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Abstract

Analysis of functional magnetic resonance imaging (fMRI) data has revealed that brain

regions can be grouped into functional brain networks (fBNs) or communities. A community

in fMRI analysis signifies a group of brain regions coupled functionally with one another. In

neuroimaging, functional connectivity (FC) measure can be utilized to quantify such func-

tionally connected regions for disease diagnosis and hence, signifies the need of devising

novel FC estimation methods. In this paper, we propose a novel method of learning FC by

constraining its rank and the sum of non-zero coefficients. The underlying idea is that fBNs

are sparse and can be embedded in a relatively lower dimension space. In addition, we pro-

pose to extract overlapping networks. In many instances, communities are characterized as

combinations of disjoint brain regions, although recent studies indicate that brain regions

may participate in more than one community. In this paper, large-scale overlapping fBNs

are identified on resting state fMRI data by employing non-negative matrix factorization. Our

findings support the existence of overlapping brain networks.

Introduction

Functional Connectivity (FC) is a widely used measure to quantify relationship between pairs

of brain regions [1, 2]. It is utilized to identify functional brain networks (fBNs) and is useful

for understanding intrinsic functional organization of human brain [3, 4]. Therefore, accurate

construction of FC is one of the most essential tasks to understand the functioning of complex

human brain.

Various analytical methods have been proposed for FC modeling from fMRI data such as

Pearson correlation (CORR) [1, 5] and the partial correlation (PCORR) [6, 7]. Pearson correla-

tion (CORR) is the most-widely used method for characterizing FC between different brain

regions [1, 5]. Despite its popularity, this method is limited because it reveals the pair-wise

relationship between two regions without accounting for the influences of other brain regions

[8]. Similarly, PCORR method, i.e., the maximum likelihood estimation (MLE) of the inverse

covariance matrix, only captures the pairwise information and therefore, does not fully reflect
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the interactions among multiple brain regions. To solve this problem, recent methods of esti-

mating FC rely on linear relationships between all brain regions and delineate functional rela-

tionships by representing one region’s representative time-series as a linear combination of

other regions’ time-series. These methods generally impose sparsity on FC coefficients because

a brain region may directly interact with only a fewer other brain regions and thus, force insig-

nificant connections to zero using the sparsity constraint [8–10]. However, this solution may

yield too sparse fBNs owing to division of actual fBNs into smaller communities and hence,

does not guarantee extraction of accurate communities or fBNs. Thus, sparsity constraint

alone may not capture the modular structure of brain regions belonging to the same commu-

nity. To address this problem, some previous studies employed both sparse and dense con-

straints to characterize FC [8, 9]. It is observed that sparsity constraint helps in extracting

sparse inter-network connections and denseness helps in extracting dense intra-network

connections.

Apart from considering sparsity and denseness constraints, an informative FC graph is

essentially low rank [11–13], which implies that columns and rows of FC are lying in the lower

dimensional space, where rows and columns signify brain regions. Low rank constraint pro-

vides a modular structure to fBNs, which is closer to the actual real fBNs [3, 13]. However,

none of the existing methods of estimating FC utilize low-rank assumption in the formulation.

Inspired by this insight, we propose a new multivariate method for learning FC matrix with an

assumption that this matrix is reasonably low rank. In addition, we also impose sparsity con-

straint to learn sparse fBNs as has been explored in the previous studies [8–10].

The proposed method is formulated as a convex minimization problem with l1-norm (via

sparsity convex surrogate) and nuclear norm (via low rank convex surrogate) constraints. We

name the proposed method as Low-Rank Multivariate Vector Regression-based Connectivity

(LR-MVRC). We utilize popular Alternating Direction Method of Multipliers (ADMM) for

solving the newly proposed objective function because it is widely used for solving joint l1 and

nuclear norm problems in different functional magnetic resonance imaging (fMRI) experi-

ments [14, 15].

Second contribution of the proposed work is the identification of overlapping communi-

ties. In specific, communities are a group of tightly interconnected brain regions forming

functional brain networks. Overlapping communities imply that one brain region might be

involved in multiple communities. This sounds plausible because one stimulus, say auditory,

may stimulate memory and other functional networks apart from the auditory network. This

indicates a need for identifying overlapping communities compared to the commonly identi-

fied disjoint communities [16, 17]. A few recent studies in fMRI have indicated the existence

of overlapping brain communities, for example, popular Independent Component Analysis

(ICA) method in fMRI results in overlapping set of clusters [18]. In addition, a few recent stud-

ies based on functional connectivity indeed indicate overlap among various functional brain

networks and suggest that brain regions may belong to several communities simultaneously

[16, 17, 19, 20]. Although several efforts have been made in this direction, the overlapping

community structure of brain networks are still largely unclear. Most of these studies are based

on matrix factorization approaches to represent FC matrix into lower dimensional space of

size K (i.e. number of communities), where each one of the K dimensions of this space repre-

sents association of various brain regions to the corresponding community. Existing methods

largely impose external sparsity constraint on this lower dimension space so as to make com-

munity inference easy from the perspective of fBNs. However, it is still unclear whether this

type of network inference is actually sparse or dense.

Another issue of the existing methods is the utilization of CORR method to build FC, fol-

lowed by, thresholding on CORR values to retain only a few top connections of FC matrix.

