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classification of prokaryotes

Nanako Kanno,1 Shingo Kato,2 Moriya Ohkuma,2 Motomu Matsui,3 Wataru Iwasaki,3,4 and Shinsuke Shigeto1,5,*

SUMMARY

Accessing enormous uncultivated microorganisms (microbial dark matter) in
various Earth environments requires accurate, nondestructive classification,
and molecular understanding of the microorganisms in in situ and at the single-
cell level. Here we demonstrate a combined approach of random forest (RF)
machine learning and single-cell Ramanmicrospectroscopy for accurate classifica-
tion of phylogenetically diverse prokaryotes (three bacterial and three archaeal
species from different phyla). Our RF classifier achieved a 98.8 G 1.9% classifica-
tion accuracy among the six species in pure populations and 98.4% for three spe-
cies in an artificially mixed population. Feature importance scores against each
wavenumber reveal that the presence of carotenoids and structure of membrane
lipids play key roles in distinguishing the prokaryotic species. We also find unique
Ramanmarkers for an ammonia-oxidizing archaeon. Our approachwithmoderate
data pretreatment and intuitive visualization of feature importance is easy to use
for non-spectroscopists, and thus offers microbiologists a new single-cell tool for
shedding light on microbial dark matter.

INTRODUCTION

Prokaryotes inhabit a wide variety of environments on Earth from the deep sea to soil to the stratosphere

and play essential roles in the entire ecosystem. However, the vast majority (>99%) of them have eluded

cultivation in the laboratory, thus constituting ‘‘microbial dark matter’’ (Rinke et al., 2013; Solden et al.,

2016; Whitman et al., 1998). Classification and phenotypic characterization of this microbial dark matter

will not only advance our understanding of the prokaryotic world, but it is also important for full utilization

of their potential in biotechnology (Ling et al., 2015). Over the last decade, culture-independent ap-

proaches have been developed in parallel with ongoing efforts to improve the conventional cultivation

methodology (Imachi et al., 2011; Ma et al., 2014; Nichols et al., 2010). Among them, single-cell genomics

(Stepanauskas, 2012) and metagenomics (Handelsman, 2004) can obtain genome sequences directly from

environmental samples and have offered a new view of the phylogenetic tree of microorganisms (Hug et al.,

2016). Metatranscriptomics and metabolomics allow researchers to investigate metabolic activities in mi-

crobial communities (Kamke et al., 2016; Kim et al., 2015; Lawson et al., 2017). One of the major limitations

of these methods is that they are inherently destructive, thus hampering the use of the same microbial cells

for subsequent cellular analysis or cultivation efforts. Another limitation is that they are unable to reveal the

phenotypic characteristics of individual microbial cells. Therefore, it is highly desired to develop nonde-

structive and single-cell methods for accurately classifying microorganisms with different phenotypes,

physiological states, or activities, whether culturable or not.

The use of Raman microspectroscopy fulfills these two requirements (i.e., nondestructiveness and single-

cell resolution) simultaneously. In this optical technique, rich information on molecular vibrations can be

obtained in the form of Raman spectra. The Raman spectrum of an individual microbial cell represents

cellular ‘‘fingerprints’’, because it contains contributions from various intracellular biomolecules, such as

DNA/RNA, proteins, lipids, and bioactive compounds (Lorenz et al., 2017; Schuster et al., 2000). Unlike fluo-

rescence-based methods (e.g., fluorescence in situ hybridization (Amann and Fuchs, 2008; Kubo et al.,

2011)), Raman microspectroscopy does not require any probes that could affect the original physiological

state of the cell to be introduced into the cell. This label-free character is of great advantage when consid-

ering applications to environmental samples consisting of diverse (mostly unknown) microorganisms.

1Department of Chemistry,
School of Science, Kwansei
Gakuin University, 2-1
Gakuen, Sanda, Hyogo 669-
1337, Japan

2Japan Collection of
Microorganisms, RIKEN
BioResource Research
Center, 3-1-1 Koyadai,
Tsukuba, Ibaraki 305-0074,
Japan

3Department of Biological
Sciences, Graduate School of
Science, the University of
Tokyo, 2-11-16 Yayoi,
Bunkyo-ku, Tokyo 113-0032,
Japan

4Department of Integrated
Biosciences, Graduate
School of Frontier Sciences,
the University of Tokyo, 5-1-5
Kashiwanoha, Kashiwa, Chiba
277-0882, Japan

5Lead contact

*Correspondence:
shigeto@kwansei.ac.jp

https://doi.org/10.1016/j.isci.
2021.102975

iScience 24, 102975, September 24, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:shigeto@kwansei.ac.jp
https://doi.org/10.1016/j.isci.2021.102975
https://doi.org/10.1016/j.isci.2021.102975
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102975&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


However, despite these advantages over the genome sequencing and fluorescence techniques, the imple-

mentation of Raman microspectroscopy in facile yet accurate microbial classification (Ho et al., 2019;

Lu et al., 2020; Novelli-Rousseau et al., 2018; Uysal Ciloglu et al., 2020) is scant especially for environmental

samples.

