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ABSTRACT

Lung squamous cell carcinoma (LUSC) is a major subtype of Non-Small Cell 
Lung Cancer. To increase our understanding of the LUSC pathobiology, we performed 
exome sequencing and RNA-seq in 16 murine carcinogen-induced LUSC tumors and 
8 normal murine lung tissue samples. Additionally, we conducted single-cell RNA-
seq on two independent tumors from the same murine model. We identified a list of 
59 cancer genes recurrently mutated in the mice LUSC tumors, 47 (80%) of which 
were also mutated in human LUSCs. At the single cell level, we detected unique 
clonal mutation patterns for each of the two LUSC tumors, being initiated from clones 
carrying the mutant Igfbp7 and Trp53 genes, respectively. We also identified an 
expression signature serving as an effective classifier for LUSC tumors and a strong 
predictor of survival outcomes of lung cancer patients. Lastly, we found that some 
of the mutant LUSC genes were associated with the significantly altered tumoral 
expression of inhibitory immune checkpoint genes such as PD-L1, VISTA, TIM3 and 
LAG3 in human LUSCs. The novel findings of clonal evolution, mutational landscapes 
and expression signatures of LUSC suggested new targets for the overall LUSC therapy 
and the immunotherapy of LUSC.
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INTRODUCTION

Lung cancer is a major cause of cancer-related 
deaths worldwide, occurring in more than a million new 
patients annually [1]. Genetic factors, along with exposure 
to environmental carcinogens contribute significantly 
to the risk of developing lung cancer [2]. Non-Small 
Cell Lung Cancer (NSCLC) is the most common type 
of lung cancer, comprising 80–85% of all cases. Lung 
adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) are the two major subtypes of NSCLC, 
each comprising about 30% of lung cancer diagnosis. 
The tumor genomics profiles between LUAD and LUSC 
differed significantly and high heterogeneity was observed 
within each cancer type [3–5]. Therapies for LUAD 

are often ineffective for LUSC [6]. LUSC is a highly 
heterogeneous disease that develops via multiple complex 
steps [7, 8]. Genetic etiology of LUSC has been studied 
extensively [9–11], however, more research is needed to 
increase the knowledge base of LUSC and design more 
effective prevention and therapeutic strategies.

A mouse model of LUSC in which the tumors 
are induced by the carcinogen, N-nitroso-tris-
chloroethylurea (NTCU), was developed and widely 
used in chemoprevention studies of LUSC [12]. 
However, the underlying genetic profiles of this murine 
model and its resemblance to human LUSCs have not 
been well characterized. Because carcinogen-induced 
mouse models have become important for studies of 
oncoimmunology [13], it is necessary to systematically 
analyze the mutation and transcriptome profiles of the 
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NTCU-induced murine LUSC model and compare them 
to the corresponding profiles of human LUSCs [14, 15] to 
identify the genes with potential clinical value for further 
study. In the present study, we assessed the mutational 
and transcriptional characteristics of mice LUSCs. We 
identified the the novel patterns of clonal evolution, 
mutational landscapes and expression signatures of LUSC, 
which could contribute to the development of new LUSC 
therapeutic strategies.

RESULTS

Whole-exome sequencing (WES) of mouse lung 
squamous cell carcinoma (LUSC) tumors

To characterize the genetic alterations that occur 
in mouse LUSCs, we performed WES in 16 surgically 
resected NTCU-induced NIH Swiss mouse LUSC tumors, 
along with 8 normal mouse lung tissues. LUSC tumors 
and normal lung tissues were sequenced to an average read 
depth of 129 X (range: 98 X to 165 X) and 137 X (range: 
112 X to 179 X), respectively (Supplementary Table 1). 
The 16 mouse LUSCs harbored 5,664 somatic coding 
mutations (mean = 354) that consisted of 2,885 missense, 
106 nonsense, 2,426 silent mutations, 167 small insertions 
and deletions (indels) and 80 alterations residing in exon-
exon boundaries (Supplementary Table 2 [Excel File]). 
The most common substitutions were C>T transversions 
(Supplementary Figure 1), indicative of oxidative DNA 
damage [16].

