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Abstract

Aberrant activation of Notch signaling plays an essential role in colorectal cancer (CRC) 

progression. Amplified in breast cancer 1 (AIB1), also known as SRC-3 or NCOA3 is a 

transcriptional coactivator that promotes cancer cell proliferation and invasiveness. However 

AIB1 implication in CRC progression through enhancing Notch signaling is unknown. In this 

study we found that several CRC cell lines expressed high levels of AIB1, and knockdown of 

AIB1 decreased cell proliferation, colony formation and tumorigenesis of these CRC cells. 

Specifically, knockdown of AIB1 inhibited cell cycle progression at G1 phase by decreasing the 

mRNA levels of Cyclin A2, Cyclin B1, Cyclin E2 and Hes1. Furthermore, AIB1 interacted with 

Notch intracellular domain (NICD) and Mastermind-like 1 (MAMAL1) and was recruited to the 

Hes1 promoter to enhance Notch signaling. Downregulation of AIB1 also decreased CRC cell 

invasiveness in vitro and lung metastasis in vivo. Besides that, knockout of AIB1 in mice inhibited 

colon carcinogenesis induced by AOM/DSS treatment. The mRNA levels of Cyclin B1 and Hes5 

were downregulated, but p27, ATOH1, and MUC2 were upregulated in the colon tumors from 

AIB1-deficient mice compared with those from wild-type mice. Thus our results signify the 

importance of AIB1 in CRC and demonstrate that AIB1 promotes CRC progression at least in part 

through enhancing Notch signaling, suggesting that AIB1 is a potential molecular target for CRC 

treatment.
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INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer deaths with a mortality rate 

of 33% in developed countries1. Despite much advances in screening, diagnosis and 

treatment of CRC in recent decades, which have led to increased cure and response rates, the 

etiology of CRC is still unknown. Extensive investigations have uncovered several critical 

genes and signaling pathways important for CRC initiation and progression which include 

WNT, Notch, RAS-MAPK, PI3K, TGF-β, p53 and DNA mismatch–repair pathways. 

However further exploration of molecular mechanism of CRC is required to develop novel 

therapeutic targets for cure of CRC.

Increasing evidence has shown that Notch signaling regulates many aspects of intestinal 

development and epithelial renewal2. Aberrant expression of Notch is found in most types of 

cancers and the activation of notch signaling is related to human colon cancers3. The 

activation of notch signaling is dependent on the interactions of ligand-receptor between 

neighboring cells and followed by gamma-secretase-cleaved release of the active form of 

Notch intracellular domain (NICD). The released NICD translocates into the nucleus to form 

a ternary protein complex with CSL and MAML1 to transactivate their target genes, such as 

those in the hairy and enhancer of split and hes related with YRPW motif (hey) families4, 5.

Amplified in breast cancer 1 (AIB1), also known as steroid receptor coactivator 3 (SRC-3, 

ACTR, RAC3, TRAM2, pCIP, NCOA3), is a member of the SRC/p160 coactivator family 

that also includes SRC-1 (NCOA1) and SRC-2 (GRIP1, TIF2, NCOA2)6. AIB1 is highly 

expressed in several human cancers such as breast cancer7, prostate cancer8, and liver 

cancer9-10, and has been demonstrated to be a key regulator for tumor initiation, progression, 

metastasis and survival9-16. AIB1 can interact with nuclear receptors and other transcription 

factors to regulate the expression of their target genes involved in many signaling pathways, 

including ERα, EGFR, Akt, MAPK, E2F1, C/EBPβ, NFκB, HER2/neu and PEA317-27. It 

has been reported that AIB1 is overexpressed in 35% of human CRC samples28, but the role 

of AIB1 in CRC progression is still unknown.

In this study we demonstrate that the expression of AIB1 is significantly increased in CRC 

cell lines as compared to normal colon epithelial cells and its downregulation reduces cell 

proliferation, invasion and tumor formation. We also demonstrate that AIB1 can interact 

with NICD to enhance Notch signaling and AIB1-deficient mice are resistant to AOM/DSS-

induced CRC formation.

RESULTS

AIB1 is overexpressed in CRC cell lines

To evaluate the expression of AIB1 in CRC cell lines, Western blot analysis was performed 

to determine the protein levels of AIB1 in several CRC cell lines. In comparison with 
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normal colon epithelial cells, all five human CRC cell lines (RKO, Caco-2, HCT-116, 

SW620 and SW480) and the CT26, a mouse CRC cell line, expressed high levels of AIB1, 

suggesting a plausible role of AIB1 in CRC cells (Figure 1a).

