simulated phenotypic dimensional-

ity values are consistent with estimates here (Fig. 6) and elsewhere

(Tenaillon et al. 2007).

To test consequences of our assumption that the ancestral

phenotype is at the fitness optimum, we also ran simulations in

which W(z0) = 0.99 and 0.90 for phenotypic dimension n = 2,

5, and 20. We accomplished this by setting each component of

z0 to (2ln[W(z0)]/n)
1/2. To relax the assumption that mutations are

additive in phenotype space, we added a phenotypic epistasis vec-

tor E to each double mutant before applying equation (2a). Each

component of E was drawn from a normal distribution with mean

0 and standard deviation σepistasis, parameterized as a proportion

of mean mutational vector length m. Values of σepistasis = 0.1m

and 0.5m were examined.

SENSITIVITY OF ESTIMATES OF PHENOTYPIC

DIMENSIONALITY n

To explore the sensitivity of our approach to estimating phe-

notypic dimensionality n in the face of experimental noise and

violations of model assumptions, we simulated samples of 10 or

25 mutations each, setting n = 2, 5, or 20, and allowing experi-

mental noise in fitness assays, nonoptimal ancestral phenotypes,

or phenotypic epistasis as described earlier. We also examined

violations of the assumption of rotational symmetry in mutational

matrix M underlying equation (6). Here again, samples of 10 or

25 mutations were generated in n = 2, 5, or 20 dimensions with

mutational matrix M = m × I as above, except that we set matrix

entries m1,1 = m/2, or m1,2 = m/2, or both.

For each sample, we discarded imaginary values of θFGM, cal-

culated the likelihood surface for a range of values of n between 2

and 40 in steps of 0.05, and recorded the maximum likelihood es-

timate together with the 95% CI bounds. These simulated datasets

are comparable in size (10 and 25 mutations yield at most 45 and

300 comparisons, respectively) and phenotypic dimensionality to

those in Table 3.

DATA ANALYSIS

Theoretical results developed here were applied to the seven pub-

lished datasets shown in Table 1. Only deleterious mutations de-

scribed in Elena and Lenski (1997a,b) and Sanjuán (2004) were

considered, and in all datasets lethal mutations were removed (as

required by eq. 4; for this reason we analyzed MIC values pre-

sented in Lozevsky et al. 2009 rather than IC50 values). We then

used equation (4) to compute θFGM between all pairs of remaining

mutations in each dataset, and the number of dimensions of the

underlying phenotypic space was estimated as described. Finally,

we used the Kolmogorov–Smirnov goodness-of-fit test (Sokal and

Rohlf 1995) as implemented in Matlab to compare the observed

distributions of θFGM for each dataset with model expectations

(eq. 6) for given n̂.

Results
Under analytic assumptions, Fisher’s geometric model allows us

to use epistasis for fitness between pairs of deleterious mutations

to characterize those pairs with respect to similarity of underly-

ing mechanism. Specifically, pairs of mutations with very similar

mechanisms will exhibit strong epistasis and values of θFGM near

0◦ or 180◦, although the converse need not be true. (As the nu-

merator of eq. 3 illustrates, epistasis will only be absent if the two

mutational vectors are orthogonal in the space defined by matrix

S, but such mutations will only exhibit uncorrelated phenotypes

if all off-diagonal elements of S are 0.) Moreover, the distribution

of epistasis across a panel of deleterious mutations can yield an

estimate of the number of mutationally labile phenotypes con-

tributing to fitness.

ESTIMATING θFGM WHEN ANALYTIC ASSUMPTIONS

ARE RELAXED

Under analytic assumptions (i.e., setting σnoise = σepistasis = 0, z0 =
zopt and random positive semidefinite S) simulation results were

precisely concordant with equation (4) for all parameter values

examined (not shown). Figures 4 and 5 present simulation results

that explore sensitivity of equation (4) to experimental noise and

to relaxing model assumptions, respectively. Each panel displays

the mean real θFGM values (± 1 SD) across a sliding window of
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Table 1. Published biological datasets analyzed.