Constrained overlapping functional brain networks
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This may not be a reasonable assumption. In this work, we utilize full FC matrix to detect over-

lapping community structure without using any predefined threshold value. In addition, we

utilize conventional matrix factorization approach to obtain overlapping fBNs.

Owing to non-negative FC matrix obtained with LR-MVRC, we utilize non-negative matrix

factorization (NMF) approach without imposing any external sparsity constraint. NMF is a

popular unsupervised machine learning matrix factorization approach [21]. It has been widely

used to obtain overlapping communities, especially, in the social networks [22–24]. This

method has also been applied to neuroimaging data to localize co-varying structural brain

regions [25], to characterize brain tumor heterogeneity [26], and to reveal altered default

mode network in Attention Deficit Hyperactivity Disorder (ADHD) [27]. In this paper, NMF

is used to obtain overlapping communities or fBNs using fMRI data. The non-negativity prop-

erty retained in NMF is crucial since the interpretation of results becomes straightforward. We

utilize publicly available 1000 Functional Connectomes Project resting state fMRI data to show

the effectiveness of the proposed method in extracting fBNs on a group of subjects. Please note

that fBNs and communities words are used interchangeably from now onwards.

Salient contributions of the proposed work are as follows:

1. We propose a novel multivariate method for computing FC with sparsity and low-rank

constraints.

2. We extract overlapping communities in contrast to non-overlapping communities

extracted in general.

To validate the proposed work, it is compared with two state-of-the-art network-based

community detection methods: modularity optimization and independent component analy-

sis (ICA). This paper is organized as follows. Data description, proposed LR-MVRC method,

its implementation and framework for detecting overlapping communities are presented in

Section 2. Section 3 presents results. In the end, discussion and conclusions are presented in

Sections 4 and 5, respectively.

Materials and methods

Data description and preprocessing

Beijing_Zang resting state fMRI data from 1000 Functional Connectomes Project (http://

fcon_1000.projects.nitrc.org/) is utilized in this paper. This data was collected by Beijing

Normal University and consists of normal subjects (age range: 18-26 years old) scanned for a

duration of 7.5 minutes resulting in 225 brain volumes. Each brain volume consists of an

acquisition of 33 axial brain slices with dimension 64 × 64. This data has Echo Time (TE)

equal to 30 ms and Repetition Time (TR) equal to 2000 ms. We considered all 198 subjects of

this dataset in this manuscript.

We carried out standard preprocessing using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm12/) toolbox as specified in [8]. Preprocessing starts with the removal of first 10

volumes. This initial step is necessary to allow the magnetization to reach the steady state.

After this step, other remaining brain volumes are slice time corrected using the middle slice

as a reference followed by motion correction. Motion correction ensures reduction of head

motion artifact from the signal. Further, spatial normalization onto the Montreal Neurologi-

cal Institute (MNI) space is performed to facilitate group-level comparisons, followed by,

smoothing with a Gaussian kernel with 4 mm full width half maximum (FWHM). Finally, we

regressed out nuisance variables (6 head motion parameters, average cerebrospinal fluid

(CSF) signal from ventricular masks, and average white matter signal from white matter

Constrained overlapping functional brain networks
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mask) from each voxel’s time series and performed bandpass filtering in the frequency range

of 0.01 to 0.1 Hz to reduce low frequency drift and high frequency noise.

After preprocessing, the whole brain data is parcellated into 90 anatomical regions of inter-

ests (ROIs) via automated anatomical labeling (AAL) atlas [28]. In order to find the region-

representative time series for every ROI, we averaged time-series of all voxels belonging to the

same ROI. This resulted into a matrix X of dimension T × 90, where T denotes the number of

time points (or the number of brain volumes) such as 215 for the given fMRI data. Next, we

normalized each column of X to obtain unit normalized time-series.

Proposed LR-MVRC

Consider a matrix X of dimension T × N, where T denotes the number of time points and N
denotes the number of region of interests (ROIs). Each column of X signifies unit normalized

time-series of one brain region. Given this matrix, we require to compute the functional con-

nectivity matrix of dimension N × N. Recently proposed Multivariate Vector Regression-based

Connectivity (MVRC) method of identifying FC regresses time series of all regions (i.e. col-

umns of X) onto the time series of other regions multiplied by an FC matrix as X ¼ X ~W [8].

In addition, this method employs elastic-net penalty onto the FC matrix comprising of both l1

and l2 norms. However, to incorporate modular structure of fBNs into FC formulation, we

consider nuclear norm constraint along with l1 norm constraint in the computation of this

matrix and name the propose method as Low-Rank Multivariate Vector Regression-based

Connectivity (LR-MVRC). We formulate the proposed LR-MVRC objective function as:

min
~W

1

2

�
�
�X � X ~W

�
�
�

2

F
þ m1

�
�
� ~W

�
�
�

1

þ m2

�
�
� ~W

�
�
�
�

; s:t: diagð ~WÞ ¼ 0; ð1Þ

where μ1 and μ2 are the regularization parameters associated with l1 and nuclear norms terms,

respectively. Nuclear norm minimization implies l1 penalty on singular values of matrix ~W
that supports this matrix to be low-rank. diagð ~WÞ ¼ 0 term ensures no self connections in the

matrix ~W. Finally, symmetric adjacency matrix from ~W is computed as A ¼ ð ~jWj þ ~jWjTÞ=2.