Downregulation of AIB1 suppresses CRC cell proliferation, but does not affect cell survival

To determine the role of AIB1 in CRC cell proliferation, two different siRNAs against 

human AIB1 and two different siRNAs against mouse AIB1 were used to knock down the 

expression of AIB1 in two human CRC cell lines, RKO and HCT116, and one mouse CRC 

cell line CT26, respectively, and then cell proliferation was measured by MTT assay. As 

shown in Figures 1b, c and d, all AIB1-specific siRNAs efficiently reduced the levels of 

endogenous AIB1 protein and significantly decreased cell proliferation. Furthermore, RKO, 

HCT116, and CT26 cells were stably transfected with control plasmid (pSUPER-shCtrl/

pll3.7-shCtrl) or human/mouse AIB1 knockdown plasmids (pSUPER-sh-hAIB1/pll3.7-sh-

mAIB1)9 and cell proliferation was measured by MTT assay. Stable knockdown of AIB1 in 

these cell lines also significantly decreased cell proliferation (Figures 1e, f and g). These 

results indicate that AIB1 is vital for the proliferation of CRC cells.

It has been reported that downregulation of AIB1 could reduce prostate cancer cell 

survival8. To determine whether downregulation of AIB1 could affect CRC cell survival, the 

extent of cell death was compared between control and AIB1-knockdown CRC cells under 

normal growth conditions by using flow cytometric analysis. As shown in Supplementary 

Figure S1, downregulation of AIB1 did not affect CRC cell survival under normal growth 

conditions.

Knockdown of AIB1 induces CRC cell cycle arrest

To explore the mechanism by which downregulation of AIB1 inhibits CRC cell 

proliferation, cell cycle analysis was performed to examine whether AIB1-knockdown cells 

were arrested in a specific phase of the cell cycle. Cells were synchronized by serum 

starvation for 24 hours and then cultured in serum-containing medium for another 24 hours 

before harvesting for flow cytometric analysis. As shown in Figure 2a and b, AIB1 

knockdown led to an increase of cell number at the G1 phase and a concomitant decrease of 

cell number at the S phase as compared with control cells. These results indicate that AIB1 

regulates the G1/S phase transition.

To understand the underlying mechanisms of cell cycle arrest, the mRNA levels of several 

cell proliferation/cycle-related genes in control and AIB1-knockdown CRC cells were 

measured by real-time qPCR. As shown in Figures 2c and d, knockdown of AIB1 

significantly decreased the expression of cyclin A2, cyclin E2, and Hes1 in RKO cells as 

well as cyclin A2, cyclin B1, and Hes1 in CT26 cells. Hes1 is a repressor of cell cycle 

inhibitors and a downstream target of Notch29. As a consequence of Hes1 downregulation, 

the mRNA levels of p27, ATOH1, and MUC2 which have been reported to be 

transcriptionally repressed by Hes130-31, were significantly increased in AIB1-knockdown 

CRC cells (Figures 2c and d). These results suggest that AIB1 promotes cell cycle 

progression through regulating the expression of several cell cycle-related genes.
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AIB1 enhances Notch signaling

Hes1 is a typical Notch downstream target, therefore we hypothesized that AIB1 may serve 

as a coactivator for Notch signaling to regulate Hes1 transcription and subsequent cell 

proliferation. To test this hypothesis, AIB1-knockdown and control cells were co-transfected 

with the Hes1 promoter luciferase reporter, NICD, and MAML1. As shown in Figures 3a 

and b, knockdown of AIB1 decreased Hes1 promoter activity as compared with control 

cells. Simultaneously overexpression of AIB1, MAML1, and NICD could significantly 

increase Hes1 promoter activity (Figure 3c). These results suggest that AIB1 regulates Hes1 

expression at transcriptional level.

To determine whether AIB1 can be recruited to the Notch response elements (NREs) located 

in the Hes1 proximal promoter (Figure 3d), the chromatin-immunoprecipitation (ChIP) 

assay was performed. ChIP results showed that AIB1 was recruited to the Hes1 proximal 

promoter and the recruitment was increased in the presence of exogenous NICD (Figure 3e). 

Furthermore, ChIP-reChIP results showed that AIB1 and NICD were simultaneously 

recruited to Hes1 proximal promoter (Figure 3f).