WES identified recurrently mutated cancer 
genes and clonal mutations in mouse LUSC

Identification of cancer genes that are recurrently 
mutated in mouse LUSC tumors (mutated in at least 
two tumors) may reveal the novel genetic mechanisms 
of carcinogenesis and progression of LUSC. Therefore, 
we analyzed the mutation profiles of the mouse LUSCs 
focusing on the comprehensive list of 2,027 cancer related 
genes (from the file “allOnco_Feb2017.tsv” available at 
http://www.bushmanlab.org/links/genelists). It was found 
that 59 cancer genes were recurrently mutated in our 
mouse LUSC tumors (Figure 1). The cancer genes most 
frequently mutated in the mouse LUSC tumors (≥25%, 
i.e., mutated in at least 4 samples of 16 tumors) were 
as follows: Muc4, Prg4, Igf2r, Ctsll3, Dlgap1, Hspa9, 
Armcx3, Cdk1, Pcdhb15, Fus, Gga1, Il2rb, Kmt2d (Mll2), 
Mapk6, Myh1, Ncoa3 (Src3), Obscn, Runx2, Zmynd8, 
Ido1, Nkain2, Pyy, Stil, Tcl1b4, Tfeb, and Trpv1 (Figure 1).

To identify whether the 59 recurrently mutated 
cancer genes in mouse LUSC tumors were also mutated 
in human LUSC tumors, we downloaded the somatic 
mutation profiles of 191 human LUSC tumors that are 
accessible through COSMIC database (http://cancer.
sanger.ac.uk/cosmic) and performed cross-species 

comparisons. We found that 47 of the 59 cancer genes 
recurrently mutated in the mouse LUSCs were also 
mutated in the human LUSCs (Figure 2).The mutation 
profiles of most of these 47 genes were mutually exclusive 
across the human LUSC tumors and they comprehensively 
characterized the human LUSC tumors (Figure 2). Among 
the 47 commonly mutated cancer genes shared between 
mouse and human LUSCs, the frequently mutated ones in 
human LUSCs include KMT2D (MLL2), MYH1, OBSCN, 
ZEB2, BRAF, IGF2R, FLT1, HIVEP3, PRG4, ABCA1, 
ATR, DACH2, ABCB4, DST, and MUC4 (Figure 2). The 
proportion of the cancer genes recurrently mutated in mice 
LUSCs that were also mutated in human LUSCs was as 
high as 80% (= 47/59), suggesting that the NTCU-induced 
mouse LUSC model is an excellent model to study the 
genetic mechanisms of human LUSC. However, about 
20% (= 12/59) of recurrently mutated cancer genes of 
mouse LUSCs were not found to be mutated in human 
LUSCs, suggesting either the unique mechanisms of 
LUSC carcinogenesis in mice or the necessity to sequence 
more human LUSC tumors to enlarge the mutation 
spectrum of human LUSCs.

In addition, our analysis revealed that each LUSC 
tumor had a sample-specific mutational landscape 
consisting of a mixture of recurrent and private clonal 
mutations (Supplementary Figure 2). The clonal mutation 
spectra across the 16 mouse LUSCs were shown in 
Supplementary Figure 3 and Supplementary Table 3. 
There were nine most frequent clonal mutations identified 
in at least 4 of 16 LUSC tumors, including Hspa9: A651S 
(7), Cdk1: S39I (6), Pcdhb15: R461C (6), Ctsll3: P329S 
(5), Gga1: D358N (5), Il2rb: R475S (5), Dlgap1: A329T 
(4), Nkain2: V67L (4), and Pyy: P42L (4).

scRNA-seq (single-cell RNA-sequencing) 
identified clonal mutations in the two mice LUSC 
tumors

Single-cell analysis by scRNA-seq was used to 
characterize the nonsilent somatic mutations in two mouse 
LUSC tumors, with a specific focus on the known cancer 
genes or the mutated genes identified by our exome-seq 
of mouse LUSC tumors. Single tumor and normal cells 
were differentiated from one another based on whether 
any mutations in the above genes can be identified. With 
respect to the first mouse LUSC tumor (LUSC1), 36 single 
cells from LUSC1 were classified into 28 tumor cells and 8 
normal cells according to the mutation status of the cancer 
genes (Figure 3A). The 33 single cells from the second 
mouse LUSC tumor (LUSC2) were classified into 20 
tumor cells and 13 normal cells according to the mutation 
status of the cancer genes (Figure 3B). The details of the 
cancer gene mutations of the two mouse LUSC tumors can 
be seen in Supplementary Table 4.