Number of
Organism, variable sites or Source of
gene(s) loci analyzed mutations Fitness assay Fitness assay CV Citation

Escherichia coli,
isopropylmalate
dehydrogenase

6 Site-directed Chemostat competition
assay against the
wild-type

0.00371 Lunzer et al.
(2005a, b)

Escherichia coli,
β-lactamase

5 Site-directed Minimum inhibitory
concentration against
cefotaxime

0.087 Weinreich et al.
(2006)

Plasmodium falciparum
dihydrofolate
reductase

4 Site-directed Minimum inhibitory
concentration against
pyrimethamine

No data reported Lozovsky et al.
(2009)

Escherichia coli, gyrA,
rpoB, and rpsL

3 Random Paired growth assays
against the wild-type
in LB

0.68 Trindade et al.
(2009a, b)

Eschericia coli,
Mini-Tn10 mutants

8 Random Paired growth assay
against ancestor in
DM25

0.018 Elena and
Lenski
(1997a, b)

Vesicular stomatitis virus
N, P, M, G, and L

28 Random Intrinsic growth rate in
mammalian cell
culture

0.056 Sanjuan et al.
(2004)

Aspergillus niger, arg,
pyr, leu, phe, oli, and
crn

7 Random Radial growth rate of
colony

0.030 de Visser et al.
(2009)

1Reported in Lunzer et al. (2002).

θtrue values 10◦ wide. In addition, we show the frequency of each

of the two classes of imaginary values of θFGM observed each in

each sliding window. Finally, in each panel, we report the r2 value

for a linear regression of real estimates of θ forced through the

origin (see Discussion).

We note first that in all cases, imaginary values of θFGM

of the form 0◦ + ci are primarily observed when θtrue is small,

whereas imaginary values of the form 180◦ + ci are associated

with large values of θtrue. This is to be expected given our pro-

posed interpretation of such observations (Fig. 3D). Moreover,

conditioned on θFGM being real, θFGM almost always overesti-

mates θtrue when θtrue is small and underestimates it when large.

This is a simple consequence of our conditioning: the “missing,”

more extreme estimates of θFGM are to be found in the imagi-

nary realizations. Finally, in almost all cases summing across all

values of θtrue, the frequency of imaginary values of θFGM of the

form 0◦ + ci exceeds the frequency of values of the form 180◦

+ ci. This can be understood by examining Figure 3C, which

illustrates that for all parameter values the area outside the larger

heavy circle [representing ‖dzi‖ + ‖dzj‖)] exceeds that inside the

smaller heavy circle [representing Max(‖dzi‖, ‖dzj‖) – Min(‖dzi‖,

‖dzj‖)]. Put another way, experimental noise and violations of

model assumptions perturb our estimate of where the vector dzi

+ dzj lies. But when θtrue is near 180◦ such perturbation is less

likely to result in an imaginary estimate of θFGM than when it is

near 0◦.

Figure 4 illustrates that conditioning on the observation of

real values of θFGM, equation (4) can estimate θtrue quite well from

modestly noisy fitness data. Strong, nearly unbiased predictive

power is observed in the first panel and standard deviation declines

as phenotypic dimension increases (the trend continues for n =
20; not shown). This can be understood as a consequence of two

facts. First, as dimension increases the probability distribution

of realized θFGM becomes increasingly concentrated around 90◦

(Hartl and Taubes 1996; Poon and Otto 2000; see also Figs. 5, 6

here). This alone accounts for the drop in frequency of imaginary

values of θFGM as dimension rises. Second, because S = I in

simulations, as θFGM approaches 90◦ W(dzi + dzj) approaches

W(dzi)W(dzi). Thus, even after allowing noise in fitness assays,

the numerator of the expression inside curly braces in equation (4)

will tend to be small, minimizing the standard deviation in θFGM.

Increasing experimental error (σnoise) increases standard deviation

of θFGM for all values of θ, although as expected this effect can be

offset by additional fitness assay replicates (R).

Sensitivity of equation (4) to violations of two assumptions is

explored in Figure 5. Figure 5A illustrates that when the ancestor

is not at the phenotypic optimum (i.e., z0- �= zopt), values of θFGM

are skewed toward intermediate values. As noted earlier, this effect
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Table 2. Maximum likelihood estimate and confidence intervals on phenotypic dimensionality n̂ in computer simulations.