To corroborate that AIB1 could enhance Notch signaling, rescue experiment for 

proliferation of AIB1-knockdown cells was performed. AIB1-knockdown cells were 

transfected with NICD expression constructs, and cell proliferation was measured by MTT 

assay. The results showed that transfection of NICD expression constructs could indeed 

rescue cell proliferation of AIB1-knockdown cells (Figure 3g), suggesting that AIB1 

promotes CRC cell proliferation at least in part through enhancing Notch signaling.

AIB1 directly binds to NICD and MAML1

Since AIB1 is a transcriptional coactivator and we have shown that AIB1 and NICD can be 

simultaneously recruited to Hes1 proximal promoter to enhance its activity, it is likely that 

AIB1 could interact with NICD. To test this hypothesis, we transfected Myc-NICD 

expression construct into 293T cells and then performed Co-IP assay to determine the 

interactions between Myc-NICD and endogenous AIB1. The results showed that the AIB1 

antibody, but not control IgG, could precipitate endogenous AIB1 and Myc-NICD (Figure 

4a, upper panel). Reciprocally, AIB1 and Myc-NICD could be pulled down by Myc 

antibody (Figure 4a, lower panel). These results suggest that AIB1 could interact with NICD 

in cells. In addition, the interaction of endogenous AIB1 and NICD could also be detected in 

CT26 cells by Co-IP assays using anti-AIB1 and anti-NICD antibodies (Figure 4b). To 

determine whether AIB1 can directly bind to NICD, E. coli-produced GST-NICD protein 

was incubated with AIB1 protein produced by an E. coli extract-based cell free protein 

synthesis system for GST pull-down assays. The results showed that the GST-NICD protein, 

but not GST, was able to pull down AIB1 (Figure 4c), indicating that AIB1 can directly bind 

to NICD.

AIB1 is a multidomain protein containing bHLH/Per/ARNT/Sim homologous (bHLH/PAS) 

domain, serine/threonine-rich(S/T) domain, receptor interaction domain (RID), CBP/p300 

interaction domain (CID), and histone acetyltransferase domain (HAT) (Figure 4d, upper 

panel). To determine which domains of AIB1 could bind to NICD, different AIB1 domain 
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proteins were expressed in 293T cells and GST-pull down assays were performed. Our 

result showed that HAT domain of AIB1 was responsible for the interaction between AIB1 

and NICD (Figure 4d, lower panel).

MAML1 is a key transcriptional coactivator for Notch signaling. MAML1 binds to NICD, 

forms a ternary protein complex with CSL and NICD, and amplifies Notch-induced Hes1 

transcription32. To determine whether AIB1 could interact with MAML1, we transfected 

Flag-MAML1 expression construct into 293T cells and then performed Co-IP assay. The 

results showed that the AIB1 antibody could precipitate endogenous AIB1 and Flag-

MAML1 (Figure 4e, upper panel). Reciprocally, AIB1 and Flag-MAML1 could be pulled 

down by Flag antibody (Figure 4e, lower panel). These results suggest that AIB1 could 

interact with MAML1 in cells. To determine whether AIB1 can directly bind to MAML1, 

E.coli-produced GST-MAML1 protein was incubated with AIB1 protein produced by an E. 

coli extract-based cell free protein synthesis system for GST pull-down assays. The results 

showed that the GST-MAML1 protein, but not GST, was able to pull down AIB1 (Figure 

4f), indicating that AIB1 can directly bind to MAML1.

Knockdown of AIB1 inhibits tumorigenesis of CRC cells

Having shown that knockdown of AIB1 decreased CRC cell proliferation in vitro, it was 

next determined whether AIB1 affects tumorigenesis of CRC cells. Colony formation assay 

was performed with AIB1-knockdown and control cells. The results showed that the number 

of colonies in AIB1-knockdown cells were significantly less as compared to control cells 

(Figure 5a).

As aberrant Notch signaling activation could be involved in the pathogenesis of colorectal 

tumors2-3, 33-35, we hypothesized that downregulation of AIB1 and subsequently reduced 

Notch signaling would inhibit CRC growth. Therefore, AIB1-knockdown CT26 and control 

cells were subcutaneously injected into BALB/c mice and tumor growth was monitored. 

Knockdown of AIB1 significantly decreased tumor growth (Figure 5b), and the mean 

volume of AIB1-knockdown tumors was about 4-fold smaller than that from control tumors 

(Figures 5c and d). Furthermore, Ki-67 and TUNEL staining for tissue sections from AIB1-

knockdown CT26 and control tumors were performed to determine the effects of AIB1 

knockdown on CT26 cell proliferation and survival in vivo. As shown in Figures 5e and f 

and Supplementary Figure S2, knockdown of AIB1 significantly reduced the number of 

Ki-67-positive cells, but had no effect on the number of TUNEL-positive cells. These results 

indicate that AIB1 promotes CRC growth by enhancing cell proliferation but not cell 

survival.

