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Abstract: Key chili and maize growing areas of Pakistan were selected for a focused baseline study
of the levels of Aspergillus spp. Investigations were undertaken using a combination of molecular
and culture-based techniques. Samples investigated included soil samples, one-year-old corn cobs,
and fresh chili from selected locations. Aspergillus strains obtained from corn cobs were screened
using coconut milk agar, resulting in one strain that was positive for aflatoxin production. Whole
genome sequencing (WGS) with low coverage techniques were employed to screen the isolates for
differences in the ribosomal RNA gene cluster and mitochondrial genome, with the aflatoxigenic strain
proving to have a distinctive profile. Finally, strains were subjected to matrix-assisted laser-desorption
and ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in order to obtain a proteomic
‘fingerprint’ which was used to distinguish the aflatoxigenic strain from the other isolates. The next
generation sequencing (NGS) study was broadened to incorporate metabarcoding with ITS rRNA
for determining the microbial biodiversity of the soil samples and presumptive screening for the
presence of aflatoxigenic strains. Using information gleaned from the WGS results, a putative
aflatoxigenic operational taxonomic unit (OTU) was observed in four of the 15 soil samples screened
by metabarcoding. This method may have beneficial applications in early detection and surveillance
programs in agricultural soils and commodities.
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1. Introduction

Aspergillus flavus causes a broad spectrum of disease in humans, ranging from hypersensitivity
reactions to invasive infections associated with angioinvasion [1]. Together with A. fumigatus and
A. terreus, A. flavus is recognized as amongst the most common causes of aspergillosis [2–5]. In a
global context, aflatoxin contamination is a constant concern between the 35N and 35S latitudes, where
developing countries are mainly situated. With expanding international trade opportunities, aflatoxin
contamination has become a persistent problem for developing countries. The continuing threat from
aflatoxin contamination of food, feed, and agricultural commodities to the world population has
made aflatoxin research one of the most rapidly developing study areas of food security and public
health [6–8].

Aflatoxin contamination of agricultural commodities, such as maize, peanuts, almonds, and
cottonseed, is a serious risk to human and animal health [9–13]. Aflatoxins are potent carcinogenic and
mutagenic compounds produced as secondary metabolites by several Aspergillus species, of which
A. flavus is the most notorious. A. flavus belongs to Aspergillus section Flavi [8] and it is a ubiquitous
common soil inhabitant, and is also found in crops and foods at both pre- and post-harvest stages.
The fungus overwinters either as mycelium or as resistant structures known as sclerotia. The sclerotia
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may germinate to produce either hyphae or conidia, which can be further dispersed in the soil and
air [1]. Ideal conditions for aflatoxin production include humid and warm weather in combination
with injuries on the plant structure (often caused by insect damage [14]). As such, aflatoxins are a major
issue in developing countries in Asia and Africa for any temperate to tropical agricultural commodity
producer, with significant problems recorded in Kenya [15], Senegal [16], India [17], and Pakistan [18].
Elevated levels of aflatoxins have also been reported from milk in European countries such as Serbia,
Croatia, and Romania [19].

Pakistan is an agrarian society where agriculture alone contributes 23% to the total gross domestic
product (GDP). Maize is one of the most widely grown cereal crops in the world and has a considerable
significance for Pakistan [20]. Pakistan has been reported as the sixth largest exporter of chilies in the
world [18], contributing 1.5% to the GDP of Pakistan [21]. Pakistan experiences long, hot, and humid
months from March until September, which makes agricultural production highly susceptible to fungal
growth. In order to assess the potential of soil to act as a reservoir of infection, a decision was taken to
sample in the post-harvest period of the crop calendar, as improper harvesting and drying strategies
produce favorable environments for toxin production in chilies.

A. flavus is the most prominent cause of mycotoxin-related crop/commodity contamination [22] and
therefore warrants particular attention. Strains of A. flavus may be split into two main morphotypes that
loosely link to their aflatoxin production, as follows: less aflatoxigenic L strains, which produce copious
conidia and few large sclerotia, and more aflatoxigenic S strains, which produce relatively few conidia
and copious small sclerotia [22,23]. Interestingly, it has been noted that even the non-aflatoxigenic
strains have the potential to produce other significant mycotoxins [23]. Amongst the different aflatoxins,
the naturally occurring and best-known classes are aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1), and G2
(AFG2). Production of these toxin classes differs according to particular species, as follows: A. flavus
can produce AFB1 and AFB2, whilst A. parasiticus may produce both ‘B’ and both ‘G’ toxins [24].