True phenotypic
dimensionality, n

2 5 20 2 5 20

Number of mutations
sampled

10 10 10 25 25 25

Using default values1 1.95 4.10 17.65 2.00 5.05 18.70
(1.70 – 2.35) (3.45 – 6.10) (12.20 – 24.00) (1.90 – 2.10) (4.50 – 5.65) (16.15 – 21.70)

σnoise = 0.01, R = 10 2.55 4.75 25.05 2.70 5.10 20.80
(2.05 – 3.20) (3.60 – 6.45) (16.80 – 29.60) (2.50 – 2.95) (4.60 – 5.75) (17.90 – 23.95)

σnoise = 0.02, R = 10 2.70 5.35 20.75 2.50 4.95 19.15
(2.20 – 3.50) (4.05 – 7.35) (14.00 – 24.65) (2.30 – 2.75) (4.45 – 5.55) (16.55 – 22.20)

σnoise = 0.02, R = 40 2.35 5.45 15.90 2.30 4.45 20.15
(1.95 – 2.95) (4.10 – 7.50) (11.05 – 23.20) (2.15 -2.50) (4.00 – 4.95) (17.40 – 23.35)

W(z0) = 0.99 2.85 6.15 21.80 3.65 5.10 20.60
(2.25 – 3.70) (4.55 – 8.50) (14.95 – 29.05) (3.30 – 4.10) (4.55 – 5.70) (17.75 – 23.90)

W(z0) = 0.90 7.00 12.50 25.20 5.60 7.75 21.90
(5.00 – 10.15) (8.80 – 18.20) (17.20 – 33.85) (4.90 – 6.45) (6.80 – 8.90) (18.90 – 24.45)

σepistasis = 0.1m 2.15 4.45 15.85 2.20 5.00 19.30
(1.85 – 2.60) (3.40 – 6.00) (11.05 – 23.15) (2.05 – 2.35) (4.45 – 5.65) (16.70 – 22.40)

σepistasis = 0.5m 2.50 5.55 25.20 2.75 4.85 19.55
(2.05 – 3.20) (4.15 – 7.65) (17.20 – 33.85) (2.55 – 3.05) (4.35 – 5.45) (16.90 – 22.70)

m1,1 = m/2 1.85 5.05 16.05 1.90 4.45 18.40
(1.60 – 2.15) (3.85 – 6.90) (11.15 – 23.40) (1.80 – 2.00) (4.00 – 5.00) (15.90 – 21.35

m1,2 = m2,1 = m/2 1.60 3.20 16.15 1.65 3.85 16.55
(1.45 – 1.85) (2.60 – 4.15) (11.25 – 23.60) (1.60 – 1.75) (3.50 – 4.30) (14.30 – 19.15)

m1,1 = m1,2 = m2,1 = m/2 1.55 5.20 20.35 1.70 4.20 17.45
(1.40 – 1.75) (3.90 – 7.10) (14.05 – 29.90) (1.65 – 1.80) (3.80 – 4.70) (15.10 – 20.25)

1Default values used throughout except where noted. σnoise = experimental noise (default: 0.0); R = experimental replicates (default: 1), W(z0) = fitness of

ancestor (default: 1.0), σepistasis = phenotypic epistasis (default: 0.0m), M = m × I mutational covariance matrix (default: m 0.1), selection covariance matrix

S = I throughout.

is entirely the result of errors introduced through the denominator

of equation (4) because −dzi
TSdzj is only equal to 2ln[W(dzi)]

when z0- = zopt. Consequently, the magnitude of the effect is

seen to increase as the fitness of z0 declines. However, the effect

is moderated with increasing phenotypic dimension because the

phenotypic perturbation introduced by any given fitness drop in

z0 is proportional to n−1/2.

Figure 5B illustrates the consequences of phenotypic epista-

sis. Again, increased deviations from model assumptions increase

the error in equation (4). We also note that in contrast to the sit-

uation in Figure 5A, increasing phenotypic dimensions render

results more sensitive to violations of model assumptions. This is

to be expected as we add a normally distributed random deviate

to each component of the double-mutant’s phenotype. Thus, the

net error in z0 + dzi + dzj is proportional to n
1/2.