Next, we inferred the clonal evolutionary history 
of the two mouse LUSC tumors (Supplementary Figures 
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4 and 5). For LUSC1, all the single tumor cells had 
the clonal mutation (R45P) in Igfbp7 and a subset of 
single tumor cells had the mutation (R2457S) in Igf2r 
(Figure 3A). IGFBPs participate in a complex signaling 
axis called IGF-IGFR-IGFBP. In addition, the genes 

having somatic mutations in LUSC1 involve a number of 
transcription regulators such as Ahctf1, Notch4, Ncoa3, 
Nfe2l2 (Figure 3A). The scRNA-seq of LUSC2 identified 
a Trp53 somatic missense mutation (Q97L) in all the 
tumor cells (Figure 3B). Somatic mutations of the LUSC2 

Figure 1: Profiles of recurrently mutated cancer genes in mouse LUSC tumors. The non-silent somatic mutation spectrum of 
the 59 cancer genes that were recurrently mutated in the 16 mice LUSC tumors was plotted. The order of genes was sorted by the mutation 
frequency decreasingly. The top bar plot showed the total number of mutations in any of the 59 genes per sample, the right-side and the 
left-side legends showed the number and frequency of mutations within each gene across the 16 mouse LUSC tumors.
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tumor were also found in a number of novel driver genes 
such as Myh9, Kmt2d and Keap1 (Figure 3B). 

The activation of a common cancer gene 
expression module in the two mouse LUSC 
tumors 

Based on the mutation spectra of the two LUSC 
tumors, differential expression (DE) analysis was 
performed between tumor and normal cells in each tumor. 

Interestingly, DE analysis and comparison study of the 
two LUSC tumors identified a common set of 80 cancer 
genes termed ‘G80’ that were activated in both the LUSC1 
and LUSC2 tumor cells although they had a different set 
of key cancer gene mutations (Figures 4 and 5). The G80 
geneset was further tested in the mouse and human LUSC 
tumors at the bulk sample level. Analysis of the 16 mice 
LUSC tumors and 8 control normal lungs showed that 
the G80 module expression could differentiate the tumor 
samples from the normal lung samples (Figure 6). We also 

Figure 2: Comparison study of mouse and human LUSC genes. In terms of non-silent somatic mutations, 47 of the 59 cancer 
genes recurrently mutated in the mouse LUSCs were also mutated in the human LUSCs archived in the COSMIC database. The waterfall 
plots showed the side-by-side comparison of the 47 mutated LUSC genes shared between mouse and human.  
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Figure 3: Clonal and subclonal mutations across the tumor cells from the two mouse LUSC tumors. The somatic missense 
mutations in the cancer related genes of single tumor cells from LUSC1 (A) and LUSC2 (B) were plotted. The corresponding normal cells 
did not carry any mutations.
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analyzed the G80 module cancer gene expression in the 
502 human LUSCs and 51 control normal lung samples 
from TCGA. Interestingly, the G80 gene expression 
signature clearly differentiated LUSC tumors from normal 
samples again (Figure 7). These data suggested that the 
G80 module can serve as a classifier for LUSC tumors in 
both mouse and human samples.

Next, we sought to explore whether the expression 
signature of the G80 cancer gene module was associated 
with survival outcome in lung cancer patients. The 

TCGA LUSC cohort and the other three independent 
human NSCLC gene expression data sets were analyzed 
[17–20]. The high-risk gene expression signature of the 
G80 cancer gene module was significantly associated 
with poor overall survival outcome across these four 
large and representative human lung cancer datasets 
(Figure 8). The risk group hazard ratio (HR) based on 
G80 module expression in the TCGA LUSC cohort was 
10.2 (P = 1.7E–14), which was much greater than the 
HR values of the other three NSCLC cohorts (HR = 3.3, 

Figure 4: Mutation profiles of the key cancer genes and the corresponding up-regulated cancer genes in LUSC1 single 
tumor cells. The nonsilent mutations in the key genes correlated with significant upregulation of the expression of 80 cancer genes in the 
G80 module in the single tumor cells from the mouse LUSC1 tumor. 
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3.5, 4.4, Figure 8). This reflected that the G80 module 
was developed from LUSC samples so its performance 
was better in the LUSC cohort than in the NSCLC cohort 
which also contains LUAD (lung adenocarcinoma) 
samples. Our data suggested that the overall expression 
of the G80 module genes can be used as a biomarker 
to assess the survival outcomes of lung cancer patients, 
especially patients with LUSC.

