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Abstract 

Background: There is a need to evaluate how the choice of time interval contributes to the lack of consistency of 
SDoH variables that appear as important to COVID‑19 disease burden within an analysis for both case counts and 
death counts.

Methods: This study identified SDoH variables associated with U.S county‑level COVID‑19 cumulative case and 
death incidence for six different periods: the first 30, 60, 90, 120, 150, and 180 days since each county had COVID‑19 
one case per 10,000 residents. The set of SDoH variables were in the following domains: resource deprivation, access 
to care/health resources, population characteristics, traveling behavior, vulnerable populations, and health status. A 
generalized variance inflation factor (GVIF) analysis was used to identify variables with high multicollinearity. For each 
dependent variable, a separate model was built for each of the time periods. We used a mixed‑effect generalized 
linear modeling of counts normalized per 100,000 population using negative binomial regression. We performed a 
Kolmogorov‑Smirnov goodness of fit test, an outlier test, and a dispersion test for each model. Sensitivity analysis 
included altering the county start date to the day each county reached 10 COVID‑19 cases per 10,000.

Results: Ninety‑seven percent (3059/3140) of the counties were represented in the final analysis. Six features proved 
important for both the main and sensitivity analysis: adults‑with‑college‑degree, days‑sheltering‑in‑place‑at‑start, 
prior‑seven‑day‑median‑time‑home, percent‑black, percent‑foreign‑born, over‑65‑years‑of‑age, black‑white‑segrega‑
tion, and days‑since‑pandemic‑start. These variables belonged to the following categories: COVID‑19 related, vulner‑
able populations, and population characteristics. Our diagnostic results show that across our outcomes, the models of 
the shorter time periods (30 days, 60 days, and 900 days) have a better fit.

Conclusion: Our findings demonstrate that the set of SDoH features that are significant for COVID‑19 outcomes var‑
ies based on the time from the start date of the pandemic and when COVID‑19 was present in a county. These results 
could assist researchers with variable selection and inform decision makers when creating public health policy.
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Background
The impact of the COVID-19 pandemic in the US, 
caused by Severe Acute Respiratory Syndrome Corona-
virus 2 (SARS-CoV-2), has been profound, resulting in 
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substantial morbidity and mortality as well as societal, 
economic, and political disruption. Equally profound has 
been the pandemic’s disproportionate impact on disad-
vantaged minority subpopulations, essential workers, and 
those experiencing economic vulnerability and instabil-
ity [1–5]. These and other social determinants of health 
(SDoH) are important predictors of COVID-19 outcomes 
and highlight health inequities in the US and across 
countries globally [6–8].

COVID-19 is a communicable, and potentially pre-
ventable, disease. Strategies to reduce spread include: 1) 
personal actions such as physical distancing (e.g., work at 
home, social distancing), personal hygiene (e.g., sanita-
tion and hand washing), and use of protective equipment 
(e.g., masks); 2) case and contact tracing (e.g., outreach 
and counseling to stay at home); 3) regulatory actions 
(e.g., stay at home orders, government action related to 
gatherings and public meetings, public transport limita-
tions, school closures); and 4) international border meas-
ures (e.g., travel restrictions and quarantine) [9].

Though prevention strategies have been shown to be 
effective, differences in implementation timing and inten-
sity at the state and county levels have led to consider-
able variation in COVID-19 outcomes. Sub-populations 
may face challenges to implementing these strategies due 
to limited flexibility in work requirements, such as work 
involving direct contact with the public or not having 
paid sick leave. Although no national data are available 
for individuals, extensive data are available at the county 
level that can be used to assess the impact of COVID-
19 on sub-populations, which can help guide policies to 
combat the spread of the disease.

Defined as the social conditions under which peo-
ple “live, work, and age” (WHO SDoH webpage), social 
determinants of health (SDoH) represent a broad array 
of measures that may be grouped broadly into domains: 
economic stability, educational access and quality, health 
care access and quality, neighborhood and built environ-
ment, and social and community context [10]. SDoH can 
negatively influence the spread of COVID-19 as deprived 
areas have limited access to quality healthcare and char-
acteristics that make adhering to public health meas-
ures designed to minimize disease spread more difficult 
(eg., crowded housing) [11]. A healthy labor market, for 
instance, may influence access to stable employment with 
health coverage and/or flexible hours. However, occupa-
tional exposure to COVID-19 among essential workers, 
many of whom do not have employer-provided health 
insurance, is much higher among minority groups [12]. 
Research suggests that areas characterized by high pov-
erty [13, 14] or income inequality [15] have higher rates 
of disease spread. Housing and population density can 

influence the effectiveness of attempts to curb transmis-
sion through social distancing measures [7, 13].