ESTIMATING PHENOTYPIC DIMENSIONALITY n

WHEN ANALYTIC ASSUMPTIONS ARE RELAXED

Sensitivity of our estimator for phenotypic dimensionality in the

face of experimental noise and violation of model assumptions is

shown in Table 2. In general, we note that the maximum likeli-

hood estimate is a bit below the center of the 95% CI, signaling

a slightly positive skew to the likelihood function. We also note

a slight bias toward overestimating phenotypic dimensionality in

the face of experimental error, most notably when z0 �= zopt. This is

to be expected: by conditioning on real values of θFGM we are dis-

carding realizations that otherwise would have fallen in the tails of

the distribution of angles (Fig. 3), making phenotypic dimension-

ality appear higher than it is (eq. 6). However, deviations from

rotationally symmetric mutations bias dimensionality estimates

downward. This is also to be expected: as mutational variance

in one dimension is reduced (here, m1,1 has been reduced from

0.1 to 0.05) mutations will become increasingly skewed in the

remaining dimension(s). And similarly, as mutational covariance

is increased (here m1,2 = m2,1 has increased from 0.0 to 0.05),

mutations will more often have a common orientation.

ANALYSIS OF EMPIRICAL DATA

We computed θFGM between all pairs of mutations in each of

the seven published datasets shown in Table 1, and used those
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Table 3. Analyses of published datasets.1

Number of Number of Kolmogorov–Smirnov
Organism, Number of times θFGM = times θFGM = test statistic and Mean
gene(s) comparisons 0 + ci observed 180 + ci observed associated P-value θFGM

Escherichia coli,
isopropylmalate
dehydrogenase

67 43 0 0.502, 4.1 × 10−6 58.4◦

Escherichia coli,
β-lactamase

10 1 0 0.27, 0.46 94.8◦

Plasmodium falciparum
dihydrofolate reductase

6 1 1 0.59, 0.07 133.0◦

Escherichia coli, gyrA,
rpoB, and rpsL

98 0 16 0.39, 8.4 × 10−12 117.4◦

Escherichia coli, Mini-Tn10
mutants

21 6 4 0.37, 0.07 104.5◦

Vesicular stomatitis virus 31 1 5 0.122, 0.80 92.7◦

Aspergillus niger, arg, pyr,
leu, phe, oli, and crn

14 0 0 0.652, 2.4 × 10−6 120.1◦

Escherichia coli,
isopropylmalate
dehydrogenase,
bottom-up θFS

2

67 N/A N/A 0.422, 4.4 × 10−11 77.4◦

1See Table 1 for citations.
2Bottom-up estimates based on angles between phenotypic vectors. See text for details.

distributions to compute the estimated phenotypic dimensionality

n̂ together with the 95% CI, as described. Observed and expected

distributions, n̂ values and confidence intervals, and P-values for

goodness-of-fit to equation (6) are all shown for each dataset in

Figure 6. Further details of these analyses are provided in Table 3.

Discussion
Evolution by natural selection enriches populations for those or-

ganisms with higher reproductive success (Darwin 1859), but

what is the underlying biology responsible for these differences?

Fitness is a complex property that emerges from many mechanis-

tically more proximal phenotypes, and R.A. Fisher’s geometric

model (1930; here, the FGM) provides a popular, explicit, and ab-

stract representations of that mapping (although see Kimura and

Maruyama 1966; Kondrashov 1988; Rice 2000 for other map-

pings). Noting the close qualitative parallels to a recent model

of protein evolution (DePristo et al. 2005; see Fig. 2 here), we

thought to use the FGM to explore our ability to make inferences

into this underlying phenotypic space from data on epistasis for

fitness between deleterious mutations. We were motivated by the

many low-throughput (e.g., Lunzer et al. 2005a; Weinreich et al.

2006; Lozevsky et al. 2009) and high-throughput (e.g., Costanzo

et al. 2010; He et al. 2010) datasets now being developed. We

sought two practical contributions for the experimentalist: the

ability to group mechanistically related mutations (i.e., those with

highly correlated phenotypic effects) and the ability to make gross

statements about the phenotypic complexity of the system (i.e.,

the dimensionality of phenotypic space).