Implementation of LR-MVRC

Next, we introduce the algorithm to solve LR-MVRC problem. We utilize ADMM [29] that

splits Eq (1) into multiple subproblems that are easier to solve. We introduce two auxiliary var-

iables Z1 and Z2 for the l1-norm and nuclear norm terms in Eq (1) as:

min
~W

1

2

�
�
�X � X ~W

�
�
�

2

F
þ m1kZ1k1 þ m2kZ2k�

s:t: Z1 ¼
~W;Z2 ¼

~W; diagð ~WÞ ¼ 0:

ð2Þ

The augmented Lagrange function for Eq (2) can be written as:

Lð ~W;Z1;Z2;Y1;Y2Þ ¼
1

2

�
�
�X � X ~W

�
�
�

2

F
þ m1kZ1k1

þm2kZ2k� þ
b1

2

�
�
�
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~W þ
Y1

b1

�
�
�
�

2

F

þ
b2

2

�
�
�
�Z2 �

~W þ
Y2

b2

�
�
�
�

2

F

;

ð3Þ

where β1, β2 > 0 are the penalty parameters and Y1, Y2 are the Lagrangian multiplier matrices.

The above equation consists of three variables ~W, Z1 and Z2. This is to note that during the

iterative learning for the solution of ~W in Eq (3), diagð ~WÞ is kept to zero.
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ADMM splits Eq (3) into three subproblems as described below. Each subproblem may be

treated as minimization over one variable while fixing the other two variables.

Subproblem 1: Solving ~W:

min
~W

1

2

�
�
�X � X ~W

�
�
�

2

F
þ
b1

2

�
�
�
�Z1 �

~W þ
Y1

b1

�
�
�
�

2

F

þ
b2

2

�
�
�
�Z2 �

~W þ
Y2

b2

�
�
�
�

2

F

: ð4Þ

Update of ~W, while other variables are fixed, is performed by solving the above equation as

below:

~W ¼ ðXTXþ ðb1 þ b2ÞIÞ
� 1
ðXTXþ b1Z1 þ Y1 þ b2Z2 þ Y2Þ; ð5Þ

where I is an identity matrix. The diagonal elements of ~W obtained from Eq (4) are replaced

with zeros.

Subproblem 2: Solving Z1:

min
Z1

m1kZ1k1
þ
b1

2

�
�
�
�Z1 �

~W þ
Y1

b1

�
�
�
�

2

F

: ð6Þ

Update of Z1, while other variables are fixed, can be done using soft thresholding as:

Z1 ¼ Soft2m1=b1

~W �
Y1

b1

� �

; ð7Þ

where Soft is the shrinkage thresholding operator defined as [30]:

SoftaðnÞ ¼ sgnðnÞmaxð0; jnj � aÞ; ð8Þ

where sgn denotes the signum value andmax denotes the maximum value.

Subproblem 3: Solving Z2:

min
Z2

m2kZ2k� þ
b2

2

�
�
�
�Z2 �

~W þ
Y2

b2

�
�
�
�

2

F

: ð9Þ

Global minimum of convex nuclear norm minimization is obtained by soft thresholding on

singular values, known as singular value thresholding (SVT) [31]. Hence, update of Z2 while

other variables are fixed, can be carried out using soft thresholding on singular values of Z2 as:

Z2 ¼ SVT2m2=b2

~W �
Y2

b2

� �

; ð10Þ

where SVT is defined as:

SVTaðnÞ ¼ U� diagðSOFTaðnÞÞ � VT; ð11Þ

and singular value decomposition of Z2 is defined as U × diag(ν) × VT.

The iterations of LR-MVRC, with update of variables, is described in Algorithm 1.

Algorithm 1. LR-MVRC problem
Input: Data matrix X and parameters μ1, μ2.
Initialize: β1 = β2 = 0.1, βmax = 1010, ρ = 1.1, Y1 ¼ Y2 ¼

~W ¼ Z1 ¼ Z2 ¼ 0.
while convergence criteria not met do
1: Fix the other variables and update ~W by Eq (4)
2: Fix the other variables and update Z1 by Eq (6)
3: Fix the other variables and update Z2 by Eq (9)

Constrained overlapping functional brain networks
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4: Update the multipliers by

Y1 ¼ Y1 þ b1ðZ1 �
~WÞ;Y2 ¼ Y2 þ b2ðZ2 �

~WÞ

5: Update β1 = min(βmax, ρβ1) and β2 = min(βmax, ρβ2).
end while
Output: A ¼ ð ~jWj þ ~jWjTÞ=2.

Functional brain network identification

After computing the adjacency matrix, next task is to identify communities or fBNs. Various

methods have been proposed to detect communities from FC matrix [32]. Among them, mod-

ularity is one of the most popular methods [33]. The widely used modularity method imple-

mented in Brain Connectivity Toolbox [33] yields disjoint communities, i.e., one brain region

is part of only one community, although recent studies in fMRI [16] demonstrate that one

brain region may participate in multiple communities. Thus, we identify overlapping commu-

nities of ROIs. In the next section, we describe the method for detecting overlapping

communities.