Multiple studies have assessed relationships between 
race, social factors such as poverty, air pollution, mobil-
ity, and population density, and COVID-19 outcomes 
(incidence and death) at the county level in the US [11, 
16–21]; however, most have focused on assessing factors 
in isolation or on a relatively small number of predictors, 
and none have combined county-level COVID-19 poli-
cies, reported shelter-in-place behaviors, and essential 
worker percentages in their analyses.

For this study, we used publicly available data from 
the NIH National COVID Cohort Collaborative (N3C) 
to assess the importance of a broad array of SDoH fac-
tors during the first 6 months that each US county expe-
rienced COVID-19 with a focus on 8 core domains: 
COVID-19 policies, traveling behaviors, essential work-
ers, access to health care, resource deprivation, health 
status, population characteristics, and vulnerable popu-
lations (Fig. 1). The temporality of these features have a 
critical role in disaster response, such as the decision-
making at the county-level [22, 23]; however, with the 
potential trajectory of multiple COVID-19 waves, selec-
tion and assessment of temporal units are important for 
multiple use-cases, including situational awareness, time 
and resource allocations, and characterization of popula-
tions at-risk [24, 25]. Our goal was to better understand 
the impact of SARS-CoV-2 on subpopulations in the US 
and identify potential opportunities for interventions 
to advance health equity. We aimed to evaluate how the 
choice of time interval contributes to the lack of consist-
ency of SDoH variables that appear as important within 
an analysis for both case counts and death counts. Addi-
tionally, we modeled county level outcomes with respect 
to when a county experienced COVID-19 spread. Most 
county-level SDoH and COVID-19 studies have not 
taken that approach but picked a single starting point for 
all counties.

This study was informed to answer the following 
research questions:

• How much do SDoH factors explain the variation 
in county-level COVID-19 incidence and mortality 
during the first 30, 60, 90, 120, 150, and 180 days in 
which a county was affected?

• Do COVID-19 policies, shelter-in-place behavior, 
and percent essential workers contribute to county-
level COVID-19 incidence when controlling for 
SDoH?

• Are SDoH factors associated with a high all-time 
14-day average for 30, 60, 90, 120, 150, and 180 day 
endpoints?
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• Do models using these variables have better fit for 
certain time periods?

Methods and materials
Study design and setting
This study identified SDoH variables associated with 
U.S county-level COVID-19 cumulative case and death 
incidence for six different periods: the first 30, 60, 90, 
120, 150, and 180 days since each county had COVID-
19 present. Variables were modeled at each period to 
determine if the SDoH factors associated with high inci-
dence and mortality are similar for each endpoint. We 
defined county-level start time as the first day a county 
had 1 COVID-19 case per 10,000 residents. We choose a 
threshold instead of using the day the first case was pre-
sent because one case in a county might not represent the 
possibility of COVID-19 spreading (e.g., if someone was 
tested at the airport and was immediately quarantined).

Independent variables
We identified a set of SDoH variables in the following 
domains: resource deprivation, access to care/health 
resources, population characteristics, traveling behav-
ior, vulnerable populations, and health status. Addition-
ally, we identified COVID-19 specific variables related to 
shelter-in-place behavior and policy orders, and percent 
of the population working in essential services. Neigh-
borhood shelter-in-place dataset and local policy orders 