Associations of mutant LUSC genes with the 
immune checkpoint gene expression in human 
LUSCs

Our comprehensive analysis yielded a list of cancer 
genes with recurrent or clonal mutations for LUSC 
(Figures 1–3, Supplementary Figure 3, and totaling 106 
genes). In order to test whether these mutated genes have 

Figure 5: Mutation profiles of the key cancer genes and the corresponding up-regulated cancer genes in LUSC2 single 
tumor cells. The nonsilent mutations in the key genes correlated with the significant upregulation of the expression of 80 cancer genes in 
the G80 module in the single tumor cells from the mouse LUSC2 tumor. 
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potential clinical application, the associations between 
mutational status of the identified LUSC genes and gene 
expression of immune checkpoint genes were analyzed 
by using a set of 176 TCGA LUSC tumor samples. We 
examined the expression of inhibitory immune checkpoint 
genes, including CTLA4, PD-1 (PDCD1), LAG3, TIM3 
(HAVCR2), PD-L1 (CD274), and VISTA (C10orf54). The 
suppressed tumoral PD-L1 expression was significantly 
associated with mutations in eight genes (Figure 9, 
Supplementary Table 5): HIVEP3 (P = 2.8E-11), NKAIN2 
(P = 2.9E-11), RUNX2 (P = 2.5E-09), MUC4(P = 2.3E-
06), CUX1 (P = 9.0E-06), NIPBL (P = 6.1E-05), PLAGL2 

(P = 0.0001), and NFE2L2 (P = 0.019). The mutant 
NFE2L2 was associated with increased tumoral PD-L1 
expression while the other seven mutant genes associated 
with decreased PD-L1 expression. The tumoral VISTA 
expression was significantly decreased in the LUSCs 
with mutations in the KEAP1 (P = 0.0005), FANCA  
(P = 0.0076), and AFF3 (P = 0.008) genes while increased 
in the LUSCs with the mutant FLT1 gene (P = 0.02). 
Moreover, tumoral TIM3 was significantly decreased in 
the mutant RET (P = 4.2E-10), FANCA (P = 0.0007), or 
ZMYND8 (P = 0.028) LUSC tumors while increased in 
the mutant DYNC1H1 (P = 0.027) LUSC tumors. The 

Figure 6: Heatmap of G80 expression in the 16 mouse LUSC tumors versus 8 control normal lung samples. At the bulk 
inter-tumoral level, the expression patterns of the 80 cancer genes in the G80 module still clearly separated the mouse LUSC tumors from 
the control normal lung tissues.
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suppressed tumoral LAG3 expression was significantly 
associated with mutations in CUX1 (P = 6.9E-07), FANCA 
(P = 0.0005) or NOTCH4 (P = 0.028) genes.

In addition, the LUSC patients with overexpressed 
PD-L1 or VISTA had significantly worse overall survival 
outcome compared to the patients with decreased 
expression of PD-L1 or VISTA (Figure 10). The 
median overall survival time of high PD-L1 vs. low 
PD-L1expression group was 1189 days vs. 2945 days  
(P = 0.04) and of high VISTA vs. low VISTA expression 

group was 1640 days vs. 2945 days (P = 0.01) (Figure 10). 
These data suggested that aberrant immune checkpoint 
gene expression could have significant impact on the 
survival outcome of LUSC patients. 

DISCUSSION

We identified 59 cancer genes that are recurrently 
mutated in mice LUSC tumors (Figure 1), 47 of which 
(80%) were also mutated in the human LUSCs (Figure 2). 

Figure 7: Heatmap of G80 expression in 502 TCGA LUSC tumors versus 51 control normal lung samples. At the 
bulk inter-tumoral level, the G80 gene expression signature that distinguished between single cells in mouse LUSC model also clearly 
differentiated the same sub-groups for the TCGA LUSC samples.
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Most of the commonly mutated genes in both mouse and 
human LUSCs have genetic and/or functional significance 
to lung cancer, such as Kmt2d (Mll2), Zeb2, Braf, Igf2r, 
Flt1, Atr, Muc4, Ncoa3 (Src3), and Ido1. KMT2D, the 
key enzyme governing histone modification, is a well-
known driver gene with a high somatic mutation rate in 
LUSC tumors [14, 21]. The mutant KMT2D significantly 
associated with poor prognosis of LUSC [14]. ZEB2 
expression increased in NSCLC [22] and it can induce 
epithelial-mesenchymal transition (EMT) to facilitate the 
metastasis of cancer cells [23, 24]. BRAF mutated lung 
cancer is a genetically distinct subtype that accounts for 
about 5% of NSCLC [25]. IGF2R is mutated frequently 
in LUSC and it suppresses cancer cell growth [26]. 
NSCLC patients with low IGF2R expression had a 
poorer prognosis than those with high IGF2R expression 
[27]. IGF2R inhibition in NSCLC cell lines resulted in 
increased proliferation, migration and invasion abilities 
and a reduced apoptosis rate of the cancer cells [27]. The 