Detection of overlapping communities. In this work, we utilize NMF technique to obtain

overlapping communities. NMF is a feature extraction and dimensionality reduction method

of machine learning, which has been adapted to community detection recently [22–24]. This

technique factorizes a non-negative input FC matrix A, approximately, into a product of two

non-negative matrices as:

A ’ PQ: ð12Þ

The above factorization is carried out with a particular rank K so that P is of dimension

N × K and Q is of dimension K × N. This factorization can be viewed as a representation of

data in a lower (K) dimensional space. In NMF, matrices P and Q are updated iteratively to

improve the approximation to A, while maintaining non-negative matrix entries throughout.

For a given K, the algorithm runs iteratively until it finds a good approximate factorization or

the stop criterion is met. For a symmetric data matrix A, the factors P and Q can be considered

as Q = PT.

In particular, NMF algorithm minimizes the cost function, representing the approximation

error between the actual data A and the reduced dimension reconstruction of the data, i.e.,

PQ. One of the popular cost function is the squared Euclidean distance as described below:

LðP;QÞ ¼
1

2

X

i

X

j

ðAij � ½PQ�ijÞ
2
: ð13Þ

The minimization of the above cost function w.r.t. P� 0 and Q� 0 is a nonconvex prob-

lem. This approach can be interpreted as a maximum likelihood estimation with additional

non-negativity constraints. However, the implementation details which are necessary to

ensure decreasing cost function under the non-negativity constraints seem to be rather com-

plex [34]. In addition, without any other constraint or prior to this problem, solution may lead

to unstable convergence, and therefore, good initial values are necessary for more sophisticated

NMF algorithms [35, 36]. Different iterative algorithms have been proposed to solve this prob-

lem [35]. In general, at each iteration of these algorithms, one matrix is considered to be fixed

and the other one is estimated. This process continues until the convergence is achieved. The

main idea behind these approaches is that by fixing one matrix, the estimation of the other

matrix becomes a convex problem that can be solved easily.
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Since NMF, in general, has no unique solution, it is necessary to introduce some additional

constraints reflecting some prior knowledge. To this end, recently a Bayesian approach of

NMF is proposed that imposes prior distributions on the matrices and leads to unique conver-

gence to solution [37]. In recent overlapping communities detection work [22], it is assumed

that the pairwise interaction Aij is generated by a Poisson distribution with rate Âij ¼
P

kPikQkj
and shrinkage prior on Pik and Qkj with hyper-parameter βk. These additional constraints help

to induce some kind of uniqueness to the NMF solution. Further, this Bayesian NMF approach

maximizes posterior density under non-negative constraints. Keeping in view the success of

this Bayesian NMF approach for overlapping communities detection, we have utilized algo-

rithm presented in [22] to solve for NMF in this work. This algorithm starts with random ini-

tial matrices P and Q, with non-negative weights chosen from a uniform random distribution

on the interval [0, 1]. In brief, these matrices are updated iteratively as

Q ð
Q

PT1þ BQ
Þ: ½PTð

A
PQ
Þ�;

P ð
P

1QT þ PB
Þ : ½ð

A
PQ
ÞQT�;

ð14Þ

where B 2 RK�K is a matrix with hyper-parameters βk on the diagonal. For more details of this

algorithm, one may refer to [22]. Code of this algorithm is available online at https://github.

com/ipsorakis/commDetNMF. We have set the number of maximum iterations to 100 as has

been done in [22]. This is to note that we ran the algorithm ten times with random initial

matrices. The solution converged to the same output matrices with some columns exchanged.

Most experiments show that the matrix P represents the final clustering partition. In our

work, we mainly utilized matrix P to determine overlapping communities of the input FC

matrix. This is to note that each column of matrix P defines one community and hence, K
denotes the total number of communities. Each column of P indicates the extent to which any

brain region i belongs to that community. Thus, we compared each column of P with a thresh-

old and if the value of region i is more than the threshold, region i is considered to be a part of

that community. Similarly, if a region’s value is less than the threshold, we delete that region

from the corresponding community. Further details about selection of this threshold is pro-

vided in the Results Section.

Thresholding of each column of P independently allows brain regions to be a part of multi-

ple communities simultaneously and hence, detects overlapping communities. The NMF

approach of detecting communities is already used in the literature of social networks. How-

ever, their use in brain networks is limited so far.

Choosing number of K communities. NMF algorithm requires a given value of

dimensionality K that is an important input used in matrix factorization. However, determin-

ing the value of K is a challenge in most community discovery algorithms because the number

of communities K is not known in advance. If K is too small, some communities will be very

large (in terms of more number of regions) with random grouping of ROIs. On the contrary, if

K is too large, communities will be randomly scattered and will be very small.

To determine the number of communities K, we used NMF for two different numbers of

communities 8 and 15. We chose 8 number of communities because, in general, the following

eight brain networks are observed in the resting state fMRI data: Visual Network (VN),

Somato-motor Network (SMN), Auditory Network (AN), Cognitive Control Network (CCN),

Bilateral Limbic Network (BLN), Language Network (LN), Subcortical Network (SCN), and

Default Mode Network (DMN). We chose to extract 15 number of communities because we

Constrained overlapping functional brain networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0208068 November 28, 2018 7 / 19

https://github.com/ipsorakis/commDetNMF
https://github.com/ipsorakis/commDetNMF
https://doi.org/10.1371/journal.pone.0208068


would like to ascertain if choosing a number larger than the expected number of communities

yields scattered networks.