were derived from Safegraph [26] and HealthData.gov 
[27], respectively. Iowa was listed as having a state-level 
shelter-in-place order, but that policy did not extend to 
the general public [28], so it was removed from the data-
set. Other county-level variables were derived from the 
Food Access Research Atlas [29], Social Capital Index 
[30], the Area Deprivation Index (ADI) [31], Social Dep-
rivation Index (SDI) [32], the US Census County Busi-
ness Patterns dataset [33], and Rural-Urban Continuum 
Codes (RUCC) [34]. These datasets were used to cal-
culate the percent of people with limited food access, 
unemployment rate, poverty rate, without-health-insur-
ance rate, percent of the population who smoke, percent 
of population in fair or poor health, mean commute time, 
density, percent non-Hispanic black, percent Hispanic, 
percent foreign born, black-white segregation score, per-
cent of adults with a college degree, ADI score, SDI score, 
and RUCC code. A description of the RUCC classifica-
tion appears in Table 3 of Additional file 1. Boston Uni-
versity Sharecare was used to obtain physician density 
(active MDs per 1000 residents), percent of the popula-
tion accessing public assistance (alleviation of resource 
deprivation), and commuting modality patterns [35]. We 
included days-since-pandemic-start (as described above) 
as a variable. We also included population-size, density 
(derived from the Social Capital index dataset) and per-
cent tested (number of COVID-19 tests divided by popu-
lation size) variables (provided by the U.S. Department of 
Health & Human Services) as potential confounders.

Fig. 1 SDoH variables considered for analysis
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Some of these variables required data transformations. 
The state-level testing rates for each period were defined 
as the total tests administered during that period divided 
by the state population. From the SafeGraph dataset, we 
created a prior-seven-day-median-time-home variable 
defined as the median time home over the seven-day 
period 2 weeks prior to COVID-19 being present in a 
given county. Days-since-pandemic-start was defined as 
the number of days between when the COVID19 pan-
demic was declared in the U.S. (March 13th) and when 
a county had COVID-19 present. We created a binary 
variable indicating whether a county had an active shel-
ter-in-place order at the county or state level during the 
first week COVID-19 was present. We created a vari-
able, days-sheltering-in-place-at-start, which indicates 
the number of days a county had a shelter-in-place pol-
icy in effect up to the seventh day after the COVID-19 
county-level start date. For essential workers, jobs data 
from the US Labor Bureau was transformed into three 
variables representing the percent of workers in each of 
the three categories of essential workers created by the 
Advisory Committee on Immunization Practices (ACIP) 
and endorsed by the CDC (1a: essential healthcare work-
ers, 1b: essential non-healthcare workers, 1c: other essen-
tial workers) [36]. Variables selected targeted established 
SDoH Domains reflected in the Healthy People 2030 
Report (ref ) and domains reflected in the Socioecological 
Model of Health (SEM) (see Fig. 1).

Outcome variables
We integrated several new and existing data sources 
to inform our analysis. COVID-19 mortality and case 
statistics were derived from the USA Facts database 
[37]. This dataset contains cumulative daily counts for 
deaths and cases. Some of the numbers needed to be 
adjusted because, at times, some days will have lower 
reported numbers than the previous day. A random 
dip or increase could last for days. This causes negative 
values for case and death counts, accounting for < 1% 
of the data. Approximately 66% of counties have one 
negative value. When there were random increases or 
decreases that caused a negative value, we updated the 
value to the previous day’s value and repeated this pro-
cess for the following days where the problem persisted 
if the the problem persisted between 1 and 3 days. In 
instances where the problem persisted for longer than 
3 days, we did not update any values and left the count 
negative. After this adjustment, fewer than 0.01% of 
daily new cases and fewer than 0.01% were negative. 
From this dataset, we derive four outcome variables: 
cumulative case counts per 100,000, cumulative deaths 
counts per 100,000, maximum 14-day rolling aver-
age cases per 100,000, and maximum 14-day rolling 

average deaths per 100,000. The outcome variables 
were rounded to the nearest integer so that these out-
comes could be modeled in a similar manner to case/
death counts.

Uncorrelated feature selection
A generalized variance inflation factor (GVIF) analy-
sis was used to identify variables with high multicol-
linearity, which is appropriate for a mix of categorical 
and numerical variables [38]. Variables considered are 
shown in Fig.  1. A linear model was created with the 
case and death counts for the 180-day period. The vari-
able with the highest GVIF^(1/2Df ) score \ for cases 
or deaths was removed using the R car package [39]. 
This process was repeated until no variable had a score 
above two, which is a conservative threshhold for con-
sidering multicollinearity [38]. We considered specific 
fixed baseline variables in the categorical variables for 
consistency in the GVIF analysis.