Downregulation of AIB1 decreases cell invasion and tumor metastasis

It has been reported that AIB1 is involved in the invasion of several types of cancers9, 16, 27. 

Therefore, we presumed that downregulation of AIB1 might decrease the invasive ability of 

CRC cells. To test this hypothesis, cell invasion was assessed using a transwell matrigel 

invasion assay. Knockdown of AIB1 significantly decreased the ability of cells to penetrate 

through the matrigel-coated membrane (Figure 6a), suggesting that downregulation of AIB1 

decreases CRC cell invasion. To further investigate the potential role of AIB1 in CRC cell 
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invasion in vivo, tumor metastasis in BALB/c mice was preformed. 14 days after tail vein 

injection of AIB1-knockdown or control CT26 cells, lungs were harvested for metastasis 

analysis. The number and size of tumors on the lung surface from AIB1-knockdown group 

was significantly less than that on control group (Figures 6b and c). Western blot analysis of 

AIB1-knockdown and control tumors confirmed the downregulation of AIB1 and Hes1 in 

AIB1-knockdown tumors (Figure 6d). Furthermore, Ki-67 and TUNEL staining for tissue 

sections from AIB1-knockdown and control tumors showed that knockdown of AIB1 

significantly reduced the number of Ki-67-positive cells (Figures 6e and f), but had no effect 

on the number of TUNEL-positive cells (Supplementary Figure S3). These results indicate 

that AIB1 promotes CRC metastasis by enhancing cell invasion and proliferation, but not 

cell survival.

AIB1-deficient mice are resistant to AOM/DSS-induced CRC formation

To determine whether AIB1 ablation in mice reduced the development and growth of CRC, 

we used AOM/DSS-induced CRC model for in vivo study36. After 12 weeks of AOM/DSS 

treatment, wild-type mice developed severe colorectal tumors, whereas AIB1-deficient mice 

had very few colorectal tumors (Figures 7a and b). The diameter of colon tumors formed in 

AIB1-deficient mice also showed a significant decrease compared with those in wild-type 

mice (Figure 7c). Consistently, AIB1-deficient tumors exhibited significantly reduced 

proliferation compared to wild-type tumor as determined by Ki-67 staining (Figures 7d and 

e). The mRNA levels of cyclin B1 and Hes5 were reduced in AIB1-deficient mice compared 

to wild-type mice (Figure 7f), whereas the mRNA levels of p27, ATOH1, and MUC2 were 

upregulated in the colorectal tumors from AIB1-deficient mice (Figure 7f). These in vivo 

results strongly suggest that AIB1 deficiency reduces AOM/DSS-induced CRC at least in 

part through attenuating Notch signaling.

DISCUSSION

Accumulating evidence indicates that aberrant AIB1 expression is a common phenomenon 

in human cancers6. Although previous studies showed that AIB1 was overexpressed in more 

than 35% of CRCs28, the exact role of AIB1 in colorectal tumorigenesis remains elusive. 

The present study clearly demonstrates an important role of AIB1 in CRC growth and 

progression: (1) AIB1 was overexpressed in several CRC cell lines and knockdown of AIB1 

significantly reduced cell proliferation and invasiveness (2) knockdown of AIB1 

significantly reduced CRC growth and metastasis in vivo; (3) AIB1 ablation in mice 

dramatically reduced AOM/DSS-induced CRC formation.

Consistent with reduced cell proliferation, downregulation of AIB1 caused CRC cell cycle 

arrest at G1 phase and affected the expression of several proliferation and cell cycle related 

genes such as cyclin A2, cyclin B1/ E2, Hes1, and Hes1's downstream targets p27, ATOH1, 

and MUC2. Since Hes1 is a typical target gene of Notch signaling that plays an important 

role in CRC progression, it prompted us to examine whether AIB1 is involved in the 

activation of Notch signaling to promote CRC progression. Our present results demonstrated 

that AIB1 directly interacted with NICD and recruited to Hes1 promoter to enhance Hes1 

transcription and subsequent CRC cell proliferation. More importantly, AIB1-deficient 
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colorectal tumors grew much slower and expressed less Notch target gene Hes5 than wild-

type colorectal tumors, providing genetic evidence that AIB1 is indeed required for 

activation of Notch signaling pathway for CRC growth.