Results

We utilized X and computed adjacency matrix using Eq (1) for all subjects. We used μ1 = 0.25

in Eq (1) as was utilized previously in [8] and the value of μ2 is decided empirically to be equal

to 0.1. This value is decided based on the correspondence of identified fBNs with the ground

truth atlas labels. We averaged LR-MVRC FC matrices of all subjects and utilized NMF to

obtain communities.

Comparison of FC methods

In this section, we evaluate the feasibility and the robustness of the proposed LR-MVRC

method w.r.t. traditional methods discussed below.

• Pearson correlation (CORR): This is simply a pairwise correlation between two brain

regions’ time series. Pearson correlation coefficients are computed between all 90 ROIs

(extracted from AAL atlas), resulting in a 90 × 90 FC matrix. All negative values are flipped

to positive values and all diagonal entries are set to zeros, as is usually done in fMRI FC anal-

ysis using CORR [38].

• Partial correlation (PCORR): Partial correlation values are assumed to be equivalent to the

inverse of covariance matrix and also known as the precision matrix. Thus, first the covari-

ance matrix is computed. Next, inverse of this matrix provides partial correlation values.

However, computation of inverse is itself challenging because of low rank nature of the

covariance matrix. Generalized inverse or pseudo-inverse methods have been generally used

to compute partial correlation.

• MVRC method [8]: MVRC method has been explained in methods section and is imple-

mented as specified in [8].

We averaged each method’s FC matrices across all subjects and compared them w.r.t. vari-

ous graph theoretical measures [39]. Degree was calculated as the sum of weighted edges con-

necting to a node i as Di = ∑j Aij. Similarly, participation coefficient (PC) arising from

modularity community assignment was computed as Pi ¼ 1 �
PNm

s¼1
ð
Dis
Di
Þ

2
, where Dis is the

number of edges of node i to nodes in module s, Di is the degree of node i, and Nm is the total

number of modules in the graph. We also computed another graph theoretical measure, i.e.,

betweenness centrality (BC), averaged over all 90 AAL brain regions, whose high value signi-

fies the network to be highly central or modular. In fact, it is a network centrality measure that

represents the fraction of all shortest paths in the network that pass through a given node [33].

LR-MVRC matrix in this study is extracted using l1 and low rank constraints, while MVRC

FC matrix in [8] was extracted using l1 and l2 constraints. As a result, we noticed that while

MVRC had more connections due to the denseness imposed by l2 norm constraint, LR-MVRC

had fewer higher magnitude connections compared to MVRC due to the low rank constraint.

However, these fewer connections of LR-MVRC weighed higher than those of MVRC. In addi-

tion, we observed same degree in both the matrices, LR-MVRC FC and MVRC FC, since we

did not apply any thresholding on FC matrices. Participation coefficients (of size 90 that is

equal to the number of AAL brain regions) arising from the modularity community assign-

ment using both the methods are statistically compared using the two-sample t-test with

significance level of 0.05. Altered PC were observed between both the matrices (p<0.05). Fur-

ther, we observed BC of LR-MVRC to be more (=128) compared to that of MVRC (=96). In
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conclusion, these findings indicate that the LR-MVRC FC matrix is more modular or central

compared to MVRC FC.

Further, on comparing LR-MVRC method with the CORR and PCORR methods, we

observed same degree with both the matrices, since we did not apply any thresholding on FC

matrices. In addition, we observed PC using CORR and PCORR methods to be statistically dif-

ferent w.r.t. the proposed LR-MVRC method, suggesting that the FC matrices obtained by the

three methods are statistically different (p<0.05). These results are consistent with the findings

on LR-MVRC and MVRC methods as discussed previously, although this is to note that we

obtained fewer number of communities using modularity with CORR and PCORR methods

with no community signifying any functional brain network structure. Further details regard-

ing this comparison is presented in the next section. Furthermore, analysis of the average BC

showed lesser values among the CORR and PCORR methods compared to the proposed

LR-MVRC method. These results indicated that there are structural differences among the net-

works constructed by the three methods.

Competing methods. Modularity optimization is a leading method aimed at finding opti-

mal non-overlapping partitions of fBNs based on modularity function [40]. Unlike NMF that

finds overlapping communities, modularity optimization results in non-overlapping commu-

nities. We performed modularity optimization on the averaged LR-MVRC adjacency matrices

by using the Louvain method implemented in the Brain Connectivity Toolbox [33].

Principal and independent component analysis (PCA, ICA) are some other matrix factori-

zation methods commonly used for projecting data into lower dimensional representation,

from which the overlapping communities structure could be identified [41]. These factoriza-

tion methods impose different constraints or priors in order to obtain a solution, e.g., compo-

nents must be orthogonal in PCA and must be independent in ICA. The ICA method is being

extensively used in fMRI and it computes independent components directly on fMRI time-

series and identifies overlapping communities. In this paper, fMRI time-series of all subjects

are concatenated temporally and the dimensionality is reduced by using PCA [18]. PCA is gen-

erally used before ICA for dimensionality reduction. The resulting fMRI time-series data is fed

into the fastICA algorithm [42] implemented by the FastICA software (https://research.ics.

aalto.fi/ica/fastica/).