Statistical methods
For each dependent variable, a separate model was 
built for each of the time periods. We used a mixed-
effect generalized linear modeling of counts normal-
ized per 100,000 population using negative binomial 
regression due to non-normality, heteroskedasticity, 
and over-dispersion. Independent variables were all 
re-scaled so that coefficient estimates are compara-
ble. As there was significant variability in COVID-19 
response and disaster preparedness at the state level, 
we used state and a random effect model to capture 
that variability. We used the glmmTMB package in R 
[40] for modeling as it is faster and possesses greater 
flexibility for specifying variance and covariance 
structures [40].

DHARMa [41] was used for model diagnostics. This 
package uses simulations to create interpretable residu-
als of linear mixed models. It includes the Kolmogo-
rov-Smirnov goodness of fit test, an outlier test, and a 
dispersion test. Outliers are points outside the simu-
lation envelope. It is important to note that DHARMa 
will often show a slight pattern in residuals when the 
dataset is large [42]. Additionally, with many data 
points, residual diagnostics will inevitably become sig-
nificant as a perfectly fitting model is unlikely.

We performed a complete case analysis. Sensitiv-
ity analysis included altering the county start date to 
the day each county reached 10 COVID-19 cases per 
10,000 people to determine if the choice of county-level 
start date threshold had an impact on what features 
were important.
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Results
Ninety-seven percent (3059/3140) of the counties were 
represented in the final analysis. Counties with miss-
ing values across any independent variable in our study 
were removed. Columns with missing values: percent-
who-smoke, black-white-segregation, prior-seven-day-
median-time-home, in-fair-or-poor-health, and across 
all essential services variables. The following variables 
were removed as their GVIF multicollinearity score was 
above 2: ADI-score, SDI-score, in-fair-or-poor-health, 
and percent-public-transport. Table  1 of Additional 
file 1 displays the distribution of values across our inde-
pendent variables, and Table 2 of Additional file 1 dis-
plays the distribution of outcome variables.

Figure  2 displays the distribution of COVID-19 
county start dates based on our threshold of 1 case per 
10,000 people. Most counties have a start date between 
March and May of 2020.

Figures  3, 4, 5 and 6 show the estimates for signifi-
cant variables across all 6 time periods. Each figure cor-
responds with 1 outcome type. Figure  3 shows results 
for cumulative cases, Fig. 4 for cumulative deaths, Fig. 5 
for maximum 14-day average cases, and Fig. 6 for maxi-
mum 14-day average deaths. As all variables have been 
rescaled, the size of the coefficient estimate (indicated 
by the size of the bubble) represents the magnitude of 
the regression coefficient of the variable. A full descrip-
tion of RUCC codes appears in Table  3 of Additional 
file 1.

Our analysis defines important features as those that 
are statistically significant for the majority (4-6 end-
points) of the models for each outcome type. Figure  7 
displays important variables, whether they have a posi-
tive or negative association, and for which endpoints they 
are important. The only categories not represented in this 
table were essential workforce and health status.

Diagnostics
Figures  2 through 5 of the Additional file  1 show the 
results of diagnostic testing using the DHARMa package. 
For each model in our analysis, the results of the QQ-
plot, Kolmogorov-Smirnov test, outlier test, and disper-
sion test are displayed. For the cumulative cases outcome 
test, dispersion and outliers are not significant. Kolmog-
orov-Smirnov shows deviation for all tests. The QQ-plot 
shows the closest fit for the 90-day model and the worst 
fit for the 180-day model. For the cumulative death mod-
els, deviation is significant for all models and outliers are 
significant for the 60-day, 120-day and 180-day model. 
The Kolmogorov-Smirnov test shows deviation from 
uniform residuals for all except for the 30- and 60- day 
models. The QQ-plot shows a close fit for the 30- and 
60-model, and the fit worsens for each additional time 
frame. For the 14-day maximum cases model, dispersion 
is non-significant for all models. Outliers are significant 
for the 30-day and 120-day model. The Kolmogorov-
Smirnov test shows residual deviation is significant for all 
models. The QQ-plots show the closest fit for the 90 and 

Fig. 2 Distribution of COVID‑19 county start dates
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Fig. 3 Estimates for cumulative case count models. Positive associations are in blue, and negative associations are in orange

Fig. 4 Estimates for cumulative death count models. Positive associations are in blue, and negative associations are in orange
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Fig. 5 Estimates for 14‑day maximum average case count models. Positive associations are in blue, and negative associations are in orange