Here we show that prokaryotic cells (bacteria and archaea from different phyla) in a mixed population can

be classified with 98.4% accuracy by using random forest (RF) to learn single-cell Raman spectra measured

under less-invasive conditions and subjected to minimum preprocessing. The RF algorithm is known to

achieve high classification performance despite its simplicity and can also readily output features that

make significant contributions to the species classification (Breiman, 2001). Our approach holds great

promise for in situ screening of specific bacterial and archaeal cells in environmental samples, as well as

for exploring many unknown prokaryotes based on the revealed molecular fingerprints.

RESULTS

Raman spectral data from single cells in aqueous medium

To collect a dataset for machine learning model construction, we measured Raman spectra of optically

trapped single cells of six individual prokaryotic species dispersed in phosphate buffer solution (PBS), as

shown in Figure 1A (see STAR Methods for details). We performed Raman measurements in triplicate

(i.e., three independent batches of the six species). The prokaryotic species used in this study comprises

three bacterial and three archaeal species that represent taxonomic, functional, and ecological diversity:

Escherichia coli, Gram-negative bacterium; Bacillus subtilis, Gram-positive bacterium; Thermus thermo-

philus, Gram-negative, hyperthermophilic bacterium; Thermococcus kodakarensis, hyperthermophilic,

anaerobic archaeon; Sulfolobus acidocaldarius, hyperthermophilic, acidophilic archaeon; and Nitrosos-

phaera viennensis, ammonia-oxidizing archaeon isolated from soil (Table 1). Archaea are found predomi-

nantly in extreme environments such as hot/cold, acidic/basic, highly saline, and high-pressure

environments (Baker et al., 2020), but microbiome analysis reveals the abundance of archaea in soil and

freshwater and their unique ecological roles (e.g., in the nitrogen cycle (Adair and Schwartz, 2008)). It is

thus crucial to include archaeal species in the list of microorganisms to classify, although there are much

fewer Raman studies on archaea (Fendrihan et al., 2009; Jehli�cka et al., 2013; Marshall et al., 2007; Serrano

et al., 2015; Spang et al., 2012) than on bacteria.

The experimental Raman spectra of single prokaryotic cells can be affected by many factors. For example,

cellular autofluorescence gives rise to a broad background without sharp peaks. The differences in cell size

and experimental conditions (e.g., fluctuation of the laser power) may result in varying absolute Raman in-

tensities. To classify prokaryotic species solely based on the shape (i.e., relative intensities) of the Raman

spectra reflecting the molecular composition of the cell, these contributions were eliminated through a se-

ries of spectral preprocessing (Figure 1B), which include subtraction of the PBS spectrum (composed

mainly of water), correction for a wavenumber shift among the data measured on different days

(i.e., different conditions of the Raman apparatus), baseline subtraction, and vector normalization

(see STAR Methods for further details). The resulting Raman spectra of the six prokaryotic species that

combine the so-called fingerprint (�660–1800 cm�1) and CH-stretching (2775–3018 cm�1) regions were

gathered to generate a dataset (40 spectra 3 6 species) for classification model construction using the

RF algorithm (Figure 1C).

Random forest modeling for prokaryotic species classification

The averaged, preprocessed spectra of the prokaryotic species in one of the triplicate datasets (Figure 2A)

display high similarity in overall pattern, but differ in the degree of spectral variance and noise level (Fig-

ure S1). The variance among the spectra ofN. viennensis is particularly large because of the small cell size of

this archaeon; N. viennensis cells are difficult to find even under a phase-contrast microscope. To visualize

the similarities among individual Raman spectra, we first used principal component analysis (PCA). The

spectra of N. viennensis form a well-separated cluster mainly by PC1, but the separation among the other

five species is less clear (Figure S2), although they represent taxonomical and functional diversity (bacteria

vs. archaea, mesophilic vs. thermophilic, etc). In particular, for E. coli and B. subtilis, most of the spectra

overlap with each other in PC space. This PCA result indicates that unsupervised multivariate analysis of

the Raman spectra likely fails to classify a wide array of prokaryotic species with high accuracy.
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Next, we constructed a RF classifier using the above single-cell Raman dataset. The hyper-parameter

values of the model were tuned so that high accuracies were achieved in 10-fold cross-validation (see

STARMethods), and the number of decision trees and features were determined to be 1500 and 29, respec-

tively. The out-of-bag error reached 0.79G 0.47% (Grepresents standard deviation across 10 train and test

splits) when the number of trees was 1500 (Figure S3). Class probabilities averaged over the ten splits are

plotted in Figure 2B. The performance breakdown shown as a confusionmatrix (Figure 2C) clearly illustrates

excellent species classification capability of our RF classifier. It achieves validation accuracy as high as

98.8 G 1.9% (Grepresents standard deviation across 10 train and test splits). We confirmed on the other

two datasets of the triplicate measurements that the six-species classification is reproducible (Figure S4).