INTERPRETING VALUES OF θFGM

Importantly however, our approach is complicated by the fact that

equation (4) can return biologically ambiguous results in the form

of imaginary values (Table 3). Indeed, all datasets considered here

except one (de Visser et al. 2009) include some imaginary values

of θFGM; these range in frequency from 10% (Weinreich et al.

2006) to 64% (Lunzer et al. 2005a). In simulations, we observed

that imaginary values occur as a consequence of measurement

error in fitness assays (Fig. 4) as well as violations of model

assumptions (Fig. 5). However, no one of these factors appears to

fully explain the source of these observations in the data.

Simulations demonstrate that the fraction of imaginary val-

ues should rise with experimental error in fitness assays and drop

with phenotypic dimensionality (Fig. 4). We thus first tabulated

experimental error (CV) for six of the seven datasets examined

(Table 1; no error estimates are given in Lozevsky et al. 2009),

but contrary to the suggestion from simulation results, the frac-

tion of imaginary values of θFGM observed is weakly and neg-

atively correlated with experimental CV (r2 = 7.3%). We next

regressed the fraction of imaginary values of θFGM against our
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Figure 4. Estimation of θFGM in computer simulations allowing experimental error in fitness assay. Equation (4) can return real and

imaginary values. Heavy lines represent mean ±1 SD of real values of θFGM (eq. 4) for a given θtrue (computed with eq. 3) in a sliding

window 10◦ wide; heavy dashed line represents θFGM = θtrue. (Scale on left y-axis.) Light lines represent fraction of imaginary values

of θFGM’s in the same sliding window (solid: frequency of imaginary θFGM with real part = 0◦; dashed: frequency of imaginary θFGM’s

with real part = 180◦; scale on right y-axis). All parameter values as shown (phenotypic dimensionality n, experimental noise σnoise,

experimental replicates R). Phenotypic epistasis (σepistasis) equal to 0, z0 = zopt, and S = I.

estimated phenotypic dimensionality for each dataset. Although

this correlation is also negative, consistent with expectation, it is

also only weakly so (r2 = 17.7%). Thus, although some imag-

inary values of θFGM may be the consequence of experimen-

tal error in fitness assays, we wondered whether they may not

also derive in part from violations of model assumptions: z0 =
zopt, additivity among phenotypic vectors, and a Gaussian fitness

function.

For three datasets (Lunzer et al. 2005a; de Visser et al. 2009;

Trindade et al. 2009bb), we computed epistasis on a naturally

occurring wild-type isolate, which we might reasonably expect to

be at or near the (local) fitness optimum, and these studies de-

scribe no beneficial mutations on those backgrounds. Two datasets

(Weinreich et al. 2006; Lozevsky et al. 2009) employ drug resis-

tance as a proxy for fitness, and we computed epistasis on the

highest-resistance variant described. Again, these studies describe

no beneficial mutations on those backgrounds. (And in one case

extensive mutagenesis has failed to reveal a higher-resistance vari-

ant; Orencia et al. 2001; Salverda et al. 2011.) Although beneficial

mutations on the ancestor were described in the last two datasets

(Elena and Lenski 1997b; Sanjuán et al. 2004) we believe it is

unlikely that z0 �= zopt is responsible for many of the imaginary

values of θFGM in Table 3. Indeed, in the case where the starting

genotype is demonstrably far the fitness optimum (Sanjuán et al.

2004), the frequency of imaginary values of θFGM is comparatively

modest.

To our knowledge, data on phenotypic additivity are scarce.

One case however comes from Lunzer et al. (2005a,b). In addition

to measuring organismal fitness, those authors performed in vitro

assays for four functionally proximal biochemical phenotypes

likely responsible for fitness effects of mutations in their system.

They find that mutational effects on log-transformed values of

these phenotypes are very nearly additive (r2 ≥ 0.92). Thus at

present, we find little evidence to suggest that phenotypes are not

additive.

Finally, we acknowledge that non-Gaussian fitness functions

can also give rise to imaginary values of θFGM. Although sensi-

tivity of our approach to this effect has not been explored, princi-

pled models of the phenotype-to-fitness function for both IMDH

(eq. 3 in Lunzer et al. 2005a) and β-lactamase (eq. 4 in Brown et al.