To further test the performance of the proposed LR-MVRC FC identification method, all

fBNs identification methods, i.e., NMF and modularity optimization are also carried out on

the FC matrix constructed using the Pearson correlation (CORR). Specifically, for each pair of

ROIs, Pearson correlation is used as a metric to compute the FC. Next, we averaged CORR

adjacency matrices of all subjects and utilized it to obtain communities.

Results on fMRI dataset. Based on the analyses of LR-MVRC and CORR FC matrices,

the overall community structure obtained by NMF and modularity are shown in Fig 1. The

matrices P obtained using LR-MVRC and CORR matrices with K = 8 and 15 in NMF are

shown in first two columns of Fig 1. Visually, LR-MVRC matrices yield sparse overlapping

community structures, while the ones derived using CORR matrices are also overlapping but

are extremely dense. More sparsity, or in other words, fewer high valued coefficients in each

column of matrix P results in accurate fBN identification by applying thresholding as

described in the previous section. We considered mean plus standard deviation of each col-

umn of matrix P as a threshold value for that column or community. Modularity optimization

method (refer to third column of Fig 1) achieves greatest sparsity among all methods, but this

method results in non-overlapping communities. This is to note that this method does not

require pre-defined number of communities unlike the NMF method. Using this method,

CORR based FC matrix could identify only 4 communities compared to 10 communities

detected with LR-MVRC based FC matrix.
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In the second row of Fig 1, we show the community structure derived by ICA. The first

and the second columns of this row display the overall community structures identified with

K = 8 and 15, respectively. For ICA method, group-level community structure is derived by

concatenating fMRI time-series of all subjects. Here, the number of communities K for ICA

methods were set according to the values chosen for NMF method in this paper. Visually, the

communities derived by ICA show an overlapping structure, but they tend to produce a much

denser result with only a few high or negative coefficients values. It reveals that ICA method

achieves a moderate similarity to NMF method since this method works directly on the time-

series instead of first extracting FC matrix as is done in the NMF method.

To depict sparsity differences between NMF results of LR-MVRC, CORR and PCORR

more accurately, we plot sorted coefficients of matrix P in Fig 2. We plot results for both 8 and

15 value of K in NMF. From this figure, we observe that for each value of K, LR-MVRC based

Fig 1. First row: Community structure obtained using LR-MVRC and CORR matrices with NMF and modularity

optimization methods. Second row: Community structure obtained using ICA with K = 8 and 15 in the first and

second columns, respectively. In the first row, first two columns represent the matrix P obtained from LR-MVRC and

CORR with K = 8 and 15 in NMF, respectively. The third column represents modularity optimization results on both

LR-MVRC and CORR based adjacency matrices.

https://doi.org/10.1371/journal.pone.0208068.g001
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results are more sparse with only a few non zero coefficients compared to those extracted from

CORR and PCORR FC matrices.

Further, to explore the neuro-physiological interpretations of identified communities with

LR-MVRC (refer to Table 1) and CORR, we mapped the identified communities correspond-

ing to K = 8 onto the human brain, as shown in Figs 3 and 4. Fig 3 displays the communities

derived by LR-MVRC based on the thresholding on matrix P. Eight communities derived by

LR-MVRC shown in this figure refer to default mode and subcortical (C1), visual (C2), bilat-

eral limbic (C3), cognitive control and default mode (C4), default mode and visual (C5), audi-

tory and motor (C6), subcortical (C7), and default mode and bilateral limbic (C8) networks.

These networks are highly consistent with several well-recognized resting state fBNs discov-

ered by previous studies [43–46]. In essence, two communities (C2, C5) are related to the

visual information processing, one community (C6) is related to the auditory information pro-

cessing, four communities (C1, C4, C5 and C8) are associated with the well-known default

mode network (DMN), and one (C6) is associated with the motor network. C1 and C7 corre-

spond to the subcortical network. In addition, bilateral limbic network (C3 and C8) and

Fig 2. Illustration of sparsity of matrix P obtained with NMF. Plot of sorted coefficients of matrix P, obtained using

LR-MVRC, CORR and PCORR matrices with different values of K in NMF.

https://doi.org/10.1371/journal.pone.0208068.g002

Table 1. Brain networks identified using LR-MVRC with K = 8 in NMF. Fourth column represent AAL atlas ROI

indices belonging to the community K, whereas second and third columns represent the associated brain networks and

number of ROIs in that community, respectively.