With a view to specific detection of archaeal cells in environmental samples, we also trained a binary RF

classifier to distinguish between bacteria (E. coli, B. subtilis, and T. thermophilus) and archaea

(T. kodakarensis, S. acidocaldarius, and N. viennensis) using the same dataset as above. The results

Figure 1. Workflow of the prokaryotic classification method developed in this study, using single-cell Ramanmicrospectroscopy and RF algorithm

(A) Acquisition of the Raman spectra of single prokaryotic cells in aqueous solution (PBS) using an optical tweezer achieved by the same laser beam at

632.8 nm as that used for the Raman excitation (see STAR Methods).

(B) Preprocessing of themeasured single-cell Raman spectra: (1) subtraction of the PBS spectrum (blue line) from the cell + PBS spectrum (red line), yielding a

difference spectrum (black line); (2) correction for a wavenumber shift that typically occurs among the data taken on different days (red, green, and blue

lines); (3) Deletion of the so-called silent region of the Raman spectrum (gray area) and division of the spectrum into the two parts: the fingerprint and CH-

stretching regions; (4) subtraction of a linear baseline (dashed lines) that is determined from the edge regions (gray areas); and (5) vector normalization, in

which each Raman intensity is divided by the square root of the sum of the squared intensities of the spectrum. The preprocessed spectra in the fingerprint

and CH-stretching regions are finally combined.

(C) RFmodel construction using the preprocessed single-cell Raman data obtained from each prokaryotic species and application to species classification in

a mixed population. Training was done exclusively using the Raman spectral data collected from the pure populations of the six species.

ll
OPEN ACCESS

iScience 24, 102975, September 24, 2021 3

iScience
Article



(Figure S5) are as good as those of the six-class classification (Figure 2C), yielding 100% validation accuracy

and 91.9% accuracy in the mixed population (as shown in the following).

Classification of prokaryotic species in a mixed population

As a proof-of-concept of our approach toward in situ classification of prokaryotes based on single-cell

Raman spectra, we applied a RF classifier constructed using all the 240 spectra as training data to a mixture

of the three species B. subtilis, T. thermophilus, and N. viennensis. The former two are heterotrophic bac-

teria, whereas the latter is an autotrophic archaeon (ammonia oxidizer). We chose these species because

they are easily distinguishable on the basis of their cell morphology: B. subtilis has a rod shape,

T. thermophilus a long rod shape, and N. viennensis a small irregular spherical shape (Figure 3A).

We acquired Raman spectra of �20 cells from each species in the mixed population and used the six-class

model to classify a total of 62 spectra. As can be seen from the performance breakdown (Figure 3B), our RF

model classifies the three species with 98.4% accuracy. Misclassification occurs only inN. viennensis, which

was falsely predicted to be S. acidocaldarius. Because the present classification is essentially based on

Raman spectral patterns rather than images, it can be extended to classification among prokaryotic species

with similar cell morphologies.

As seen from Figure 3A, N. viennensis, whose cell size is typically below 1 mm (Tourna et al., 2011), shows

much noisier spectra than do the other species. One may therefore suspect that the difference in the noise

level of single-cell Raman spectra could be responsible at least for the successful classification of

N. viennensis (Figures 2C and 3B). To assess the effect of the difference in the noise level, we artificially

added Gaussian noise to the preprocessed Raman spectra of the five species, except N. viennensis,

such that the mean of spectral variance across the entire spectral range becomes equal (Figure S6A),

and repeated RF modeling and classification using the new dataset with noise added. Although the clas-

sification accuracy was somewhat lower overall, we found nomarked performance degradation in the iden-

tification of N. viennensis (Figures S6B and S6C). In addition, the loading spectrum of PC1, which makes a

clear distinction betweenN. viennensis and the others in the score plot, appears to exhibit Raman-like fea-

tures and not a random noise pattern (Figure S7). Taken together, we conclude that the prokaryotic species

were classified by Raman fingerprints rather than by the magnitude of noise.

Important Raman spectral features of high discrimination power

In the previous sections, we have only looked at the performance of machine learning classification. What

features play important roles in the classification? Answering this question will lead to the discovery of po-

tential Raman markers for identifying specific prokaryotic cells and characterizing their functions. Although

it is possible to somehow obtain quantities corresponding to important spectral features that contribute to

classification using other algorithms such as support vector machine and convolutional neural network

(CNN), these quantities can be extracted in a more straightforward manner using the RF algorithm. The

top 50 most important features (wavenumbers) extracted from the six-class classification result are shown

in Figure 2A and Table S1. The features mentioned below are excerpted and summarized in Table 2. Most

of them are distributed across the fingerprint region and can be associated with proteins, DNA/RNA, lipids,

Table 1. Prokaryotic strains used in this study

Species Domain Phylum Characteristics

Escherichia coli Bacteria Proteobacteria Gram-negative, facultative anaerobica,

mesophilic

Bacillus subtilis Bacteria Firmicutes Gram-positive, facultative anaerobica,

mesophilic

Thermus thermophilus Bacteria Deinococcus-Thermus Gram-negative, Aerobic, hyperthermophilic

Thermococcus kodakarensis Archaea Euryarchaeota Anaerobic, hyperthermophilic

Sulfolobus acidocaldarius Archaea Crenarchaeota Aerobic, acidophilic, hyperthermophilic

Nitrososphaera viennensis Archaea Thaumarchaeota Aerobic, mesophilic, ammonia-oxidizer

aE. coli and B. subtilis were grown under aerobic conditions.
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and carotenoids. The other two independent datasets yielded overall similar distributions of important fea-

tures (Figure S4).