2009) are distinctly non-Gaussian. Following others (e.g., Perel-

son and Oster 1979; Lapedes and Farber 2001) we are presently
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Figure 5. Estimation of θFGM in computer simulations when model assumptions are relaxed. (A) Relaxing z0 = zopt. (B) Relaxing pheno-

typic additivity. Note that as n increases, values of θtrue become increasingly concentrated around 90◦ (Hartl and Taubes 1998; Poon and

Otto 2000). See Figure 4 legend for additional details.
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Figure 6. Frequency of real pairwise angles between pairs of deleterious mutations in published datasets shown in Table 1. Filled: θFGM

computed with equation (4). Open: expectation as described, corresponding to phenotypic dimensionality n̂ estimated for each dataset.

(A) Lunzer et al. (2005a, b), (B) Weinreich et al. (2006), (C) Lozovsky et al. (2009), (D) Trindade et al. (2009a, b), (E) Elena and Lenski(1997a,
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details.)
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Figure 7. Bottom-up analysis of phenotypic angles among muta-

tions in isopropylmalate dehydrogenase examined in Lunzer et al.

(2005a, b). For each pair of mutations, x–axis represents pairwise

phenotypic angle θFS computed with equation (3) using pheno-

typic perturbations in log-transformed cofactor performance and

binding affinity estimated by Lunzer et al. (2005a, b). Left y-axis

represents real θFGM values computed from fitness data using

equation (4); dashed line shows linear regression through the ori-

gin. Right y-axis represents the fraction of imaginary values of

θFGM in a sliding window 10◦ wide. Only imaginary θFGM values of

the form 0 + ci were observed in this dataset. Cf. Figures 4 and 5.

pursuing an alternative approach that relieves us of the burden of

this assumption.

TOP-DOWN VERSUS BOTTOM-UP ESTIMATES OF θ

Here we have employed what may be regarded as a top-

down approach to quantitatively characterize the phenotypic

space underlying the FGM. The functional synthesis (Dean and

Thornton 2007) represents a complementary bottom-up approach:

characterization of the mechanistically proximal phenotypic traits

responsible for fitness effects of particular mutations. As already

noted, in addition to fitness Lunzer et al. (2005a, b) characterized

mutational perturbation in four candidate proximal phenotypes

related to enzyme–substrate affinity and enzyme kinetics.

These data allow further examination of equation (4), because

we can explicitly represent mutations as phenotypic vectors

(� ln[K NAD
m ],� ln[K NADP

m ],� ln[V NAD
max /K NAD

m ],� ln[V NADP
max /

K NADP
m ]), where � is relative to the allele of highest fitness. Ap-

plication of equation (3) to these vectors thus yields independent

measures of pairwise angles θ between mutations in phenotypic

space. We designate these values θFS to reflect their connection

to the functional synthesis.

To determine how well θFS predicts θFGM, we regressed the

latter on the former (Fig. 7). Consistent with expectations we ob-

serve a significantly positive slope between real values of θFGM

and θFS (Spearman rank correlation coefficient ρ = 0.408, P =
0.024 by a permutation test). The slope of the regression through

the origin (0.69) is different from 1.0, although this should per-

haps not surprise us because the numeric angle θ between two

vectors is sensitive to scaling of phenotypic space. For exam-

ple, Lunzer et al. (2005a) report values of Vmax/KM in units of

M−1·s−1; rescaling Vmax/KM in units of mM−1·s−1 would change

all values of θFS without changing any of the biology. Indeed, we

are substantially heartened by this result for two reasons. First,

rescaling dimensions of phenotypic space can even perturb rank

orders of angles when n > 2. Second, although θFS offers direct

access to mutational vectors in phenotype space, θFGM values are

influenced by the (unknown) asymmetries of the true selection

covariance matrix S. Figure 7 also shows that the frequency of

imaginary values of θFGM of the form 0◦ + ci declines as θFS

rises, consistent with model expectations. (No values of θFGM of

the form 180◦ + c were observed in this dataset; Table 3.)