Several molecular techniques and classical morphometric methods have been employed to
identify and detect strains belonging to the Aspergillus section Flavi [25]. The observations of fungal
cultures grown on different media are time-consuming and unreliable due to intra- and inter-specific
morphological differences. Protein based spectral profiling has been used to discriminate among
strains of aflatoxin producers across several species of Aspergillus [5,26]. Additionally, chromatographic
methods have been employed to discriminate toxin production in strains [10,27]. Several nucleic acid
based methods have been employed to classify and detect Aspergillus section Flavi members, as follows:
random amplification of polymorphic DNA (RAPD) [28], amplified fragment length polymorphism
(AFLP) [29], microsatellite markers [30] and sequence analyses of the cytochrome b gene, the internal
transcribed spacer (ITS) region [31], and the aflatoxin gene cluster [32]. These methods are able to
provide important information about the phylogenetic relationships between species but they do not
represent a diagnostic method for A. flavus [33]. Additionally, a pyrosequencing approach has been
employed to enable culture-free quantification of A. flavus in cotton crops [34], and quantitative real
time PCR has been used to discriminate toxin producing strains in contaminated maize [35]. Whole
genome sequencing (WGS) has been employed also for characterization of mycotoxin-producing
fungi [36]. Recent advances in such technology and associated reduction in processing costs allow
these enhanced molecular tools to be focused on the timely detection of specific groups of organisms
from fresh material obtained directly from the field [37]. This approach may now be applied to the
detection of toxigenic fungi within the soil community.

The objectives of this study were to develop a polyphasic approach for early detection of
aflatoxigenic A. flavus, based on soil samples available from seven locations within Pakistan. ITS rRNA
metabarcoding was carried out on these samples collected from targeted locations based on production
and cultivation. Selected districts in Punjab and Sindh were considered for this focused baseline study.
In Punjab, the districts of Okara, Kasur, and Chiniot were selected for sampling; whereas in Sindh, the
districts of Mirpurkhas, Matiari, and Tando Allah Yar were chosen. In addition, low coverage WGS
was performed on indigenous strains of A. flavus isolated from infected fruits as follows: fresh chilies
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and one-year-old corn cobs to further validate the ITS metabarcoding. Further tests were performed
on these indigenous strains of A. flavus, including a presumptive culture-based assay for aflatoxin
production and parallel generation of MALDI-ToF-MS profiles. This approach may be employed
to reduce the potential impact of post-harvest disease and aflatoxins thereby assisting plant health
regulators and exporters of agricultural commodities.

2. Materials and Methods

2.1. Soil Samples Collection and DNA Template Preparation

Soil samples for microbial community characterization were collected from seven locations in
different regions of Pakistan (Table 1).

Table 1. Soil samples collected for the baseline study (with, respectively, reference number: ‘mz’
prefix = maize growing, ‘ch’ prefix = chili growing soil, soil type [38], location (nearest town), date of
collection, and geospatial coordinates).

Reference Soil Type Location Date of Collection Geospatial Coordinates

mz_1002_1 Silt-loam Okara 29/12/2017 30.801380◦ N, 73.448334◦ E
mz_1002_5 Silt-loam Okara 29/12/2017 30.801380◦ N, 73.448334◦ E
mz_1004_6 Silt-loam Kasur 29/12/2017 31.11866◦ N, 74.4502487◦ E
mz_1004_7 Silt-loam Kasur 29/12/2017 31.11866◦ N, 74.4502487◦ E
mz_1006_8 Sandy-loam Chiniot 30/12/2017 31.72◦ N, 72.97889◦ E
mz_1006_9 Sandy-loam Chiniot 30/12/2017 31.72◦ N, 72.97889◦ E
ch_1001_2 Silt-loam Okara 29/12/2017 30.801380◦ N, 73.448334◦ E
ch_1003_3 Silt-loam Kasur 29/12/2017 31.11866◦ N, 74.4502487◦ E
ch_1005_4 Sandy-loam Chiniot 30/12/2017 31.72◦ N, 72.97889◦ E
ch_1006_10 Silty/clay-loam Mirpurkhas 14/01/2018 25.5251◦ N, 69.0159◦ E
ch_1007_11 Loamy-soil Tando Allah Yar 14/01/2018 25.46263◦ N, 68.71923◦ E
ch_1008_12 Loamy-soil Matiari 15/01/2018 25.59609◦ N, 68.44666◦ E

ch_T Sandy to clay loam Sheikhupura 01/11/2017 31.7167◦ N, 73.9850◦ E
ch_N Sandy to clay loam Sheikhupura 01/11/2017 31.7167◦ N, 73.9850◦ E
ch_S Sandy to clay loam Sheikhupura 01/11/2017 31.7167◦ N, 73.9850◦ E