The wavenumber of the highest importance (1000.7 cm�1) coincides with the ring-breathing band of the

phenylalanine residues, a characteristic Raman band of proteins. The averaged Raman spectra (Figure 2A)

reveal a variation in the intensity of this band among the six species, with that for T. kodakarensis being the

highest and that for N. viennensis being the lowest. The intensity of the phenylalanine band is considered

to reflect the total protein abundance in a microbial cell (Noothalapati Venkata and Shigeto, 2012). Wave-

numbers 1661.5 and 1655.4 cm�1 are also attributable to proteins. The corresponding Raman band is

known as the amide I, which arises mainly from the C=O stretching vibration in the peptide bond. Again,

the intensity of this band is highest in T. kodakarensis and lowest in N. viennensis. The present result sug-

gests that protein abundance is a key factor in microbial discrimination.

The next important features center in regions 1137.5–1157.3 and 1508.8–1527.7 cm�1. The Raman bands in

these regions are well-known signatures of carotenoids (Horiue et al., 2020; Withnall et al., 2003;

Figure 2. Construction of an RF classifier using the single-cell Raman dataset and its performance on species

classification

(A) Average of the preprocessed Raman spectra for each of the six prokaryotic species (E. coli, B. subtilis, T. thermophilus,

T. kodakarensis, S. acidocaldarius, and N. viennensis). Top 50 most important features are shown as vertical lines. The

dashed rectangular box indicates the region for which the CH2-stretching band intensities were calculated (see

Figure 4B).

(B) Averaged class probabilities in 10-fold cross-validation. Error bars represent GSD (n = 10). The asterisks represent

statistically significant differences between the probability of being predicted to be in the true class and those in other

classes, with Welch’s t test (P < 0.05).

(C) Confusionmatrix,C, for six strain classes. Each entry of the confusionmatrix,Cij, represents the total number of spectra

known to be in class i and predicted by the RF classifier to be in class j in 10-fold cross-validation. Correct classification

results are shown in red boxes on the diagonal, and misclassification results in blue boxes. Also shown are the precision

and recall rates in percentage.
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Zheng et al., 2013), whose intensities are enhanced owing to the (pre)resonance Raman effect. In typical

carotenoids, the band at �1152 cm�1 is assigned to the C–C stretching mode, and that at �1518 cm�1

the in-phase C=C stretching mode in the conjugated chain. Both bands are observed in the Raman spectra

of T. thermophilus. This observation is consistent with the report that T. thermophilus produces yellow ca-

rotenoids (Oshima and Imahori, 1974). It is very likely that this species was accurately differentiated from the

others by whether or not the carotenoid pigment is present.

With regard to the carotenoid Raman bands, there is a puzzling observation worth noting. InN. viennensis,

a Raman band of comparable intensity to T. thermophilus is clearly seen at 1152 cm�1, exactly the same

wavenumber as the C–C stretching band of carotenoids in T. thermophilus. Nevertheless, no appreciable

band is observed at 1518 cm�1 (Figure 4A), indicating that the 1152 cm�1 band is not due to carotenoids.

This argument agrees with the fact that the gene sets associated with carotenoid biosynthesis are not found

in the published genome information. In addition to the 1152 cm�1 band, N. viennensis cells show prom-

inent Raman bands at �748 cm�1. Neither nitrite nor nitrate (products of ammonia oxidation) can account

for these bands. The 1152 and 748 cm�1 bands, though unassigned at present, could be used as specific

markers for N. viennensis and possibly for ammonia-oxidizing microorganisms.

DNA/RNA Raman bands also take a significant part in the classification. Wavenumbers 775.7–786.0 cm�1

and 1568.4 cm�1 correspond to Raman bands arising from the pyrimidine ring (cytosine, thymine, or uracil)

and the purine ring (adenine and guanine), respectively. At �780 cm�1, there is an additional contribution

of the DNA/RNA backbone (O–P–O stretching) mode. Our results (Figure 2A) indicate that the bacterial

species show higher intensities of the DNA/RNA bands compared to the archaeal species.

Four of the top 50 important features are located in the higher wavenumber (>2800 cm�1) region. This re-

gion encompasses CH2/CH3 stretching bands of major macro-biomolecules such as proteins and lipids.

The profile of the broad CH-stretching band peaking at�2930 cm�1 (Figure 2A) resembles that of the pro-

teins derived previously with a multivariate curve resolution technique (Hsu et al., 2015; Yasuda et al., 2019),

suggesting that the CH-stretching band of the six species is dominated by proteins with minor contribu-

tions of lipids. Interestingly, however, it is around the shoulder at �2850 cm�1 coinciding with the CH2

Figure 3. Application of an RF classifier constructed

using all the single-cell Raman spectra as training

data to the classification of three prokaryotic species

(B. subtilis, T. thermophilus, and N. viennensis) in a

mixed population

(A) Phase-contrast micrograph of the mixed prokaryotic

population, where a rod-shaped B. subtilis cell (red

circled), a long T. thermophilus cell (yellow circled), and

a tiny N. viennensis cell (blue circled) can be identified.