INTERPRETING VALUES OF n

Our second objective was to provide some access to the pheno-

typic complexity underlying fitness. Interestingly, values reported

here (Fig. 6) fall between those previously developed under the

FGM by others (0.2–2.5 in Martin and Lenormand 2006; and 10–

45 in Tenaillon et al. 2007; see also Lourenço et al. 2011 for an

attempt to bridge those divergent estimates). Although equation

(4) examines curvature of the fitness function at the fitness opti-

mum, Martin and Lenormand (2006) employ data from mutation

accumulation experiments and their results thus characterize the

fitness function over a wider mutational scope. Finally, estimates

in Tenaillon et al. (2007) are based on differences in fitness at

mutation/selection/drift equilibrium as a function of population

size, and may therefore represent the analysis covering the largest

genetic scale.

As above, phenotypic data in Lunzer et al. (2005b) also allow

us to perform a bottom-up complement to our top-down estimation

of n̂. The distribution of θFS (Fig. 6H) implies that these vectors

lie in a higher dimensionality space than do results based on θFGM

(Fig. 6A; n̂ = 10.90 vs. 3.45), although the two distributions are

statistically indistinguishable (G = 2.45, P > 0.98, df = 9).

A bias in n̂ derives from our assumption that mutational

vectors are uniformly distributed in phenotypic space. To the

extent that they are not, ours are underestimates (Table 2). We

thus regard our approach as estimating an “effective” number of

dimensions in phenotype space (i.e., the number of dimensions

of equal and uncorrelated mutational lability that would give rise

to the given distribution of θFGM). Although an analytic analog to

equation (6) for arbitrary mutational covariance matrix M appears

possible, it would not be helpful here because we would then be

faced with estimating both n̂ and M̂ from single distributions of

θFGM.

In addition, because equation (6) is undefined when θ is

imaginary, it was necessary to omit such values of θFGM when
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we estimated phenotypic dimensionality. This protocol biases n̂

upward. Recognizing the diversity of datasets in our study, we

however observe no signal of this bias: the correlation between n̂

and the frequency of imaginary values of θFGM is in fact weakly

negative.

Finally, the distribution of θFGM deviates significantly from

the expectation given by equation (6) in three cases (Fig. 6; Ta-

ble 3). In one (Lunzer et al. 2005a, b), the mean (58.4◦) is far

less than expectation (as is the mean θFS from the same system-:

77.4◦), implying that these mutations are underdispersed in phe-

notype space. This effect is already visible in Figure 3 of Lunzer

et al. (2005a), which shows that all phenotypic mutations lie in

a narrow sector emanating from the wild type. Means are larger

than expectation in the other two cases (de Visser et al. 2009;

Trindade et al. 2009b; 120.2◦ and 117.4◦, respectively), implying

mutational overdispersion, and we imagine that in these systems

ridges of high mutational density radiate from the wild type, sep-

arated by valleys of low mutational density approximately 120◦

wide. Both of these situations imply correlations between muta-

tions (positive in the first case and negative in the latter two; note

that these correlations are distinct from correlations within muta-

tions represented by the matrix M), although the biological and

evolutionary implications are as yet unclear to us. No particular

association between these deviations and the sources of mutations

(Table 1) was observed.

CONCLUSIONS

Using Fisher’s geometric model we have developed a novel ap-

proach to characterizing aspects of the phenotypic determinants

of deleterious mutations using data on pairwise epistasis. Despite

our original motivation for adopting the FGM (Fig. 2), we are

generally heartened by the apparent utility of our approach when

applied to the heterogeneous datasets (Table 1: four from bacteria,

two from eukaryotes and one from a virus). Moreover, although

growth rate is the fitness assay in five cases, drug resistance is

employed in two. And finally, three of the datasets consider mu-

tations in a single gene while the other four use mutations more

broadly distributed across the genome.

We conclude by noting that much of evolutionary biology

rightly focuses on beneficial mutations, those which fuel adap-

tation. In contrast, we have only considered epistasis between

deleterious mutations, both because they are far more plentiful

and because our algebraic framework cannot accommodate ben-

eficial mutations. Moreover statistical patterns of fitness epistasis

among deleterious mutations do not always mirror those among

beneficial mutations (Sanjuán et al. 2004; Rokyta et al. 2011).