Community Networks No. of nodes AAL Regions

1 default mode and subcortical 8 31, 32, 33, 34, 71, 72, 77, 78

2 visual 14 43-56

3 bilateral limbic 8 37-42, 83, 87

4 cognitive control and default mode 13 7-14, 16, 61, 62, 89, 99

5 default mode and visual 7 33, 35, 36, 46, 65, 67, 68

6 motor and auditory 17 1, 2, 17-20, 29, 30, 57, 58, 63, 69, 70, 79-82

7 subcortical 7 42, 73-78

8 default mode and bilateral limbic 17 3, 5, 6, 21-28, 31, 32, 65, 86-88

https://doi.org/10.1371/journal.pone.0208068.t001
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Fig 3. Overlapping communities derived from LR-MVRC. This figure displays the communities derived from the

LR-MVRC based adjacency matrix via thresholding of matrix P obtained with NMF (K = 8). Eight communities

derived from LR-MVRC matrix shown in this figure refer to default mode and subcortical (C1), visual (C2), bilateral

limbic (C3), cognitive control and default mode (C4), default mode and visual (C5), auditory and motor (C6),

subcortical (C7), and default mode and bilateral limbic (C8) networks.

https://doi.org/10.1371/journal.pone.0208068.g003

Fig 4. Overlapping communities derived from CORR. This figure displays the communities derived using CORR

based matrix via thresholding of matrix P obtained with NMF (K = 8).

https://doi.org/10.1371/journal.pone.0208068.g004

Constrained overlapping functional brain networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0208068 November 28, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0208068.g003
https://doi.org/10.1371/journal.pone.0208068.g004
https://doi.org/10.1371/journal.pone.0208068


cognitive control network (C4), associated with high-order brain functions are readily identi-

fied. Whereas, it is noted from Fig 4 that ROIs associated with different fBNs are clubbed in a

single community, showing random grouping of ROIs. This causes difficulty in the interpreta-

tion of identified communities as valid fBNs.

Non overlapping communities derived from LR-MVRC (see Fig 5) refer to motor (C1),

visual (C2), default mode and cognitive control (C3), default mode (C4), subcortical (C5),

bilateral limbic (C6), default mode and bilateral limbic (C7), cognitive control (C8), subcorti-

cal (C9) and auditory networks, which are consistent with the overlapping communities

detected with LR-MVRC method (see Fig 3).

Apart from considering K = 8 in NMF with LR-MVRC, we also present results with K = 15

in Table 2. Fifteen communities derived by LR-MVRC shown here refer to default mode and

subcortical (C1), default mode and bilateral limbic (C2), bilateral limbic and subcortical (C3),

default mode and subcortical (C4), motor and auditory (C5), motor and subcortical (C6),

default mode and subcortical (C7), default mode and subcortical (C8), coginitive control, bilat-

eral limbic and default mode (C9), default mode and subcortical (C10), default mode (C11),

bilateral limbic (C12), cognitive control and default mode (C13), visual (C14), and default

mode and subcortical (C15) networks, which are consistent with several well-recognized fBNs

discovered by previous studies. This is to note that the similarity observed in the four commu-

nities (C4, C7, C10 and C15) in Table 2 points to the fact that lesser value of K should have

been used in the method. A value larger than required shows repeated communities, signifying

that no better partitioning can happen. This observation can work as an initial criterion to

decide the parameter K in the NMF method.

We further looked regions belonging to more than one community in LR-MVRC based

NMF results. It reveals that regions involved in more than one community span over default

mode, subcortical, bilateral limbic and visual networks. By contrast, regions related to sensori-

motor and auditory participate in fewer communities.

Fig 5. Non overlapping communities derived from LR-MVRC. This figure displays the communities derived using

LR-MVRC based matrix via modularity optimization. Ten communities derived by LR-MVRC shown in this figure

refer to motor (C1), visual (C2), default mode and cognitive control (C3), default mode (C4), subcortical (C5), bilateral

limbic (C6), default mode and bilateral limbic (C7), cognitive control (C8), subcortical (C9) and auditory networks.

https://doi.org/10.1371/journal.pone.0208068.g005
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Effect of community number K
Parameter K is the number of communities in the NMF method. On varying the value of K,

different fBN structures/communities are observed. Increasing the number K allows us to rep-

resent more and more functional communities formed in the brain (refer to Table 2 with

K = 15). However, as the number of communities increases, we move from underfitting to

overfitting community structures, i.e., we face the trade-off between approximating complex

brain structures and overfitting them, potentially capturing noise or redundant brain

networks.

By starting with a large K (say 15, which is possibly double the number of communities in

human brain), the effect of considering a higher number of communities can be accounted by

ignoring redundant number of communities that correspond to similar fBNs. For example,

four communities in Table 2 are identical and correspond to default mode and subcortical

networks.

Discussion

In this paper, we propose LR-MVRC method to build functional connectivity using sparsity

and low rank constraints. It is a multivariate FC estimation method that has attracted great

attention in the brain fMRI literature recently [8–10]. As a matter of fact, CORR method

which exists for FC estimation for almost two decades, considers a pair of two regions while

studying functional connection between them. However, this pairwise relationships only

reflects the second-order relationships between brain regions without accounting for high-

order relationships which is crucial for understanding complex brain networks architecture.

To this end, the proposed multivariate method considers all regions simultaneously and

regresses one region’s time series onto all other regions’ time series and hence, is named as

multivariate regression framework. In addition, besides identifying non-overlapping fBNs, we

Table 2. Brain networks identified using LR-MVRC with K = 15 in NMF. Fourth column represent AAL atlas ROI

indices belonging to the community K, whereas second and third columns represent their corresponding associated

brain networks and number of ROIs in one community, respectively.