A simple model for the activation of Notch signaling could be that the NICD translocates 

into the nucleus to form a functional core activation complex with the transcription factor 

CSL and transcriptional coactivator MAML (NICD-CSL-MAML) to activate transcriptional 

events that are specific to Notch signaling. However, this model does not illustrate the whole 

picture of the regulation of NICD-CSL-MAML transactivation. Emerging evidence 

implicates several nuclear factors such as p300, PCAF, GCN5, and DDX5 can interact with 

the NICD-CSL-MAML complex to regulate Notch signaling37-40. In addition, the Notch1 

nuclear interactome contains some key regulators such as LSD1 and PHF8 acting through 

their demethylase activity to promote epigenetic modifications at Notch-target genes41, 

highlighting the importance of coactivators in the regulation of Notch signaling. In this 

study, we found that AIB1 could enhance Notch signaling and promote proliferation, 

invasive and metastatic potential of CRC in vitro and in vivo. To the best of our knowledge, 

this is the first time that AIB1 is reported to serve as a critical coactivator for Notch 

signaling. Although the exact mechanism by which AIB1 enhance notch signaling is yet to 

be identified. Our study showed that AIB1 interacted with NICD by its HAT domain, but 

not CBP/p300 interaction domain (CID), implicating that after binding to NICD, AIB1 

might recruit p300 via its CID to NICD-CSL-MAML complex to enhance Notch signaling. 

Further study is required to reveal the molecular mechanism by which AIB1 enhances 

NICD-CSL-MAML transactivation.

Notch signaling not only plays a critical role in CRC progression but also plays an essential 

role in intestinal development and homeostasis. Gut-specific inactivation of the Notch 

effectors Hes1, Hes3 and Hes5 in mice leads to impaired intestinal homeostasis by reducing 

cell proliferation, increasing goblet cell formation, and altering intestinal structures42. These 

results indicate that although Notch signaling is a promising target for anti-CRC therapy43, 

direct inhibition of Notch signaling could cause severe side effects by inducing stem/

progenitor cells in healthy intestinal regions to differentiate into goblet cells. Thus, a 

strategy to inhibit Notch signaling only in CRC cells without affecting healthy cells is 

desirable. AIB1-deficient mice exhibit relatively normal intestinal structures, enterocyte/

goblet cell ratio, and colon epithelial cell proliferation (Supplementary Figure S4), 

indicating that AIB1 deficiency does not affect intestinal development and homeostasis in 

general. Given that AIB1 is dispensable in normal intestinal homeostasis, but plays an 

essential role in CRC progression at least in part through enhancing Notch signaling, AIB1 

emerges as a potential drug target for anti-CRC therapy through interference of Notch 

signaling without severe side effects on normal intestine. Recently, Wang et al. reported that 

a natural polyphenol gossypol and a cardiac glycoside bufalin were capable of binding to 

AIB1 protein to promote its degradation44-45, providing the proof-of-principle basis for the 

development of AIB1 targeting drugs for CRC treatment.

It has been shown that AIB1 promotes cancer progression by enhancing several oncogenic 

pathways such as ER, AR, EGFR, Akt, AP1, NRF2, NF-κB, and PEA36. Some of these 

oncogenic pathways have been shown to be involved in CRC progression. Therefore, AIB1 
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may simultaneously activate Notch and other oncogenic pathways to promote CRC 

progression. It is possible that therapeutically targeting AIB1 dampens not only Notch 

signaling pathway but also other oncogenic pathways to inhibit CRC progression.

Collectively our study demonstrates that AIB1 plays an essential role in CRC progression. 

AIB1 promotes CRC progression by directly interacting with NICD and MAMAL1 to 

enhance Notch signaling. Therefore pharmacological targeting of AIB1 may be a promising 

approach for treating CRC.

MATERIALS AND METHODS

Tissue culture

RKO, Caco-2, SW620, SW480 and HEK293T were maintained in DMEM supplemented 

with 10% FBS and antibiotics. HCT116 was cultured in MyCoy5A's medium and mouse 

CRC cell CT26 were cultured in RPMI1640 supplemented with 10% fetal bovine serum 

(FBS) and antibiotics.

AIB1-knockdown experiments

Two different small interfering RNAs (siRNAs) were synthesized against human AIB1 and 

two different siRNAs were synthesized against mouse AIB1. Human AIB1-specific 

targeting sequences of each siAIB1 were as follows: siAIB1-1, 5’-

AGACTCCTTAGGACCGCTT-3’; siAIB1-2, 5’-TCGAGACGGAAAACATTGTA-3’. 