However, our interest in epistasis here is limited to making in-

ferences into the mechanistically proximal phenotypes underly-

ing mutational effects on fitness. And as it seems reasonable to

assume that deleterious and beneficial mutations operate in the

same phenotypic space, we suggest that application of the frame-

work developed here will yield dividends equally applicable to

the molecular basis of Darwinian evolution.
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Lourenço, J., N. Galtier, and S. Glémin. 2011. Complexity, pleiotropy, and
the fitness effect of mutations. Evolution 65:1559–1571.

Lozevsky, E. R., T. Chookajorn, K. M. Brown, M. Imwong, P. J. Shaw, S.
Kamchonwongpaisan, D. E. Neafsey, D. M. Weinreich, and D. L. Hartl.
2009. Stepwise acquisition of pyrimethamine resistance in the malaria
parasite. Proc. Natl. Acad. Sci. 106:12025–12030.

Lunzer, M., A. Natarajan, D. E. Dykuisen, and A. M. Dean. 2002. Enzyme
kinetics, substitutable resources and competition: from biochemistry to
frequency-dependent selection in lac. Genetics 162:485–499.

Lunzer, M., S. P. Miller, R. Felsheim, and A. M. Dean. 2005a. The biochemical
architecture of an ancient adaptive landscape. Science 310:499–501.

———. 2005b. Data from: the biochemical architecture of an ancient adaptive
landscape. doi:10.5061/dryad.7nd70.

Mackay, T. F. C. 2001. Quantitative trait loci in Drosophila. Nat. Rev. Genet.
2:11–20.

MacLean, R. C., G. G. Perron, and A. Gardner. 2010. Diminishing returns
from beneficial mutations and pervasive epistasis shape the fitness land-
scape for Rifampicin resistance in Pseudomonas aeruginosa. Genetics
186:1345–1354.

Malcolm, B. A., K. P. Wilson, B. W. Matthews, J. F. Kirsch, and A. C.
Wilson. 1990. Ancestral lysozymes reconstructed, neutrality tested, and
thermostability linked to hydrocarbon packing. Nature 345:86–89.

Martin, G., and T. Lenormand. 2006. A general multivariate extension of
Fisher’s geometric model and the distribution of fitness effects across
species. Evolution 60:893–907.

Martin, G., S. F. Elena, and T. Lenormand. 2007. Distributions of epistasis
in microbes fit predictions from a fitness landscape model. Nat. Genet.
39:555–560.

Orencia, M. C., J. S. Yoon, J. E. Ness, W. P. C. Stemmer, and R. D. Stevens.
2001. Predicting the emergence of antibiotic resistance by directed evo-
lution and structural analysis. Nat. Struct. Biol. 8:238–242.

Orr, H. A. 1998. The population genetics of adaptation: the distribution of
factors fixed during adaptive evolution. Evolution 52:935–949.

———. 1999. The evolutionary genetics of adaptation: a simulation study.
Genet Res 74:207–214.

———. 2005a. The genetic theory of adaptation: a brief history. Nature Rev.
Genet. 6:119–127.

———. 2005b. Theories of adaptation: what they do and don’t say. Genetica
123:3–13.

———. 2006. The distribution of fitness effects among beneficial mutations
in Fisher’s geometric model of adaptation. J Theor Biol 238:279–285.

Perelson, A. S., and G. F. Oster. 1979. Theoretical studies of clonal selec-
tion: minimal antibody repertoire size and reliability of self-non-self
discrimination. J. Theor. Biol. 81:645–670.

Phillips, P. C. 1998. The language of gene interaction. Genetics 149:1167–
1171.

———. 2008. Epistasis—the essential role of gene interactions in the structure
and evolution of genetic systems. Nat. Rev. Genet. 9:855–867.

Poon, A., and S. P. Otto. 2000. Compensating for our load of muta-
tions: freezing the meltdown of small populations. Evolution 54:
1467–1479.

Raquet, X., J. Lamotte-Brasseur, E. Fonzé, S. Goussard, P. Courvalin, and J.-
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