functional FLT1 variant and FLT1 mRNA expression are 
prognostic determinants of patient survival and recurrence 
in stage I-III NSCLC [28, 29]. ATR encoded protein 
kinase is a master regulator of the DNA-damage response 
[30] and its genetic alteration was associated with lung 
cancer risk [31]. MUC4  has been shown to play a tumor-
suppressor role in NSCLC by altering p53 expression 
[32]. A reduced expression of MUC4 was observed in 
LUSC tumors, especially in advanced tumor stages  
[32, 33]. A high somatic mutation rate in MUC4 was found 
in smokers having NSCLC, suggesting that the MUC4 
gene is a potential target of nicotine in causing NSCLC 
[34]. This is supported by our data revealing Muc4 as one 
of the most recurrently mutated genes in mice LUSC. 
NCOA3 may be an oncogene for lung cancer due to its 
role in promoting lung cancer cell invasion [35, 36]. IDO1 
is an immune checkpoint gene involved in lung cancer 
progression and metastasis [37, 38] and thus a promising 
target for lung cancer immunotherapy. 

Figure 8: Survival analysis of the G80 module in human LUSC and NSCLC patient cohorts. Kaplan-Meier analysis 
showing that the expression signature of the G80 cancer gene module was significantly associated with the overall survival outcome in the 
TCGA LUSC cohort and the other three NSCLC patient cohorts. Red curve denoted high risk group based on the G80 module expression, 
green curve denoted low risk group based on the G80 module expression.
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Furthermore, we detected clonal mutations in the 
16 mice LUSC tumors. Each tumor had a unique set 
of clonal mutations (Supplementary Figures 2 and 3), 
supporting previous findings of distinct clonal mutation 
structures across the same type of NSCLC tumors [39]. 
Although the overall clonal mutation spectra were 
different across the 16 mice LUSC tumors, a number of 
recurrent clonal mutations were identified (Supplementary 
Figure 3, Supplementary Table 3). The most frequent 
clonal mutations were found in the following cancer 
genes: Hspa9, Cdk1, Pcdhb15, Ctsll3, Gga1, Igf2r, Il2rb, 
Dlgap1, Nkain2, and Pyy. HSPA9 (mortalin/GRP75/
PBP74), was overexpressed in different tumor types and 
detected in different subcellular compartments of cancer 

cells, indicating its functional role in cancer [40, 41]. 
HSPA9 may play an important role in the progression 
of lung carcinoma by regulating the expressions of p53 
and bcl-2 [42]. CDK1 is essential for cell cycle and its 
overexpression is directly correlated with the clinical 
features such as tumor stage and therapy outcome [43]. 
CTSL (Ctsll3 in mice), a lysosomal acid cysteine protease, 
is known to play important roles in tumor metastasis and 
resistance to chemotherapy [44]. IL2RB gene variants 
have been associated with human lung cancer risk in a 
large patient population [45]. NKAIN2 is a novel tumor 
suppressor gene [46–49]. The recurrent somatic clonal 
mutations of these genes in LUSC tumors suggest that 
they could be the therapeutic targets of LUSC treatment.

Figure 9: Differential expression of immune markers in 176 TCGA LUSCs with significantly mutated cancer genes. 
Different mutant genes identified from sequencing of mouse LUSC tumors were associated with significantly decreased expression of 
tumoral PD-L1 (A), VISTA (B), TIM3 (C), and LAG3 (D). All the P values < 0.05 after multiple testing adjustment.
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Tumor progression is a dynamic evolutionary 
process acting at the level of individual cells. A tumor 
typically arises from a single progenitor cell whose 
founder mutation gives it a growth advantage over 
the surrounding cells and helps it to evade the immune 
response. Consequently, the clone arising from this cell 
expands and, over time, the descendant cells develop 
further into subclones by acquiring additional somatic 
mutations [50]. The mouse LUSC1 tumor was initiated 

from clonal cells having a mutant Igfbp7 gene, which may 
lead to an aberrant Igf-Igfr-Igfbp axis that is an important 
driver of cancer [51]. Igfbp7 is a tumor suppressor gene 
inactivated in lung cancer by DNA hypermethylation 
and it is regulated by p53 [52]. Aberrant methylation and 
downregulation of IGFBP7 were frequently observed 
in NSCLCs [53, 54]. Our findings provided evidence 
indicating that non-silent somatic mutations in IGFBP7 
could be the important driver alteration leading to LUSCs. 