Soil samples were collected between November 2017 and mid-January 2018, at a depth of 0–20 cm
and with a soil corer with a diameter of 1 cm. By sampling at this time, we aimed to test our baseline
approach and its applicability for screening agricultural soil for the detection of problematic Aspergilli.
This could then be used to determine the ability of these organisms to overwinter in sufficient numbers
to be perceived by the methods used in this polyphasic study. Three replicates of each sample were
collected within a distance of 10 cm from each other and sent to CAB International (CABI), Egham
for testing. Samples were obtained from maize-growing (‘mz’) and chili-growing (‘ch’) soils. Broad
details of relevant soil types were obtained from the online ‘Types of soil in Pakistan’ list [38]. DNA
was isolated with the DNeasy PowerSoil Kit (Qiagen, Manchester, UK) from 0.5 g of soil, according to
the manufacturer’s instructions. After isolation, the DNA quality and quantity were assessed with a
Tapestation 4200 (Agilent Technologies Ltd., Stockport, UK) and a Qubit™ 3.0 Fluorometer (Thermo
Fisher Scientific, Loughborough, UK), respectively, and normalized to 5 ng/µL for the subsequent
PCR reactions.

2.2. Visual Assessment of Isolates and Coconut Medium Test

Six field isolates that conformed, morphologically, to A. flavus were isolated from corn grains
from a cob collected in Burewala. The samples were submitted to CABI’s Diagnostic Advisory Service
for investigation and were treated as follows: a one-year-old corn cob, with shrunken kernels and
visible black spots, was photographed. The cob was then visually assessed using a model M8 binocular
microscope (Wild Heerbrugg, Heerbrugg, Switzerland). Some fungal growth was visible between
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the kernels and black spots were present on the surface. Individual kernels were removed, of which,
four were placed in a damp chamber and incubated on the bench whilst eight were rehydrated for
30 min, surface-sterilized with NaOCl (5%; v/v) for 4 min, washed in sterile distilled water, plated
out onto two tap water agar plates (TWA; [39]), and incubated at room temperature for up to seven
days. Some of the sparse surface mycelium was picked from the cob with a sterile needle and plated
out onto TWA. The remainder of the cob was placed in a damp chamber and incubated as described
above. Fungal colonies were picked from the isolation/incubation plates as they grew and plated out
onto distilled water potato carrot agar (DWPCA; [39] modified to use distilled water rather than tap
water) and Czapek yeast autolysate agar (CYA; [39]). Fourteen cultures were isolated and examined
morphologically, as follows: a total of 12 originated from the surface sterilized kernels and two from
the surface mycelium. Subsequent morphological examination showed six suspected A. flavus isolates
and two suspected A. niger isolates.

Three fresh maize cobs with no obvious disease symptoms were investigated. Samples were
photographed, then visually assessed using the binocular microscope as described above. The cob
exhibited no visible signs of fungal growth and appeared to be healthy. Individual kernels were
removed and treated as described above. The remainder of the cob was placed in a damp chamber and
incubated on the bench. Fungal colonies were picked from the isolation/incubation plates as they grew
and plated out onto fresh DWPCA. Three cultures were isolated from the surface sterilized kernels and
were examined morphologically: it was clear that no Aspergillus sp. had been isolated.