Community Networks No. of

nodes

AAL Regions

1 default mode and subcortical 3 33, 71, 78

2 default mode and bilateral limbic 15 3, 5, 6, 21-28, 31, 32, 87, 88

3 bilateral limbic and subcortical 7 42, 73-78

4 default mode and subcortical 3 34, 72, 77

5 motor and auditory 17 1, 2, 17-20, 29, 30, 57, 58, 63, 69, 70,

79-82

6 motor and subcortical 10 1, 2, 57, 58, 69-72, 77, 78

7 default mode and subcortical 3 34, 72, 77

8 default mode and subcortical 8 3, 23, 31-34, 77, 78

9 cognitive control, bilateral limbic and default

mode

12 15, 16, 56, 66, 83-90

10 default mode and subcortical 3 34, 72, 77

11 default mode 6 35, 36, 46, 65, 67, 68

12 bilateral limbic 9 37-42

13 cognitive control and default mode 12 7-16, 61, 62, 90

14 Visual 14 43-56

15 default mode and subcortical 3 34, 72, 77

https://doi.org/10.1371/journal.pone.0208068.t002
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have used NMF in this work to identify overlapping functional community structure using the

resting-state fMRI data.

Experimental results show that the proposed framework is capable of identifying underly-

ing overlapping fBN organization of the human brain. We observe that the proposed method

results in multiple fBNs such as Visual Network (VN), Somato-motor Network (SMN),

Auditory Network (AN), Cognitive Control Network (CCN), Motor Network (MN), Sub-

cortical Network (SCN), and Default Mode Network (DMN). These networks in resting

state fMRI have been consistently identified in previous studies ([46, 47] and references

within).

In this paper, we adopted region parcellation and numbering corresponding to the 90 AAL

ROIs for the definition of nodes and subsequent construction of fBNs. Multiple studies in

fMRI have utilized different node definitions by using clustering or ICA-based methods. The

nodes in these studies mainly include the default mode, cognitive control, visual, auditory,

subcortical and bilateral limbic networks, which are largely in accordance with the communi-

ties identified by LR-MVRC method in this paper.

More importantly, the overlapping communities derived by LR-MVRC with NMF are

neuro-physiologically meaningful and comparable to the communities derived using the other

most famous modularity optimization methods in the fMRI literature. On visualizing results,

we observe that most communities detected by NMF on LR-MVRC FC matrix also appear in

the results derived by modularity optimization. However, the most prominent difference is

that NMF is able to capture more realistic communities because it allows overlapping commu-

nities, say, in default mode, subcortical, bilateral limbic and visual networks. In particular, the

identified overlapping regions are mostly found to be the part of frontal, parietal, and temporal

brain regions. Similar findings have been previously reported in a few recent studies [48, 49].

On the other hand, the sensory-motor and auditory networks are observed to be formed as dis-

joint communities as regions associated with these networks are being reported to have high

within connectivity [50–52].

ICA method works directly on fMRI time series and produces independent components or

activation maps. ICA based analysis requires expertise for rejecting components corrupted

with ventricle effects, movement artifacts and sparsely-distributed noises. For example, if K or

the number of ICA components is large, it requires to discard extra noisy components (com-

ponents that may not be relevant to contain fBNs). In general, the findings can be contested,

particularly, if these are to be used in clinical applications because one may reject wrong com-

ponents. In this context, LR-MVRC with NMF provides a complementary method to investi-

gate overlapping community structure of the human brain without going through such a

dilemma.

Limitation and future work

The overlapping community structure explored by the proposed method can result in a better

understanding of the group-level functional brain networks. However, capturing and analysis

of individual subject’s differences could be more useful in understanding individual brain

architecture.

A limitation of NMF method is that the performance of NMF depends on its initialization

of K to some extent. In this paper, the value of K in NMF algorithm is initialized based on our

prior knowledge of the number of fBNs. Although this is the most popular and simple initiali-

zation strategy for NMF methods, it is still a constraint of this algorithm compared to the

conventional community detection methods, such as modularity optimization, that do not

require any pre-specified K. These alternative strategies may lead to faster convergence of the
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algorithm. Thus, there should be an attempt to auto-detect the number of communities K in

NMF algorithm.

In this work, thresholded membership value of nodes is used as a deciding factor for the

consideration of nodes in the corresponding community. However, this approach does not

provide a clear node membership to each overlapping community. Therefore, methods

accounting for crisp partitions, allowing each nodes’ contribution to multiple communities are

required to be considered in the future works. A few studies have attempted to consider this

[53, 54], although these methods do not provide information about nodes’ membership to

each community. Owing to this, more sophisticated methods that combine the advantages of

both the above mentioned approaches can provide more useful information about the fBNs

architecture [24].

Finally, the functional brain imaging data alone may not be sufficient to gain a comprehen-

sive understanding of the brain’s functional organization. A multimodal data combination

and analysis of human brain may provide better knowledge about the underlying networks’

organization and guide us to a deeper understanding of the human brain.

Conclusions

In this work, we propose a Low Rank Multivariate Vector Regression-based Connectivity

(LR-MVRC) method for estimating FC matrix. Proposed method utilizes both sparsity and

low rank constraints while estimating the FC matrix. Most of the previous studies extract dis-

joint communities or functional brain networks, we extract overlapping communities via

NMF that may be biologically more correct for understanding human brain’s functional orga-

nization. Experimental results suggest that the proposed framework can better characterize the

brain networks’ organization at the group level. In conclusion, we believe that the proposed

method and its potential applications could provide new insights into the functional networks’

organization of the human brain.
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