Mouse AIB1-specific targeting sequences of each siAIB1 were as follows: siAIB1-1’, 5’-

GAACACGATTGTCGTTTGT-3’; siAIB1-2’, 5’-GTGTGTCAGTCAAACAGCA-3’. 

Human AIB1-specific targeting sequence 5’-AGACTCCTTAGGACCGCTT-3’ and mouse 

AIB1-specific targeting sequence 5’-GAACACGATTGTCGTTTGT-3’ were inserted into 

pSUPER/pll3.7 to generate pSUPER-sh-hAIB1 and pll3.7-sh-mAIB1 plasmids, respectively. 

All siRNAs and plasmids were transfected into different cell lines using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions.

Cell proliferation and cell cycle analysis

Cell proliferation was analyzed by MTT assay and cell cycle was measured by flow 

cytometry as described in our previous study9, 46.

Cell viablility/death assay

The cell viablility/death assay was analyzed by propidium iodide (PI) staining. Briefly, the 

cells were harvested and collected in phosphate-buffered saline (PBS). After washing with 

PBS, the cells were resuspended in 1 ml PBS containing 5μg PI. PI incorporation and cell 

size were quantified by flow cytometry. All cells were divided into three regions. PI-

negative cells of normal size were considered viable cells , PI-positive and smaller size cells 

were considered apoptotic cells of early phase , and PI-negative cells of smaller size were 

consider died cells of later period and the last two regions were consider cell death.
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Real-time RT–PCR

Real-time RT-PCR was performed as previously described. Total RNA was isolated and 

reverse trancribed into cDNA using MMLV transcriptase (ToYoBo, Shanghai, China) with 

random primers. Real-time PCRs were performed using the StepOne Real-time PCR system 

(Applied Biosystems) with the SYBR Green master mix (Applied Biosystems). The primer 

sequences for cyclin A2, cyclin B1, cyclin E2, Hes1, p27, ATOH1 and MUC2 will be 

provided on request. Primers for GAPDH has been published in our previous study46.

Antibodies and Western blot

The Western blot and anti-AIB1 antibody has been described in our previous study9. Anti-

Myc (9E10) and HA (F7) antibody were purchased from Santa Cruz. FLAG beads (M2 

beads) and anti-FLAG antibody was purchased from Sigma Aldrich. Super-signal west 

Femto Lumianal/Enhancer Solution (Thermo Fisher Scientific Inc.) was used for imaging.

Chromatin immunoprecipitation (ChIP) assay and ChIP-reChIP assay

ChIP assay and ChIP-reChIP assay were processed according to the manufacturer's 

instructions (Abcam). The following primers were used to amplify the DNA fragment 

corresponding to the sequence from -167 to +8 on Hes1 promoter: Hes1 forward: 

cagaccttgtgcctggcg, Hes1 reverse: tgtgatccctaggccctg.

In vitro expression of AIB1 protein and GST pull-down assays

The coding sequence of AIB1 was clonded into pCR3.1 at downstream of a T7 promoter. E. 

coli extract-based cell free in vitro expression of AIB1 protein was performed using the S30 

T7 high yield Protein Expression System (Promega) following the manufacturer's protocol. 

For GST pull-down assays, 1 μg of E. coli-produced GST or GST fusion proteins were 

immobilized on glutathione-agarose (Roche) for 1 h at room temperature. After several 

washes, the agarose was resuspended and then incubated with in vitro expressed proteins or 

cell lysates containing indicated proteins at 4°C. After extensive washes, bound proteins 

were eluted, resolved with SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

visualized by immumoblotting.

Cell invasion assays

Matrigel invasion assays were performed to investigate the cell invasiveness. The method 

has been described in our previous study9.

Mice

6 to 8-week-old male BALB/c mice were used for tumor formation and metastasis 

experiments. 6 to 8-week-old male SRC-3−/− mice and wild-type littermates on a BALB/c 

background were used for endogenous colon tumor induction experiments. Animal 

experiments were performed in accordance with the Guide for the Care and Use of 

Laboratory Animals. All animal experimental procedures were approved by Animal Care 

and Use Committee of Xiamen University. Every effort was made to reduce the suffering of 

animals.
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Tumor formation

4×106 CT26-sh-mAIB1 and control cells were subcutaneously injected into BALB/c mice, 

respectively. Two perpendicular axis of the tumor were measured every 3 days from 10 days 

after injection. The volume of the tumor was calculated according to the formula: 

Volume=Length × Width2 × 0.52. Four weeks after injection, the mice were sacrificed and 

the tumors were photographed and used for Western blot and immunohistochemical 

analysis.