The strains were subcultured into Pitt’s medium, and used to prepare a spore suspension. For the
fluorescence-based determination of aflatoxin production, 5 µL of spore suspension of each isolate of
A. flavus, plus three positive controls and three negative controls, were each inoculated onto three plates
of coconut milk agar (CMA). CMA was prepared using 200 mL of commercial coconut milk, 600 mL of
distilled water (pH 6.9), and 16 g of agar, and autoclaved for 10 min at 121 ◦C [40]. Small sections of
fruit were dissected and placed in damp chambers onto sterile petri dishes to facilitate fungal growth.
Other sections of fruit were washed in sterile water and plated onto TWA and additional sections were
surface-sterilized and placed on TWA. Fungal colonies, generated from these plates, were removed
and placed on DWPCA plates. Pure cultures were identified by morphological examination after 5
to 7 days of incubation in an inverted position in the dark at 28 ◦C. The bottoms of the plates were
exposed to UV light (365 nm); colonies that showed fluorescence were positive (+), while those without
fluorescence were negative (−).

2.3. MALDI-ToF-MS

The subcultures of the ex-corn A. flavus strains, obtained as described below (Section 2.5), were
investigated by matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry
(MALDI-ToF-MS [41]). The mycelium was precipitated for 1 min at 10,000 x g in a Minispin Plus
microcentrifuge (Eppendorf, Stevenage, UK, and 50 µL of MALDI Reagent #1 (11 mg/mL C2020
α-cyano-4-hydroxycinnamic acid (HCCA; ≥98% purity), 65% (v/v) acetonitrile, 2.5% (v/v) trifluoroacetic
acid (TFA), and 32.5% (v/v) water) (all components of MALDI Reagent #1: Sigma Aldrich Co, Gillingham,
UK) was added to the pellet. The biomass was disrupted in the above reagent using the blunt end
of a plastic plating loop. The mixture was vortexed briefly and centrifuged for 1 min at 10,000× g.
An aliquot of 1 µL of the resulting supernatant was placed onto the MBT Biotarget 96 sample plate
(Bruker, Coventry, UK), air dried, and loaded into a linear mode mass spectrometerer (Bruker).

2.4. ITS rRNA Metabarcoding

The primer pair ITS1Fl2/ITS2 contained the adapter overhang nucleotide sequences to the 5′-end
(Illumina, Cambridge, UK), and was selected for amplification. Libraries were prepared according to the
metagenomics sequencing library preparation protocol (Illumina) as described in the manufacturer’s
instructions. Primer sequences were as follows: ITS1 Fl2 5′-GAACCWGCGGARGGATCA-3′ [42];
ITS2 5′-GCTGCGTTCTTCATCGATGC-3′ [43]. ITS1FI2 overlaps in six positions with ITS1F [43], but is
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located closer to the end of the 18S and was specifically designed to improve the understanding of the
community composition and distribution of complex communities by achieving deeper sequencing.
PCR was undertaken in a Mastercycler Pro S vapo.protect thermal cycler (Eppendorf) with a reaction
mix containing 5 µL of each primer at the concentration of 1 µM, 2.5 µL of template DNA at the
concentration of 5 ng/µL, and 12.5 µL of KAPA HiFi HotStart ReadyMix (Roche Life Sciences, Welwyn,
UK) to a final volume of 25 µL with PCR grade water. PCR reactions were preincubated for 3 min
at 95 ◦C followed by 25 cycles of 30 s at 95 ◦C, 30 s at 55 ◦C, and 30 s at 72 ◦C. Samples were finally
incubated for 5 min at 72 ◦C, followed by chilling to 10 ◦C. Aliquots of 1 µL of amplification products
were assessed for quality with an Agilent Tapestation 4200 (Agilent Technologies Ltd.). A clean-up
was undertaken on PCR products with AMPure XP beads (Beckman-Coulter, High Wycombe, UK),
following the manufacturer’s instructions. Purified products were resuspended in 25 µL of 10 mM
Tris-HCl pH 8.5, diluted from TRIS-HCl pH 8.5; 0.1 M – Ethanol 20% (v/v) solution (Sigma Aldrich Co).
Index PCR was carried out on purified PCR products for the attachment of sequencing dual indices
with the Nextera XT Index Kit (Illumina). The PCR reaction was undertaken in an Mastercycler Pro S
vapo.protect with a reaction mix containing 5 µL of template purified PCR product, 5 µL of Nextera XT
Index-1, 5 µL of Nextera XT Index-2, 25 µL of KAPA HiFi HotStart ReadyMix, and to a final volume of
50 µL with PCR grade water. The reactions were preincubated for 3 min at 95 ◦C followed by 8 cycles
of 30 s at 95 ◦C, 30 s at 55 ◦C, and 30 s at 72 ◦C. Samples were finally incubated for 5 min at 72 ◦C,
followed by chilling to 10 ◦C. A second clean-up was carried out on the above products with AMPure
XP beads, following the manufacturer’s instructions. Purified products were resuspended in 50 µL of
10 mM Tris-HCl pH 8.5 (prepared as before). Aliquots of 1 µL of index PCR products were assessed
for quality with a Tapestation 4200 (Agilent) and quantified on a Qubit™ 3.0 Fluorometer (Thermo
Fisher Scientific). DNA concentration, in nM, was calculated based on the size of DNA amplicons as
determined by Tapestation 4200 (Agilent). Concentrated libraries were diluted to 4 nM with 10 mM
Tris-HCl pH 8.5 (prepared as above), and aliquots of 5 µL of each library were pooled. Samples were
denatured by adding 5 µL of pooled DNA libraries to 5 µL of 0.2 N NaOH and incubated for 5 min
at room temperature. Denatured single-stranded DNA was then diluted to a final concentration of
15 pM with the Hybridization buffer (Illumina). In addition, this denaturation step was carried out on
15 pM PhiX control (Illumina). Finally, 30 µL of denatured PhiX control library (Illumina) and 570 µL
of denatured amplicon library were combined in a microcentrifuge tube. This ratio determined a 5%
PhiX control in the mix. The combined library and PhiX control tube were incubated at 96 ◦C for
2 min, mixed, and placed in an ice/water bath for 5 min. The mix was then loaded into a V3-600 cycles
sequencing kit (Illumina) and transferred to the MiSeq (Illumina) for sequencing.