Fig. 6 Estimates for 14‑day maximum average death count models. Positive associations are in blue, and negative associations are in orange
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120-day models and the worst fit for the 180-day model. 
For the 14-day maximum deaths model, the Kolmogorov-
Smirnov test shows significant residual deviation for all 
models except the 60-day model. Outliers were not sig-
nificant for any model, and dispersion was significant for 
only the 60-day model. The QQ-plot of the 14-day maxi-
mum deaths model shows less deviation than the models 
for the other outcome variables for the 90, 150, 120, and 
180 day endpoints. The cumulative deaths and 14-day 
maximum deaths models have a better fit than the corre-
sponding cases models of each endpoint. Across our out-
comes, the models of the shorter time periods (30 days, 
60 days, and 900 days) have a better fit.

Sensitivity analysis
The results of the sensitivity analysis, in which the thresh-
old for a county having COVID-19 present was 10 cases 
per 10,000 people, had some differences compared to the 
main analysis. Our analysis defines important features as 
those that are important for the majority (4-6) endpoints 
of the models for each outcome type. For variables with 
a positive association in the main analysis, there were 
several differences. The days-since-the-pandemic-start 
variable was not significant for as many endpoints for 
cumulative deaths, 14-day max cases, and 14-day max 
deaths. The poverty-rate variable was significant for 

cumulative cases, cumulative deaths, and 14-day maxi-
mum deaths. Early-policy was important for types of 
death-count models. RUCC 7 was important for 14-day 
maximum cases. Density and without-health-insurance 
were not important for any outcome.

Several variables with a negative association also 
showed a different pattern for the sensitivity analysis 
when compared to the main analysis. Unemployment-
rate was important for cumulative and 14-day maxi-
mum case count models, essential-worker-type-b was 
important for 14-day maximum death count models, 
RUCC 2,3,5,7,8,9 and percent-public-assistance were 
not important for any outcome. Percent-walk was 
only important for cumulative deaths. Figures  5-8 of 
the Additional file 1 show the complete results for the 
sensitivity analysis.

Features important for the main and sensitivity analysis
Six features proved important for both the main and sen-
sitivity analysis: adults-with-college-degree, days-shelter-
ing-in-place-at-start, prior-seven-day-median-time-home, 
percent-black, percent-foreign-born, over-65-years-of-
age, black-white-segregation, and days-since-pandemic-
start. These variables belonged to the following categories: 
COVID-19 related, vulnerable populations, and popula-
tion characteristics.

Fig. 7 Important variables across all endpoints. Red arrows indicate a positive association with the outcome and green arrows indicate a negative 
association. RUCC code 2 represents metropolitan areas and codes 4,5,7,8,9 represent non‑metropolitan areas. RUCC codes 4 and 8 represent 
counties that are adjacent to a metro area. Codes 5,7, and 9 represent counties not adjacent to a metro area
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Discussion
Pandemics are major disruptions that demand com-
plex, multi-dimensional analytics to understand the 
diverse drivers of morbidity and mortality at the scale of 
populations. Our analysis identified the subset of vari-
ables which are significant across multiple timeframes 
using a more comprehensive set of variables than previ-
ous research. The key findings identified community-
level population characteristics, access to care/health 
resources, vulnerable populations, COVID-19 related 
behaviors and policies, resource deprivation and trave-
ling behavior as important SDoH categories as having 
persistently increased risk of COVID-19 outcomes. Fur-
ther, our diagnostic testing showed that cumulative and 
14-day maximum death counts models had the best fit 
for the 30-, 60-, and 90-day models.