Tumor metastasis

To test tumor metastasis, CT26-sh-mAIB1 and control cells were intravenously injected into 

BALB/c mice. Three weeks after injection, mice were sacrificed and lungs were fixed by 

picric acid-formaldehyde. Tumors in the lungs were quantitated and used for Western blot 

analysis, H&E staining, and immunohistochemical analysis.

Colon tumor induction

To induce colon tumor, azoxymethane (AOM) was injected into male SRC-3−/− mice and 

wild-type littermates intraperitoneally, followed by administration of three 1-week cycles of 

2.5% dextran sodium sulfate water, each cycle separated by 2 weeks36. After 12 weeks of 

treatment with AOM/DSS, mice were sacrificed and colons were isolated for photographing, 

quantitation, H&E staining, and immunohistochemical analysis.

Immunohistochemistry

Slides were soaked in preheated citrate buffer (pH 6.0) under microwave heating for 20 min 

to retrieve antigen. After cooling down, slides were washed with PBS and then incubated 

with Ki-67 antibody (1:500) for 1 h, followed by incubation with alkaline phosphatase-

conjugated secondary antibody for 1 h. After washing, NBT/BCIP reagent was added to 

visualize stained proteins.

Terminal deoxynucleotidyl Transferase Fluorescein-dUTP Nick End Labeling (TUNEL) 
assay

The TUNEL assay was performed using a commercially available kit (in situ cell death 

detection kit, Roche) according to the manufacturer's instruction.

Statistical analysis

The data were collected from several independent experiments, with three replicates per 

experiment. All data were expressed as means+s.d. Statistically significant differences 

(P<0.05) were examined using t-test in SPSS 11.0 for Windows (SPSS Inc., Chicago, IL, 

USA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AIB1 is overexpressed in CRC cell lines and promotes CRC cell proliferation
(a) Western blot analysis of expression of AIB1 protein in normal colon epithelium cells and 

6 CRC cell lines. (b,c,d) Proliferation of CRC cell lines RKO, HCT116, and CT26 

transiently transfected with AIB1 siRNA or control siRNA was measured by MTT assay. 

(e,f,g) Proliferation of CRC cell lines RKO, HCT116, and CT26 stably transfected with 

AIB1 shRNA or control shRNA was measured by MTT assay. The knockdown efficiency of 

AIB1 was measured by Western blot analysis. All experiments were performed at least 
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twice with similar results. All data are the means +s.d. (n=3) at each time point. Statistically 

significant difference: *P<0.05 and **P<0.01(t-test).
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Figure 2. Knockdown of AIB1 induces CRC cell cycle arrest
(a,b) Cell cycle progress of RKO and CT26 cells stably trasnfected with AIB1 shRNA or 

control shRNA was measured by flow cytometry. (c,d) The mRNA levels of Cyclin A2, 

Cyclin B1, cyclin E2, Hes1, p27, ATOH1, and MUC2 in AIB1-knockdown RKO and CT26 

cell as well as control cells were determined by real-time PCR, respectively. Each 

experiment was performed at least twice with similar results. All data are the means +s.d. 

(n=3) at each time point. Statistically significant difference: **P<0.01(t-test).
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Figure 3. AIB1 enhances Notch signaling
(a, b) Knockdown AIB1 significantly decreases Hes1 promoter activity in RKO and CT26 

cells as determined by luciferase reporter assay. (c) AIB1 cooperated with NICD and 

MAML1 to enhance Hes1 promoter activity. (d) Schematic of the Hes1 proximal promoter. 

Forward and Reverse: Forward and Reverse primers used for ChIP assay. NREs: Notch 

response elements. TSS: Transcriptional start site. (e) AIB1 was recruited to the Hes1 

proximal promoter in the absence and presence of ectopic NICD as measured by ChIP assay. 