2.5. Whole Genome Sequencing

A loopful of spore suspension was transferred on to the agar surface of a distilled water malt
agar (MADW) [44] petri dish, in three replicates, to form a triangular arrangement of the inocula.
The plates were incubated at 25 ◦C until a biomass was obtained to fill half of the Petri dish. After seven
days of incubation, the isolates were subcultured into sterilized liquid Yeast Malt Broth (YMB, 0.5%
(w/v) peptone, 0.3% (w/v) yeast extract, 0.3% (w/v) malt extract, 1% (w/v) glucose in deionized water).
A portion of MADW medium of each subculture was taken from the edge of actively growing colonies
and transferred into 1 mL of sterile water. The mycelium was disrupted with a micropestle for the
inoculation into universal tubes. Universal tubes containing 10 mL of liquid YMB were used to generate
the preinoculum, after incubation in the dark in an orbital shaking incubator (Gallenkamp, Weiss
Technik, Loughborough, UK) at 25 ± 2 ◦C at 100 rpm for 1 day. At the end of the incubation period,
the contents of each universal tube (preinoculum) were transferred into 250 mL Erlenmeyer flasks
containing 100 mL of YMB and incubated in the dark at 25 ± 2 ◦C at 150 rpm for 2 days. The biomass
from each flask was recovered by vacuum filtration onto Whatman No. 3 filter paper (GE Healthcare
Life Sciences, Amersham, UK) and stored in a sterile Petri plate at −20 ◦C. The mycelium of each
sample was pulverized using a sterile mortar and pestle, with 0.035–0.040g of ground mycelium
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transferred into sterile 2 mL microcentrifuge tubes and stored at −20 ◦C. Genomic DNA (gDNA) was
fragmented after quantification and quality assessment for library preparation. Two hundred ng of
gDNA were diluted in 130 µL of 10 mM Tris-HCl pH 8.5 (prepared as above), and sheared with a M220
Focused-ultrasonicator (Covaris Ltd., Brighton, UK) with the following settings for a 550 bp insert
size: Duty factor (%) 20, peak power 50.0, cycles/burst 200, and duration of 25 s at 20 ◦C. Libraries
were prepared with a Truseq Nano DNA Library prep kit (Illumina), according to the manufacturers’
instructions. The paired end reads were generated with the MiSeq (Illumina) at CABI (Egham, UK),
with an average insert size of 350 bp and run on a V3-600 cycles sequencing kit (Illumina).