Figure 10: Survival outcome analysis based on immune checkpoint gene expression. Worse overall survival outcome was 
significantly associated with overexpressed tumoral PD-L1 gene expression group (A), and overexpressed tumoral VISTA gene expression 
group (B), relative to the down-regulated expression group of the two genes, respectively.
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Another important driver gene for LUSC1 is Nfe2l2 in the 
Keap1-Nrf2 pathway. Mutations in NFE2L2 could cause 
the excessive intracellular accumulation of NFE2L2 
protein and the subsequent activation of downstream 
oncogenes resulting in tumor growth promotion [55].

For LUSC2, the founder clone was driven by mutant 
Trp53, the mouse homolog of the human TP53 gene that is 
a well known driver gene frequently mutated in the human 
LUSCs [14, 56]. In addition, a number of driver genes, 
such as Myh9, Kmt2d and Keap1, accumulated mutations 
in the subclones of LUSC2. The mutations or abnormal 
expression of these genes have been linked to aberrant 
molecular events leading to cancer, such as the interruption 
of p53 stabilization (MYH9) [57], abnormal chromatin/
histone modification (KMT2D) [58], and aberrant Keap1-
Nrf2 pathway (KEAP1) activity [55, 59]. Myh9, which 
encodes nonmuscle myosin IIa, has been identified as 
tumor suppressor of squamous cell carcinomas (SCCs) 
[57]. Myh9 knockout triggers invasive formation of SCCs. 
Myh9 plays a role in regulating posttranscriptional p53 
stabilization and it is frequently mutated and diminished 
in human SCCs [57]. Kmt2d serves as the key enzyme 
in histone lysine methyltransfer and thus is one of the 
important epigenetic regulators whose mutations could 
lead to the development of tumors with abnormal histone 
modifications [58]. Human studies revealed a high 
frequency of non-silent somatic mutations within KMT2D 
for LUSC tumors [14, 21]. Moreover, mutant KMT2D 
was the alteration most significantly associated with poor 
prognosis of LUSC [14]. In human cancers, similar to 
NFE2L2, KEAP1 mutations would disrupt the normal 
combination of NFE2L2 and KEAP1 in tumors, resulting 
in accumulation of excessive intracellular NFE2L2 and 
activation of its downstream genes and the eventual 
promotion of tumor growth [55]. The Keap1-Nrf2 pathway 
is important for cytoprotection from oxidative stress. The 
discrepancy from normal in the Keap1-Nrf2 pathway may 
lead to promotion of tumor [59].

In addition, scRNA-seq identified a set of cancer 
genes; i.e., the G80 module that is an effective classifier 
for LUSC tumors in both mice and humans and an 
effective biomarker to assess the survival outcomes of 
lung cancer patients. Pathway enrichment analysis of 
the G80 module cancer genes showed that these genes 
are significantly enriched in six cancer related molecular 
pathways, including Cell cycle, PI3K-Akt, p53 and ErbB 
signaling, Focal adhesion and ECM-receptor interaction 
pathways (Supplementary Figure 6, Supplementary 
Table 6). Alteration of transcripts in these pathways may 
be a common mechanism involved in LUSC tumorigenesis 
and progression. The G80 module was activated in both 
LUSC1 and LUSC2 tumor cells although the two tumors 
had different clonal mutations. This is not surprising 
because the major driver genes in the two tumors 
functionally interacted with each other and played similar 
roles in the same pathway. For example, IGFBP7 might 
be regulated by TP53 in lung cancer cells [52] and mutant 

NFE2L2 or KEAP1 led to similar functional consequences 
in terms of causing NFE2L2 accumulation and aberrant 
Keap1-Nrf2 pathway activity in cancer cells [59].