Several findings are consistent with previous research 
[11, 43, 44]. Vulnerable populations (higher percent-
age of black population, those over 65 and foreign-born 
populations) are at disproportionately increased risk 
[45–47]. Percent-black and percent-foreign-born were 
associated with cumulative case and deaths counts 
as well as maximum 14-day rolling averages for cases 
and deaths. Percent-over-65 were associated with only 
deaths but not cases. The effect of these variables on 
outcomes decreased as the pandemic progressed. This 
effect was also seen in other studies [48]. This high-
lights the role of structural racism in the pandemic. 
The vulnerable foreign born and black populations 
bore the brunt of the pandemic in the earlier phase. 
A lack of resources to “weather the storm” may have 
been responsible [49]. Many vulnerable population 
members are engaged in front line jobs that require in 
person presence at work. This would hinder their abil-
ity to shelter in place effectively and lose the protection 
offered by sheltering in place that was found to be pro-
tective for all outcomes. As the pandemic progressed, 
these vulnerable population effects decreased on the 
outcomes. This makes it likely that the effect seen at 
the onset of the pandemic was not due to some genetic 
characteristic inherent in the population which led 
to greater impact on vulnerable populations, but the 
socioeconomic disparities faced by vulnerable popu-
lations that made them more susceptible and less able 
to bounce-back from COVID infection. Prior work 
has also shown that racial characteristics do not lead 
to poorer outcomes once hospitalized for COVID-19 
[6]. The over-65 population was not more susceptible 
to COVID-19 infections but had higher mortality once 
infected. This observation provides further evidence 
in support of the likelihood that socioeconomic dis-
parities were responsible for the disparate impact of the 
pandemic on vulnerable populations.

Additionally, percent-public-assistance and percent-
walk were identified as protective factors against mortal-
ity in neighborhood level analysis [50]. It is an interesting 
finding that counties with high rates of public assistance 
use had lower rates of COVID-19 as that is an indication 
that the county has a high rate of impoverished residents. 
One potential explanation is that those using governmen-
tal programs could avoid environments that put them at 
risk and receive better education on pandemic mitigation 
strategies.

Our figures show a consistent or increasingly negative 
magnitude of the regression coefficient of the days-since-
pandemic-start variable across different time frames. 
Even when accounting for SDoH and population charac-
teristics, counties with more days between the pandemic 
start date and when they met the threshold for COVID-
19 being present had increased death and case counts as 
well as high 14-maximum death and case averages.

Surprisingly, this was not directly related to RUCC 
designations, as both rural and urban RUCC codes were 
found to be not important to either cumulative or 14-day 
cases, with the exception of RUCC 8, a highly rural cat-
egory. While, in most states, metropolitan areas were hit 
initially before COVID-19 spread out to rural areas, there 
were some exceptions, such as in South Carolina where 
the pattern was reversed [51]. The pattern of RUCC 
codes here doesn’t match a clear rural (4-9) or urban pat-
tern, either. Other papers analyzing cumulative county 
death and case counts for SDoH did not factor in the 
existence of a COVID-19 characteristic, when COVID-
19 was first present in the county. We found this fea-
ture to be important as a protective factor for cases and 
deaths. However, features important for individual case-
finding studies may differ from the trends observed at 
the county-level or other spatial-units; we may consider 
these county-level associations as hypothetically impor-
tant and informative for further causal research.

Health domain factors (percent-obese and per-
cent-who-smoke) were not significant in our mod-
els for cumulative deaths or 14-day maximum average 
deaths. This is in contrast to other research using both 
county-level data and individual-level data [11, 52, 53] 
that identified both smoking and obesity as significant 
risk factors for COVID-related mortality. There are 
a number of possible reasons why these factors were 
not significant in our models. First, despite the feature 
selection steps described above, there remains colline-
arity between some of our independent variables (Fig. 1 
of Additional file  1). Both factors, for example, had 
negative collinearity with adults-with-college-degree, 
one of the factors found to be predictive in all our mod-
els. Post hoc analyses of the associations between these 
two health factors and all death-related outcomes were 
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significant, which supports this explanation (Table  4 
of Additional file  1). Second, it is possible that these 
clinical factors, which aggregate individual-level health 
characteristics, were not appropriate indicators of over-
all community-level status, which was captured better 
in the other domains included in Fig. 1.

The model diagnostics show significant variation 
in model quality. The models with the best diagnos-
tics were models that only captured outcomes for the 
early days of the pandemic (30, 60, and 90 days). For 
longer time frames, the model is less accurate suggest-
ing there were factors not captured in our model that 
affect the case and death counts. Additionally, other 
research teams attempting to account for the time-
since COVID-19 was present in the county create a 
variable to indicate the days since the first case. As our 
findings demonstrate the results may not be as reliable 
when the time-period used to assess the relationship 
between SDoH and COVID-19 outcomes is large.

Other research teams that analyzed county-level 
COVID-19 outcomes for the entire U.S. and SDoH do not 
incorporate sheltering in place policies into their analysis 
as there are many counties that did not have a policy until 
after COVID-19 was present. We have found this to be one 
of the most important variables. It is negatively associated 
with all outcome variables for most models, indicating 
that, even when controlling for a wide variety of SDoH fac-
tors, having a policy in place before COVID-19 is present 
in a county may have a significant protective aspect.