2.6. Data Analysis

Metabarcoding ITS rRNA data were analyzed by the CABI metabarcoding pipeline. This included
isolation of ITS1 region by ITSx [45], and quality control of DNA reads. The threshold to accept OTUs
as present in a sample was set to 0.005, thereby requiring 0.5% of mapped reads per sample to be
assigned to an OTU for that OTU to be considered truly present in the given sample. For WGS, high
quality reads were filtered from raw reads with the MiSeq Reporter analysis software v3.0 (Illumina).
Assembly was performed with SPAdes v3.11.1 [46], and the annotation of the complete mt genome
was performed with GeSeq [47]. The circular mt genome maps were generated with the online tool
OGDraw v1.2 [48] with default settings using A. flavus NC_026920 as reference genomes. Partial
barcode sequences were aligned using Bioedit v7.2.6.1 (Isis Pharmaceuticals, Carlsbad, CA, USA).
Datasets were submitted to the NCBI SRA Database with the accession number: PRJNA550330.

3. Results

3.1. ITS rRNA Metabarcoding of Maize and Chili Soils

A total number of 2,525,524 ITS1 rRNA reads were obtained from the soil samples. Operational
taxonomic units (OTU) were quality filtered and those that were at least >1% of the total abundance
were kept for further investigations (Table 2).

Table 2. ITS rRNA raw reads and diversity indices per sample.

Sample ID Number of Reads Number of OTU

mz_1002_1 153,684 39
mz_1002_5 173,931 42
mz_1004_6 161,120 45
mz_1004_7 107,104 33
mz_1006_8 234,939 34
mz_1006_9 267,858 41
ch_1001_2 136,776 44
ch_1003_3 158,472 33
ch_1005_4 108,841 53
ch_1006_10 141,503 37
ch_1007_11 205,729 29
ch_1008_12 35,556 47

ch_T 231,006 37
ch_N 208,840 29
ch_S 200,165 17

Of the total of 179 OTU found in at least one sample with >1% of DNA reads, the ten most
abundant OTU were selected and plotted against each soil sample (Figure 1).
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Figure 1. ITS rRNA metabarcoding showing the 10 most abundant operational taxonomic units (OTU)
from the study plotted against each soil sample, showing trends in inter-sample relative abundance.

Major changes in relative abundance were observed for Fusarium incarnatum, for which high
relative quantities were of 16.4%, 12%, and 11.3% in mz_1002_1, ch_1006_10, and “S”, respectively.
Chaetomium sp. was detected with relative abundance >10% in two maize soils (13.8% and 11.7% in
1006_8 and 1006_9, respectively) and Alternaria sp. was recovered at 11.5% and the 27.8% of fungal
diversity in chili soils 1006_10 and “N” respectively. Fusarium oxysporum was found at 20.4% of chili
1007_11, Curvularia lunata represented 10.9% in chili “S”, and the soil alga Protosiphon botryoides was
found at 10.1% Maize 1002_5. Uncultured Apodus sp. and Gibellulopsis nigrescens were detected in large
relative abundance in chili soil (28.8% in 1003_3 and 48.8% in “S”).

3.2. Trends of Aspergillus flavus (OTU62) in the Soil

Putative aflatoxigenic Aspergillus flavus was detected in four of the 15 soil samples investigated
and represented by OTU62 as follows: Three chili soil samples (ch_1005_4, ch_1007_11, ch_T) and one
maize soil (mz_1004_6).

When found, OTU62 was always below 2% of the total DNA reads, with a peak of 1.51% of relative
abundance for sample ch_1005_4. The remaining 11 soils did not show evidence of the presence of
OTU62. Additional investigations were undertaken on OTU62. Alignment of OTU62 against the
ribosomal cluster generated by whole genome sequencing (WGS) (see Section 3.5) confirmed that the
rRNA detected in the four soils was identical to that of the aflatoxigenic strain E152003F (Figure 2).
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3.3. Characterisation of A. flavus Strains by Coconut Medium Test

The six strains of putative A. flavus were isolated and identified by ITS rRNA molecular sequencing,
and further investigated by a coconut medium test. Aflatoxigenic strains were expected to have a
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fluorescent reaction under UV light (254 nm). Strain E152003F was the only isolate to produce a
fluorescent reaction with this CMA test (Figure 3). Fungal growth was observed on chilies, which
appeared to be otherwise healthy. Surface fungi on chili were picked off with a sterile needle and
placed on PCA plates. Based on morphological identification, six strains of A. flavus (E152001F-006F)
were selected from the corn cobs, while no A. flavus strains were isolated from chili.