Scale bar = 5 mm.

(B) Performance breakdown. Correct classification

results are shown in red boxes, and misclassification

results in blue boxes. The values in the table represent

the number of spectra (cells). The precision and recall

rates are shown in percentage.
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symmetric stretching band of lipids, that is important in the present classification. The intensity

at �2850 cm�1 varies considerably among the six species (Figure 4B). Gram-negative bacteria E. coli

and T. thermophilus show an obvious shoulder, whereas Gram-positive bacterium B. subtilis and archaeon

T. kodakarensis do not. S. acidocaldarius is somewhat intermediate. Statistical tests also confirmed that the

2850 cm�1 intensity is significantly (P < 0.05) lower in B. subtilis and T. kodakarensis than the others. The

higher intensity at �2850 cm�1 for Gram-negative bacteria is probably because they have an outer mem-

brane in addition to a cell membrane. Archaea possess an S-layer consisting of proteins as the cell wall, but

do not possess an outer membrane (Albers and Meyer, 2011). Furthermore, archaeal membrane lipids are

based on isoprene chains (Jain et al., 2014), which contain fewer CH2moieties than does the bacterial coun-

terpart. These differences in absolute amounts and compositions of membrane lipids between bacteria

and archaea account well for the observed variation in the Raman intensity at �2850 cm�1.

The exception is N. viennensis, which shows �2850 cm�1 intensity, as high as T. thermophilus. We reason

that, being by far the smallest in cell size among the six species studied, N. viennensis must have a larger

membrane-lipid abundance (represented by CH2) relative to protein abundance (represented by CH3).

Igisu and co-workers reported on the basis of micro-FTIR spectroscopic analysis that the CH2/CH3 IR absor-

bance ratio can be used to distinguish between bacteria and archaea (Igisu et al., 2009, 2012). Our results

are in line with the previous study in that the relative intensity of the CH2 stretching mode could differ de-

pending on microorganisms, but is also in contrast because our RF classification results suggest that clear

distinction between bacteria and archaea may not be always possible using the CH2 stretching band alone.

It is most likely species-dependent.

DISCUSSION

We have applied a combination of single-cell Raman microspectroscopy and RF machine learning strategy

for classification of six prokaryotic species chosen from a variety of phyla and for identification in a mixed

population envisaging environmental samples. Recently, CNN, a deep learning technique, was used to

classify Raman spectra of 30 clinically relevant bacteria including methicillin-resistant Staphylococcus

aureus (Ho et al., 2019) and of 14 microorganisms (two bacteria, five archaea, and seven fungi) (Lu et al.,

2020). The significance of our work compared to these studies is threefold.

First, we aimed at developing an accurate classification model applicable to a complex environmental sys-

tem composed of multiple prokaryotic species. As shown in Table 1, the prokaryotic species used in this

work cover microbial-ecologically relevant species that belong to Proteobacteria, Firmicutes, Deinococ-

cus-Thermus, Crenarchaeota, Euryarchaeota, and Thaumarchaeota, although focus in the previous studies

was placed primarily on pathogenic or human-related microorganisms only from Proteobacteria and Firmi-

cutes (Ho et al., 2019; Lu et al., 2020). The classification accuracy exceeding 98% achieved by our approach

for the mixed prokaryotic population gives hope for in situ identification of specific prokaryotic groups

(e.g., archaea) at the single-cell level without the need for time-consuming, destructive analysis.

RF is among ensemble learning methods, in which an ensemble of weak learners trained on many samples

created by bootstrap aggregation (or bagging) (Breiman, 1996) is combined to achieve high classification

accuracy. Another type of ensemble learning method, boosting, converts weak learners to strong ones by

Table 2. Important features (wavenumbers) that make significant contributions to RF classification of the

prokaryotic species

Wavenumber (cm�1) Assignmenta Molecular components

775.7–786.0 Pyrimidine ring (C, T, and U), O-P-O backbone DNA/RNA

999.0, 1000.7 Phenylalanine ring breathing Proteins

1137.5–1157.3 C–C stretch Carotenoids

1508.8–1527.7 C=C stretch Carotenoids

1568.4 Purine ring (A and G) DNA/RNA

1655.4, 1661.5 Amide I Proteins

2844.3, 2846.8 CH2 symmetric stretch Lipids

a(Carey, 1982; Huang et al., 2005; Krafft et al., 2003; Puppels et al., 1990).
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adjusting the weights of the data that are misclassified by previous learners. Previous studies comparing RF

and boosting methods such as AdaBoost and XGBoost reported that careful selection of the learning

method and tuning of their hyper-parameters improved predictive performances (Huang et al., 2021).

To achieve excellent classification accuracy even in more challenging microbial classifications, we could

leverage these various types of learning methods.