Lastly, we found that the mutant LUSC genes 
could be associated with the significantly altered tumoral 
expression of inhibitory immune checkpoint genes such 
as PD-L1, VISTA, TIM3 and LAG3. These findings 
suggest that immune checkpoint signaling activity could 
be significantly altered by mutations in LUSC genes 
identified in this study. We observed both up- and down-
regulated immune checkpoint gene expression patterns 
according to different mutant genes in LUSC tumors 
(Figure 9). Notably, suppressed tumoral expression of 
immune checkpoint genes has been associated with 
mutated oncogenes in lung cancer [14, 60]. Particularly, 
the increased tumoral PD-L1 gene expression was 
significantly associated with the mutant NFE2L2 gene 
(Figure 9). This supported the finding that PD-L1 
expression in LUSC tumor cells was associated with 
NFE2L2 mutations [61] and indicated that LUSC patients 
carrying NFE2L2 mutations may be more responsive to 
anti-PD-L1 immunotherapy. Similarly, the mutant FLT1 
and DYNC1H1 genes associated with higher tumoral 
gene expression of VISTA and TIM3, respectively, 
suggesting that they may serve as biomarkers to predict 
the effectiveness of VISTA-targeted and TIM3-targeted 
antitumor immunotherapy for LUSC patients. Moreover, 
we detected that the tumoral overexpression of PD-
L1 and VISTA were significantly associated with worse 
survival outcome (Figure 10). This suggested that the 
mutant genes such as NFE2L2 and FLT1 associating 
with higher expression of PD-L1 and VISTA may be 
correlated with worse survival outcome. Interestingly, we 
found the trends of the associations with worse overall 
survival outcome for the NFE2L2 and FLT1 mutations 
(Supplementary Figure 7). The association of NFE2L2, 
FLT1 and DYNC1H1 mutations with higher expression 
of PD-L1, VISTA and TIM3 might reflect the necessity of 
the neoplastic cells to compensate the high immunologic 
visibility through the mechanism of aberrant activation of 
immune checkpoint genes that counteracts the cytotoxic 
effects of the immune response [61].

In summary, we identified the new candidate 
genes for LUSC and a cancer gene expression signature 
that proved to be an effective classifier of LUSC tumors 
and a biomarker for predicting survival outcome of 
LUSC patients. Overall, the identified novel patterns of 
clonal evolution, mutational landscapes and expression 
signatures of LUSC could contribute to the development 
of new LUSC therapeutic strategies.

MATERIALS AND METHODS

Mouse model and lung tissue collection

In this study, the NTCU induced NIH Swiss mouse 
lung squamous cell carcinoma (LUSC) model was used as 
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previously reported [12, 62]. NTCU was purchased from 
Toronto Research Chemicals, Inc. All animal experiments 
were conducted with the approval of the Institutional 
Animal Care and Use Committee of the Medical College 
of Wisconsin (MCW). For bulk sequencing, lung tumor 
tissues were obtained from NTCU induced LUSC tumor-
bearing NIH Swiss mice (n = 16) and normal lung tissues 
were obtained from control healthy NIH Swiss mice 
without NTCU treatment (n = 8). For single-cell RNA-
sequencing (scRNA-seq), two LUSC tumors from another 
two NIH Swiss mice independent of the 16 mice subjected 
to the bulk RNA-seq were used. NTCU treatment caused 
the development of LUSC tumors within 24 to 26 weeks 
[63]. In this study, mice LUSC tumor tissues were 
obtained 28 weeks after the initial treatment of NTCU 
when mice were euthanized by CO2 asphyxiation.

Bulk DNA/RNA extraction and sequencing

For the bulk exome-sequencing (exome-seq) and 
RNA-sequencing (RNA-seq), both the DNA and RNA 
samples from each lung tissue sample (SCC tumor or 
normal) were isolated simultaneously using the AllPrep 
DNA/RNA Mini Kit (Qiagen Inc., CA). Whole exome 
sequencing (WES) was conducted on 16 lung SCC 
tumors and 8 normal lung tissue samples. Detailed WES 
procedures can be seen in our previous publication [64]. 
Briefly, whole exome capture was carried out using the 
protocol for Agilent’s SureSelectXT Mouse All Exon 
Kit. The exome-seq libraries were sequenced for 100 bp 
paired-end reads by the MCW Human and Molecular 
Genetics Center (HMGC) Sequencing Core using HiSeq 
2500 platforms (Illumina, San Diego, CA). Each sample 
was sequenced at a mean depth of about 133 X. Sequence 
short reads were aligned to a reference genome (NCBI 
mouse genome assembly mm9) using the BWA (Burrows-
Wheeler Aligner) program [65]. Each alignment was 
assigned a mapping quality score by BWA [65], which is 
the Phred-scaled probability that the alignment is incorrect. 
Reads with low mapping quality scores (<5) were 
removed to reduce false positive rate. The PCR duplicates 
were detected and removed by the Picard program. We 
then performed local realignment of the BWA-aligned 
reads using the Genome Analysis Toolkit (GATK) [66]. 
VarScan 2 [67] was used to call somatic variants based 
on the local realignment results comparing each tumor 
with the eight normal lung samples. Default parameters 
in VarScan 2 were used. The lists of shared SNVs/indels 
were then annotated using ANNOVAR [68]. Single 
nucleotide polymorphisms (SNPs) were filtered using 
the mouse dbSNP VCF file (mm9_snp128). For RNA-
seq, the quality of the total RNA samples obtained was 
very high, with RIN (RNA integrity number) values in the 
range of 9–10. The TruSeq RNA Library Preparation Kit 
v2 (Illumina Inc., CA) was used to construct the RNA-seq 
libraries. The sequencing of the RNA-seq library samples 