Figure 3. Visualization of coconut medium test under UV light, and the MALDI-ToF-MS duplicate
spectra of putative Aspergillus flavus strains E152 (001F-006F): E152001F (a1, a2), E152002F (b1, b2),
E152003F (c1, c2), E152004F (d1, d2), E152005F (e1, e2), E152006F (f1, f2). Duplicate spectra are
shown baseline-subtracted, smoothed, y-axis-autoscaled, and covering the mass range 2 kDa to 20 kDa
(with x-axis scale increments of 2 kDa). (Duplicate spectral profiles (from separate extractions ‘1′ and
‘2′) are shown for each isolate, a–f. Further information may be found in the Supplementary Materials).
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3.4. MALDI-ToF-MS of Aspergillus flavus Strains

Further tests were undertaken on the six strains of A. flavus. Pure cultures were subjected to
MALDI-ToF-MS analysis (Figure 3). Strain E152003F gave a unique spectral profile, whilst the other
strains gave a characteristic profile for the group. Within this group, strains E152004F and E152005F
were very similar to each other, as were E152002F and E152006F. It was noted that E152004F was less
similar to E152002F and to E152006F than they were to each other. This suggests that the group may
contain two subgroups (E152004F and E152005F) and (E152002F and E152006F); while E152001F was
distinct from both subgroups. Pairwise comparison of spectral profiles from the duplicate samples are
given in the Supplementary Materials.

3.5. Whole Mitochondrial Genomes and Nuclear Ribosomal Cluster of A. flavus

The six strains of A. flavus (E152, 001F-006F) were further investigated by whole genome sequencing
(WGS). DNA reads were reassembled and generated high coverage contigs for the whole ribosomal
cluster (rRNA) and the whole mitochondrial (mt) genomes (Figure 4a). The highest variability within
the ribosomal clusters was seen in the IGS region (Figure 4b).
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Strains E152004F and E152005F showed identical rRNA cluster and mt genome sequences, while
E152001F and E152002F were similar, with some differences in the IGS region of the rRNA (Figure 4b).
On average, the coverage of the ribosomal clusters of the six strains was of 104.95X and the coverage
of the mt genomes of the six strains was 52.9X. The strain E152003F gave unique IGS region of the
ribosomal cluster (Figure 4b) and the mt genome (Figure 5). The mt genome of E152003F was further
analyzed by annotation and showed a typical structure consistent with that of Ascomycota. The final
mt genome could be represented as a circular molecule, and was of 29,312 bp. The genome contained
12 protein-coding genes (PCG), 27 transfer RNA, and three ribosomal RNA genes.
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4. Discussion

Successful isolation and identification of aflatoxigenic A. flavus was demonstrated by a combination
of culture based and molecular methods. Eight isolates were obtained from a one-year-old corn cob
that displayed symptoms consistent with Aspergillus colonization. Seven of these eight Aspergillus
strains were identified as follows: two were A. niger, five were A. oryzae or A. flavus. The remaining
strain, whilst conforming to A. flavus morphologically, did not produce a readable sequence, thereby
suggesting that it may have been contaminated by a secondary organism. No Aspergillus spp. were
isolated from the tested chilies. The six suspected A. flavus strains (E152001F-006F) were further
investigated and evidence of the aflatoxigenic biotype was seen in sample E152003F. In order to support
these findings, we undertook a culture-based assay for aflatoxin production using the coconut milk
medium assay of Fente and co-workers [40]. Aflatoxigenic strains were expected to have a fluorescent
reaction under UV light. This method has been employed successfully in a previous polyphasic
analysis [10]. The strain E152003F was the only one to produce a fluorescent reaction. In addition,
MALDI-ToF-MS was carried out on the six A. flavus strains. Strain E152003F gave a unique spectral
profile, whilst the remaining five isolates shared a common profile.

The six A. flavus strains (E152001F-006F) were subjected to Whole Genome Sequencing (WGS) with
the MiSeq (Illumina). This approach was undertaken in this baseline study to achieve the maximum
information within the timescale and funding available. This required an innovative approach using
WGS with low coverage in order to obtain the whole ribosomal cluster (rRNA) and the whole mt
genome. The majority of the genetic variability of the rRNA for these A. flavus strains was confined to
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the IGS region. Strain E152003F showed a unique sequence thereby supporting the findings above.
Likewise, alignment of mt genomes across the strains confirmed this result.