Sensitivity analysis further demonstrated that our 
findings were sensitive to our choice of county-level 
start-date. This may be due to the slow growth rate of 
COVID-19 in some counties. If many counties do not 
reach 10/10,000 until months after the first case, there 
could be policy or behavior changes going on that affect 
the results. Regardless, we found that there was overlap 
between the results of our sensitivity analysis and our 
main findings and these may represent factors that are 
significantly associated with our outcomes. COVID-19 
related, vulnerable populations, and population charac-
teristics are the categories that were important for both 
the main analysis and the sensitivity analysis suggesting 
they may be among the most important factors causing 
county-level variation in outcome.

Post-hoc analyses of the 3% of counties excluded due 
to missing data showed that the strongest predictor of 
missingness was RUCC code. Relative to the overall 
distribution of RUCC codes, the highest rate of deletion 
occurred in the RUCC 9 category (82%). Specifically, 
15% of RUCC 9 counties (completely rural or less than 
2500 urban population, not adjacent to a metro area) 
were excluded due to missing data. Currently, how-
ever, the observed trends for included RUCC 9 counties 

align with the RUCC 7 and 8 counties, so we would not 
expect those missing counties to differ substantially.

Limitations and future directions
Our research has several limitations. First, we were una-
ble to control for county-level COVID-19 testing rates 
as the data were unavailable. Therefore, our case counts 
may not be reliable as testing policies and resources dif-
fered across counties. This could be causing the under-
dispersion in our diagnostic models, particularly for the 
models with long timeframes. Similarly, there may be 
limitations in the quality of COVID-19 death data, which 
are derived largely from death certificates in the United 
States. While there are substantial quality control and 
certification efforts underway, the burden of the ongoing 
pandemic limits available resources for this task.(cita-
tion) The excess death data available through the CDC 
provide an additional source of information on COVID 
deaths that may serve as a valuable alternative or com-
plement to death data, and should be explored in future 
analyses [54]. Not all SDoH features are updated at the 
same frequency and some features may not be as up-to-
date as others. Our features did not always have consist-
ent results across similar models; for instance, the RUCC 
code significance was not divided by rural and urban but 
a mix of both. However, given the comprehensive nature 
of our feature-set, our multiple analysis with different 
end-points, and our extensive diagnostic testing our find-
ings are robust despite our limitations.

Conclusion
Our study demonstrates the potential for complex, multi-
dimensional analyses over time using shared national 
data and team science. Our findings demonstrate that 
the set of SDoH features that are significant for COVID-
19 outcomes varies based on the time from the start 
date of the pandemic and when Covid-19 was present 
in a county. Additionally, our models were more reli-
able within the first 3 months in which COVID-19 was 
present in a county. These results could assist research-
ers with variable selection and inform decision makers 
when creating public health policy. Our future work will 
include analyzing how adherence to mitigation strate-
gies in conjunction with SDoH factors is associated with 
long-term COVID-19 outcomes.
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to rounding. In some instances, the cumulative case count is 0 and a 14‑ 
maximum rolling average is 1. This discrepancy is due to issues related to 
incorrect new case counts as described in the methods section. Table 3. 
RUCC classification. Table 4. Univariate Analysis of health status variables 
for mortality outcomes. Statistically significant results are indicated with 
an asterisk. Figure 1. Correlation plot of independent variables. All cor‑
relations were significant with p‑value < 0.05. Figure 2. Diagnostics for 
cumulative cases models. Figure 3. Diagnostics for cumulative deaths 
models. Figure 4. Diagnostics for 14‑day maximum cases models. 
Figure 5. Diagnostics for 14‑day maximum deaths models. Figure 6. Sen‑
sitivity analysis distribution of county‑level pandemic start dates. Figure 7. 
Coefficient estimates for statistically significant variables for cumulative 
cases. Figure 8. Coefficient estimates for statistically significant variables 
for cumulative deaths. Figure 9. Coefficient estimates for statistically 
significant variables for maximum 14‑day rolling average cases. Figure 10. 
Coefficient estimates for statistically significant variables for maximum 
14‑day rolling average deaths.
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