Second, our Raman measurement is as less invasive as possible to prokaryotic cells, and our preprocessing

of the measured Raman spectra is also minimally demanding for non-spectroscopists. Lu and co-workers

used �16 mW/mm2 laser power and 60–90 s exposure time in their 785 nm-excited single-cell Raman mea-

surements for CNN-based classification of microorganisms (Lu et al., 2020). In contrast, the laser power and

exposure time we used were only �3.8 mW/mm2 at 632.8 nm and 30 s, respectively. Low invasiveness is

crucial for the feasibility of downstream analysis.

We carefully examined what preprocessing was integral to highly accurate species classification and found

that noise reduction using methods like smoothing (Barton et al., 2018), derivative spectra (Xie et al., 2005),

and singular value decomposition (SVD) (Huang et al., 2011; van Manen et al., 2004; Yasuda et al., 2019) was

not necessary (see Figure 1B and STAR Methods). Smoothing and derivative spectra may result in under-

estimation of sharp Raman bands such as the phenylalanine band at 1001 cm�1. SVD has proven to be

effective particularly for Raman imaging data taken with a short exposure time (Huang et al., 2011; van

Manen et al., 2004; Yasuda et al., 2019), but it requires some knowledge and experience about Raman spec-

troscopy to determine how many SV components should be retained and could possibly discard minor but

important features as noise. The RF classifications using the dataset with SVD denoising (Figure S8) turned

out to perform only slightly better (99.6 G 1.3% accuracy) for the six-class model validation and somewhat

worse (95.2% accuracy) for the mixed population than those using the dataset without any noise reduction.

Furthermore, step 2 in our spectral preprocessing (Figure 1B) allows one to use spectra measured on

different days, mitigating the experimental burden that as much data as possible must be taken at once.

Polynomial fitting is often used in baseline subtraction (step 4), but we found that the Raman data pro-

cessed with fourth-order polynomial fitting (Figure S9) yielded high classification accuracy (98.3 G 2.8%)

Figure 4. Quantitative analysis of the important spectral features that contribute to the RF classification of the

six prokaryotic species

(A) Comparison of the Raman intensities at �1152 cm�1 (white boxes) and �1518 cm�1 (gray boxes) between

T. thermophilus and N. viennensis. The intensity plotted here was evaluated from each single-cell spectrum (smoothed

using 15-point Savitzky–Golay polynomial filter of degree 2) by subtracting the minimum value in 1134.2–1173.8 cm�1

from the maximum value in 1145.7–1154.0 cm�1 or by subtracting the minimum value in 1497.8.7–1537.1 cm�1 from the

maximum value in 1516.7–1519.8 cm�1.

(B) Comparison of the CH-stretching Raman intensities at �2850 cm�1 among the six prokaryotic species studied. The

intensity plotted here was evaluated from each single-cell spectrum (smoothed using 15-point Savitzky–Golay polynomial

filter of degree 2) by summing up the intensities in 2830.5–2849.3 cm�1 (the region indicated by the dashed rectangular

box in Figure 2A). Different letters indicate statistically significant differences (P < 0.05) among the six species by a

nonparametric Kruskal–Wallis test followed by a post hoc Dunn–Holland–Wolfe multiple comparison tests.
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comparable to that obtained with linear fitting (98.8 G 1.9%). We thus adopted a linear baseline, which is

less arbitrary in terms of the spectral regions to be included in the fitting than polynomial fitting. Using a

longer excitation wavelength (e.g., 785 nm (Lu et al., 2020)) may be effective in suppressing autofluores-

cence, although theoretically the Raman scattering probability is lower.

Third, we interpreted the outcome of RF classification on a molecular basis. In their CNN classification, Lu

and co-workers devised a method called occlusion-based Raman spectra feature extraction to investigate

the wavenumbers that contribute to the classification (Lu et al., 2020), but the extracted features were not

fully analyzed in the molecular, phylogenetic, or physiological context. Our RF-based approach directly

provides insight into the property and structure of prokaryotic cells that render them distinguishable.

Spectral variance can result not only from cell-to-cell variation in autofluorescence background and mea-

surement conditions that were removed during our preprocessing (see Figure 1B and STAR Methods), but

also from that in physiological state such as growth stage and growth conditions (Lorenz et al., 2017; Xie

et al., 2005). Microorganisms are known to accumulate different kinds of storage material inside the cell

and they may considerably affect Raman spectral patterns (Ciobot�a et al., 2010; Miyaoka et al., 2014; Noo-

thalapati Venkata et al., 2011). Investigating these effects on spectral variance will help us further improve

the accuracy of species classification. In conclusion, we believe that our method, which takes advantage of

minimally invasive and easily operated Raman microspectroscopy and a machine learning technique, can

be a useful addition to the toolbox of microbiologists exploring microbial dark matter.

Limitations of the study

There will be more and more demand for screening specific prokaryotic cells from the environment as

omics analyses unravel diverse, novel activities of environmental prokaryotes (Gutleben et al., 2018; Kaster

and Sobol, 2020). Discrimination based on phylogenetic characteristics, physiologically active substances,

and cellular structure and detection of unique spectra that do not fit in reference spectral database are ex-

pected, when coupled with omics analyses, to facilitate picking unknown microorganisms from various

environments. However, we have not yet demonstrated the applicability of our method to a sample con-

taining prokaryotic species whose reference Raman data are unavailable. In such a case, unsupervised

learning such as PCAwith x-means clustering could be used to estimate the number of clusters (prokaryotic

species, including unknown ones) that exist in the sample and to know whether or not our reference Raman

spectra are classified into those clusters.