Four of the 15 soil sample sets investigated contained the putative aflatoxigenic A. flavus genotype
(OTU62), as shown by a comparison of results from ITS metabarcoding of the soil samples with
those from ITS barcoding of pure cultures tested on Coconut Milk Agar (CMA). As soil samples
are extremely complex environments, with taxa present at many trophic and functional levels and
covering microorganisms, plant tissue, and meso- and macrofauna, molecular tools may be used to
discriminate at the functional and/or the taxonomic level. Rather than screen for aflatoxin genes by
targeted diagnostic methods, e.g., qPCR [10], or fingerprinting methods, e.g., RAPD [28], AFLP [29],
and microsatellite markers [30], we opted to gain sequence information regarding the composition of
the soil fungal microbiome through a metabarcoding approach. Combining the metabarcoding with
isolation of strains from the soil validated the identity of the relevant OTU in the soil, therefore giving
added confidence to the inferences made.

Whilst identifications in the genus Aspergillus cannot be resolved to species-level with the
recognized fungal barcode of ITS (e.g., Reference [25]), we used the results of our polyphasic analysis
to determine a putative aflatoxigenic ITS OTU that could be employed in our metabarcoding study.
Recovery of DNA from fungi may be affected by the relative life stage, structure, or size present in the
environment, for example some fungal spores may not conducive to all DNA isolation methods [49,50].
This rRNA metabarcoding revealed a low relative abundance of A. flavus OTU62 in the soil, indicating
that there exists the potential for mycotoxigenic contamination of the crop at a later stage. Such findings
support the hypothesis that soils where maize and chili are grown may act as reservoirs for aflatoxigenic
Aspergillus spp. This also suggests the potential for further development of aflatoxigenic A. flavus at a
later stage, e.g., post-harvest. Low incidences were recorded for all Aspergilli also, as they were not
present in the list of the top 10 most abundant OTU, showing that such methods that only target the
most abundant soil inhabitants may miss low level sources of future infection [51]. One outcome from
microbiome investigation is the recognition that future biological control programs should incorporate
pre- and post-intervention screening of the microbiome with appropriate control plots and place.

Whilst we appreciate that this was only a relatively limited baseline study, it is the first time
that the present approach has been used. Previous polyphasic investigation has shown that even a
well targeted aflatoxin gene primer set cannot guarantee results correlated with aflatoxigenicity [10].
A definitive species-level identification of strains within the genus Aspergillus requires additional
sequencing analysis beyond rRNA, such as calmodulin [52]. Our approach, in a manner similar
to Rodrigues et al. [10], was to apply a polyphasic methodology which combined next generation
sequencing with a classical agar plate-based test to validate rRNA metabarcoding, low coverage WGS,
and the coconut milk agar study, then ITS rRNA barcoding. We did not use single copy nuclear
genes, such as those of the aflatoxins gene cluster [10], because of the resolution of our modified
polyphasic approach. This, in addition to the coconut medium test (CMA test), generated complete mt
genomes and full ribosomal clusters of indigenous strains, which is where it differs from previous
research [10]. The ribosomal clusters showed the highest intra-specific diversity in the IGS region; this
region would not be appropriate for metabarcoding due to its high levels of infra-specific variability.
Such heterogeneity would make it very difficult to create ‘universal’ primers for broad application.

The alignment of the rRNA clusters show clear differentiation between aflatoxigenic and
non-toxigenic strains (as shown by the CMA assay), thereby aiding successful ITS rRNA metabarcoding.
The four methods employed in this study (a) ITS rRNA metabarcoding, (b) low coverage WGS, (c) the
CMA test, and (d) MALDI-ToF-MS, when combined, became considerably more powerful in their
resolving capability, whilst each would not be conclusive and/or informative if used on its own.

This study enabled a cost-effective approach for screening agricultural soils for potentially
aflatoxigenic Aspergilli, and could be extended to other groups of soil-borne mycotoxigenic fungi.
Adoption of an annual and/or seasonal monitoring program would facilitate tracking and trending of
microbial groupings, and particularly of toxigenic genotypes, to be undertaken. Implementation of
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this approach, which may allow early detection of microbial contamination whilst reducing processing
costs, could enhance informed decision making by growers and plant health authorities in Pakistan.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/9/300/s1.
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