(f) Simultaneous recruitment of AIB1 and NICD to the Hes1 proximal promoter was 

measured by ChIP-reChIP assay. Cells were transfected with HA-NICD and Flag-AIB1 
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expression plasmids and then lysed for ChIP and ChIP-reChIP assays using control IgG, 

anti-HA antibody, and anti-Flag antibody for IP. (g) NICD rescued the proliferation of 

AIB1-knockdown CT26 cells. Each experiment was performed at least twice with similar 

results. All data are the means + s.d. (n=3) at each time point. Statistically significant 

difference: *P<0.05 and **P<0.01(t-test).
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Figure 4. AIB1 directly binds to NICD and MAML1
(a) Cells were transfected with Myc-NICD expression plasmids and then lysed for Co-IP 

assays using control IgG, AIB1 antibody, and anti-Myc antibody. Precipitated proteins were 

subjected to immunoblotting to detect AIB1 and Myc-NICD. (b) Co-IP analysis of the 

interaction of endogenous AIB1 and NICD in CT26 cells. (c) GST pull-down analysis of the 

interaction of AIB1 and NICD in vitro. E.coli-produced GST or GST-NICD protein was 

incubated with AIB1 protein produced by an E. coli extract-based cell free protein synthesis 

system for GST pull-down assays. (d) Schematic of the AIB1 protein and the interaction of 
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AIB1 with NICD through its HAT domain. Immobilized GST-NICD or GST proteins were 

incubated with 5 different AIB1 domain proteins overexpressed in 293T cells for GST pull-

down assays. (e) Cells were transfected with Flag-MAML1 expression plasmids and then 

lysed for Co-IP assays using control IgG, AIB1 antibody, and anti-Flag antibody. 

Precipitated proteins were subjected to immunoblotting to detect AIB1 and Flag-MAML1. 

(f) GST pull-down analysis of the interaction of AIB1 and MAML1 in vitro. E.coli-

produced GST or GST-MAML1 protein was incubated with AIB1 protein produced by an E. 

coli extract-based cell free protein synthesis system for GST pull-down assays. Each 

experiment was performed at least twice with similar results.
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Figure 5. Knockdown of AIB1 reduces the tumor formation
(a) The foci numbers in colony formation of AIB1-knockdown RKO, HCT116 and CT26 

cells and control cells was measured by crystal violet staining. Each experiment was 

performed twice with similar results. All data are the means + s.d. (n=3). Statistically 

significant difference: **P<0.01(t-test). (b) AIB1-knockdown CT26 and control cells were 

injected subcutaneously into the dorsal flanks of BALB/c mice, respectively. Tumor growth 

was monitored for 18 days. The experiment was performed once. (c,d) Eighteen days after 

injection, mice were euthanized and tumors were harvested for imaging and volume 

measuring (**P<0.01, N=6 tumors). (e) Hematoxylin and eosin (H&E) and Ki-67 staining 
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of tissue sections from control and AIB1-knockdown CT26 tumors. (f) Quantitation of 

Ki-67-positive tumor cells (*P<0.05, N=6 tumors).
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Figure 6. Knockdown of AIB1 decreases CRC cell invasion in vitro and tumor metastasis
in vivo. (a) Images and quantitation of AIB1-knockdown RKO and CT26 cells and control 

cells penetrating through the matrigel-coated membrane Each experiment was performed 

twice with similar results. All data are the means + s.d. (n=3). Statistically significant 

difference: **P<0.01(t-test). (b) Images of the lungs at 14 days after injection of AIB1-

knockdown CT26 and control cells. Arrow indicated tumors on the surface of the lungs. The 

experiment of tumor metastasis in vivo was performed once. (c) Quantitation of tumor 

number on the surface of the lungs (**P<0.01, N=5 lungs). (d) Western blot analysis of the 

expression of AIB1, Hes1 and p27 in control and AIB1-knockdown CT26 tumors. (e) H&E 

and Ki-67 staining of tissue sections from control and AIB1-knockdown CT26 tumors. 
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Arrow indicated Ki-67-positive tumor cells. (f) Quantitation of Ki-67-positive tumor cells (* 

P<0.05, N=5 tumors).
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Figure 7. AIB1-deficient mice are resistant to AOM/DSS-induced colorectal cancer
(a) Images of colorectal tumors on the colons from AIB1-deficient and wild-type mice after 

12-week AOM/DSS treatment. The experiment of AOM/DSS-induced colorectal cancer was 

performed twice with similar results. (b,c) Quantitation of the number and size of colorectal 

tumors (**P<0.01, N=5 colons). (d) H&E and Ki-67 staining of tissue sections of colorectal 

tumors from AIB1-deficient and wild-type mice(*P<0.05, N=5 tumors). (e) Quantitation of 

Ki-67-positive tumor cells (* P<0.05, N=5 tumors). (f) The mRNA levels of AIB1, cyclin 

B1, Hes5, ATOH1, and MUC2 were measured in colorectal tumors from AIB1-deficient and 

wild-type mice, respectively (*P<0.05, N=5 tumors).
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