We also need to extend the study to more prokaryotic species so that it can be applied to real environ-

mental samples, and to investigate the effects of laser irradiation and the physiological states of cells

(e.g., exponential vs. stationary phases) in detail, both of which are currently underway in our laboratory.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Shinsuke Shigeto (shigeto@kwansei.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Original, unprocessed Raman spectral data from Figures 2 and S4 have been deposited at Mendeley

Data and are publicly available as of the date of publication. The DOI is listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Escherichia coli JCM 20135, Bacillus subtilis JCM 1465T, Thermus thermophilus JCM 10941T, Thermococ-

cus kodakarensis JCM 12380T, Sulfolobus acidocaldarius JCM 8929T, and Nitrososphaera viennensis JCM

19564T were obtained from Japan Collection of Microorganisms (JCM). E. coli and B. subtiliswere cultured,

respectively, in LB broth and tryptic soy broth in a shaking incubator (180 rpm) at 30�C. T. thermophilus was

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Escherichia coli JCM JCM 20135

Bacillus subtilis JCM JCM 1465T

Thermus thermophilus JCM JCM 10941T

Thermococcus kodakarensis JCM JCM 12380T

Sulfolobus acidocaldarius JCM JCM 8929T

Nitrososphaera viennensis JCM JCM 19564T

Chemicals, peptides, and recombinant proteins

LB broth, Lennox Nacalai tesque Cat# 20066-95

Bacto tryptic soy broth Becton, Dickinson and Company Cat# 211825

Bacto peptone Becton, Dickinson and Company Cat# 211677

Bacto yeast extract Becton, Dickinson and Company Cat# 212750

Deposited data

Raman spectra of bacterial and archaeal cells This paper; Mendeley Data https://doi.org/10.17632/8cd34fckgt.1

Software and algorithms

Igor Pro 8.04 WaveMetrics https://www.wavemetrics.com/

RRID: SCR_014216

Python 3.7.6 Python Software Foundation https://www.python.org/RRID: SCR_008394

scikit-learn version 0.22.1 Pedregosa et al. (2011) https://scikit-learn.org

RRID: SCR_002577

Adobe Illustrator Adobe https://www.adobe.com/products/

illustrator.html

RRID: SCR_010279
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cultured in modified DSMZ medium 74 (pH 7.0–7.5) containing 4 g/L Bacto yeast extract, 8 g/L Bacto

peptone, and 2 g/L NaCl, in a shaking incubator (180 rpm) at 75�C. The precultures of bacterial strains

were grown for 1 day, and 50 mL of these precultures were then inoculated to 5 ml of fresh media. The over-

night cultures were used for Raman measurements. Cell cultures of T. kodakarensis, S. acidocaldarius, and

N. viennensis were used as received from JCM for Raman measurements within 5 days of shipping.

Cells of each strain were harvested and washed three times with PBS (pH 7.4) by centrifugation (8,000–

10,0003 g, 30–60 s) at room temperature, followed by resuspension in PBS. The cell suspension was either

diluted or concentrated for better microscopic observation of individual cells. When acquiring Raman

spectral data for the construction of RF classifiers, 200 mL of the cell suspension of each strain was trans-

ferred to a glass bottom dish. For spectral acquisition from a mixed population, a 200 mL mixture of the

cell suspensions of B. subtilis, T. thermophilus, and N. viennensis was transferred to a glass bottom dish.

METHOD DETAILS

Confocal Raman microspectroscopy

Single-cell Raman spectra were measured using a laboratory-built confocal Raman microspectrometer,

which has been described previously (Huang et al., 2011, 2012; Matsuda et al., 2019). In brief, the

632.8 nm output of a He–Ne laser (Thorlabs, HNL210L) was used as the excitation light. The laser beam

was magnified by a factor of �3 and subsequently introduced into an inverted microscope (Nikon,

TE2000-U, customized) by a pair of an edge filter and a dichroic mirror. The beam was focused onto the

sample with an oil-immersion phase-contrast objective (Nikon, 1003, NA 1.3, CFI Plan Fluor DLL), and

backward Raman scattered light was collected with the same objective. After passing through a 100-mm

pinhole for confocal detection, it was analyzed with an imaging spectrometer (SOL Instruments,

MS3504i) and detected with an electron-multiplying charge-coupled device (CCD) detector with 200 3

1600 pixels (Andor Technology, DU970P-BVF). The use of a 600 grooves mm�1 grating enabled us to record

the entire spectral window (660–3022 cm�1) covering both fingerprint and CH-stretching regions with a

spectral resolution of�5 cm�1. The laser power at the sample point was adjusted to 3mW. The Raman exci-

tation beam that was tightly focused to a nearly diffraction-limited spot size (�1 mm) grabbed and immo-

bilized a randomly selected single prokaryotic cell via the optical tweezer technique (Xie et al., 2002)

(Figure 1A). Only in the case of T. thermophilus, which tend to grow singly, in pairs, and in a chain in the

polypeptone yeast extract medium (Oshima and Imahori, 1974), single to short-chain cells were trapped

at their upper part, thereby enabling alignment of a rod-shaped cell(s) along the axial direction. The Raman

spectrum of the trapped cell was measured with a 30 s exposure time without electron-multiplying gain. For

each strain in a pure population, 40 spectra were acquired from 40 different cells. Those measurements

were performed in triplicate. For the three strains in a mixed population, 20 or 21 spectra were obtained

per strain. All spectroscopic measurements were done at room temperature.