was performed in MCW-HMGC Sequencing Core using 
HiSeq 2500 platforms. The reads generated were pair-end 
with 100 nucleotides in length. The qualities of the RNA-
seq reads were analyzed using the FastQC program (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 
coverage ranged from 15 million to 32 million reads per 
RNA-seq sample. The quality scores of >95.3% of all the 
bases of each sample are >30, averaging around 40. The 
pre-processed sample RNA-seq reads were aligned to the 
mm9 mouse genome using Bowtie-TopHat [version 2.0.4 
[69, 70]]. Gene-level read counts were obtained using 
the htseq-count Python script (http://www-huber.embl.
de/users/anders/HTSeq/) in the “union” mode. Further 
differential gene expression analysis was conducted 
using edgeR software [71]. FDR (False discovery rate) 
corrected P-values of less than 0.05 were used as criteria 
for significantly regulated genes. 

Single-cell isolation and RNA sequencing

Single-cell suspensions were prepared from two 
mouse LUSC tumor tissue samples using a mouse Tumor 
Dissociation kit (Miltenyi Biotec Inc., CA). For single-
cell analysis cell capture, lysis, reverse transcription, 
and cDNA amplification were performed on the C1 
integrated fluidic circuit (IFC) for mRNA-seq on a 
Fluidigm C1 Single-Cell Auto Prep System following 
the manufacturer’s protocol (Fluidigm Corporation, CA). 
Medium-sized C1 mRNA-Seq chips (10–17 μm) were 
used to capture single cells from each of the two tumors. 
The C1 Auto Prep System captures the dissociated single 
cells and the whole-transcriptome amplified cDNA was 
prepared on chip using the SMARTer Ultra Low RNA kit 
from Illumina (Clontech). Cells captured are manually 
inspected as a quality control measure to remove empty 
well, doublets, or debris-containing wells. cDNA 
from cells are checked by Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific). Single-cell libraries were 
constructed with the use of the Illumina Nextera XT 
DNA Sample Preparation kit with 96 dual barcoded 
indices and were multiplexed and sequenced to a depth 
of 2–4 million reads (HiSeq 2500; Illumina) using 50-
bp single-end sequencing. The program RSEM [72] was 
utilized to quantify transcript expression. Differential 
expression analysis was conducted on RSEM derived 
TPM (Transcripts Per Kilobase Million) values using the 
software AltAnalyzer [73]. FDR (False discovery rate) 
corrected P-values of less than 0.05 were used as criteria 
for significantly regulated genes. 

Clonal mutation, pathway enrichment, survival 
and association analyses

The bioinformatics tools – SciClone [74] and 
clonevol package (https://github.com/hdng/clonevol) 
were used to identify the clonal structures of each of the 
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16 mouse LUSC tumors. Single-cell gene mutations were 
analyzed using the rnaseqmut program (https://github.
com/davidliwei/rnaseqmut/blob/master/README) based 
on scRNA-seq data. The software SCITE [75] was used to 
analyze the orders of the sequential mutational events in 
the two LUSC tumors subjected to scRNA-seq. Pathway 
enrichment analysis of the G80 module cancer genes was 
performed by using ConsensusPathDB software (http://
cpdb.molgen.mpg.de/). Four published lung cancer gene 
expression data sets [18–20, 56] were analyzed using 
the program SurvExpress [76] to test whether the G80 
cancer gene module was associated with overall survival 
of the patients. In order to test whether these mutated 
genes have potential clinical application, the associations 
between mutational status of the identified LUSC genes 
and markers of immune response were analyzed by using 
the set of 176 TCGA LUSC tumor samples with gene 
mutation data and expression data available through NCI 
GDC Data Portal (https://portal.gdc.cancer.gov/). The 
association test between mutation genotypes and immune 
checkpoint gene expression in LUSC was performed using 
the t test implemented in the computing environment R 
(R Development Core Team, 2005). FDR (False discovery 
rate) corrected p-values of less than 0.05 were used as 
criteria for significant association. Plots of mutations were 
generated using the “oncoPrint” function provided by the 
R package – ComplexHeatmap [77] and gene expression 
heatmaps were generated using the R package – heatmap3 
(https://cran.r-project.org/web/packages/heatmap3/). 
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