Data preprocessing

The recorded Raman spectra were subjected to a series of preprocessing procedures (Figure 1B) prior to

training and testing in machine learning. In principle, all of them were used without selection. However,

about 20% of S. acidocaldarius cells showed strong autofluorescence, and their spectra were rejected

from the dataset because the objective of the present work was to classify cells based on Raman spectral

patterns and not autofluorescence patterns (Yawata et al., 2019). (1) The PBS spectrum (average of 10

spectra) was subtracted from each single-cell spectrum in which cosmic rays, if any, weremanually removed

in advance. (2) Raman spectra measured on different days typically have slightly different wavenumber re-

gions, resulting in a shift in the horizontal axis of the spectra. This shift was corrected for so that emission

lines of a standard neon lamp recorded on different days appeared at the same CCD pixel with a tolerance

of G0.5 pixel. (3) The so-called silent region (1801.9–2773.7 cm�1) was deleted where there are no Raman

bands with few exceptions (e.g., ChC and ChN stretching (Yamakoshi et al., 2011; Zhao et al., 2017)); only

the fingerprint (664.4–1800.4 cm�1) and CH-stretching (2774.9–3018.5 cm�1) regions were retained. This

trimming process was required to deal with the fingerprint and CH-stretching regions separately in the sub-

sequent steps. (4) To remove the slope of each spectrum due possibly to autofluorescence and subtle dif-

ferences in measurement conditions, baseline subtraction was performed separately for the fingerprint and

CH-stretching regions. For both regions, the higher and lower wavenumber edges of the region were fit to

a linear function, and this linear baseline was subtracted from the spectrum. (5) After baseline subtraction,

vector normalization was conducted on each spectral fragment. The norm of the spectrum, which is defined

as the square root of the sum of the squared intensities of the spectrum, was calculated, by which each
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intensity was divided. The above baseline subtraction and vector normalization were not directly appli-

cable to the raw CH-stretching spectrum. Particularly in N. viennensis, the CH-stretching spectrum had

markedly low intensities and suffered from large noise due to the smallest cell size among the prokaryotic

species studied here. To cope with this problem, spectral smoothing using 15-point Savitzky–Golay poly-

nomial filters of degree 2 was first performed. Subsequently, a linear baseline was determined in the same

manner as described above for the smoothed spectrum, and the resulting baseline was subtracted from

both unsmoothed and smoothed spectra. The norm of the baseline-subtracted, smoothed spectrum

was calculated to vector-normalize the baseline-subtracted, unsmoothed spectrum. Finally, the normal-

ized, unsmoothed spectra in the fingerprint and CH-stretching regions were merged, yielding a prepro-

cessed single-cell Raman spectrum with 896 pixels. All of the above preprocessing was performed on

Igor Pro 8.04 (WaveMetrics).

Random forest training and test

RFmodels were constructed for classification among the three bacterial and three archaeal species. A total

of 240 Raman spectra (40 spectra per prokaryotic species) were used as the dataset for model construction.

First, this dataset was split into 10 folds, and 10 patterns of training (9 folds) and test (1 fold) sets were

generated (10-fold cross-validation). Then, a grid search for hyper-parameter optimization was performed

with 5-fold cross-validation on each training set. The hyper-parameters (n_estimaters and max_features)

that were frequently adopted in the 10 models were used to search best parameters that achieve high clas-

sification accuracy in the test datasets. Finally, a RF classifier was built using these optimized hyper-param-

eters and all of the 240 Raman spectra. Using this classifier, a total of 62 Raman spectra acquired from the

mixed population of B. subtilis (21 cells), T. thermophilus (20 cells), and N. viennensis (21 cells) were clas-

sified. The importance score of a feature was calculated as the total reduction of the criterion brought by

that feature (known as Gini importance) in each validation. An average of the scores over 10 validations was

used to represent the importance of each feature.

To visualize the differences among the spectra of the six prokaryotic species, PCA was also carried out.

Both RF modeling and PCA were performed using the scikit-learn package (Pedregosa et al., 2011) (version

0.22.1) in Python (version 3.7.6).

QUANTIFICATION AND STATISTICAL ANALYSIS

For comparison of the averaged class probabilities in the classification of the six prokaryotic species,

p values were calculated using two-tailedWelch’s t test and adjusted using Bonferroni correction. For com-

parison of the CH-stretching Raman intensities, a nonparametric Kruskal–Wallis test was performed, fol-

lowed by a post hoc Dunn–Holland–Wolfe test. p values <0.05 were considered significant in both cases.

The above statistical tests were performed on Igor Pro 8.04.
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