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A B S T R A C T

Background: A major barrier to optimal pain management is the difficulty in predicting and
assessing patients at high risk for significant pain across multiple locations within the institution
in a timely manner. This is compounded by the fragmented display of clinical information on
enterprise clinical platform, which further hinders delay the reviews and hence the increased risk
of untreated pain. We evaluated and compared the predictive performance of six modelling
techniques in predicting significant pain, defined as the maximum pain score of 3 or more on
movement at the 13th to 24th hour after spinal morphine administration during caesarean
delivery.
Methods: We retrieved medical records from women who underwent caesarean delivery and
received postoperative spinal morphine in a single specialist maternity hospital in Singapore
between Aug 2019 and Aug 2022. We extracted 120 clinical variables from the medical records of
eligible patients and further selected 23 to improve algorithm accuracies. The dataset was split
randomly, with 80 % of patients (n = 5248) used for training the models, and 20 % (n = 1313)
reserved for validation.
Results: The study cohort comprised 6561 patients with an incidence of significant postoperative
pain of 7.9 %. Ridge regression demonstrated the best performance with both the full (AUC:
0.649) and selected (AUC: 0.719) feature sets. By reducing the number of features, Ridge
regression, LASSO, Elastic net, and XGBoost showed similar in AUC (0.704–0.719), sensitivity
(0.644–0.695), specificity (0.644–0.705), positive predictive value (0.155–0.179), and negative
predictive value (0.949–0.955) in predicting significant postoperative pain. These were attributed
to the top three variables, mainly the last recorded postoperative pain score (on movement)
before the prediction point, mean and standard deviation of the hourly maximum postoperative
pain score (at rest) at 0th to 12th hour.
Conclusions: Future research will aim to refine these models and explore their implementation in
clinical settings to enhance real-time pain management and risk stratification for women after
caesarean delivery.
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1. Introduction

Postoperative pain management after caesarean delivery is crucial for enhancing recovery, breastfeeding, mother-child bonding,
and overall satisfaction [1]. Spinal morphine is commonly administered for treating acute post-caesarean pain; yet it does not elim-
inate the risk of significant acute postoperative pain after caesarean delivery for all patients [2]. It has been reported that experiencing
severe acute pain after caesarean delivery may increase the risk of postoperative persistent pain [3]. Defined as surgical site pain
lasting beyond 3months, with other causes of pain excluded, postoperative persistent pain can result in long-term adverse physical and
psychological consequences. Persistent pain after caesarean delivery is associated with compromised functional activities, prolonged
maternal recovery, and poor quality of life [3]. Given that 21 % of worldwide deliveries are performed via caesarean delivery, this
presents a substantial healthcare burden due to increased demand and costs for postoperative support services and visits [4].
One of the main barriers preventing optimal pain management is the inability to predict and provide early assessment and

intervention for patients at greater risk of significant pain in a timely manner. At our institution, acute pain service providers review
the patients within one day after surgery and regularly document pain scores. Clinical information (vital signs, analgesic medications
administered, surgical, and patient demographic data, etc.) can be accessed on a secure enterprise clinical platform available to
healthcare personnel. Currently, this information is displayed in different domains within the platform, making it difficult for
healthcare personnel to prioritize patient assessments. As clinicians often need to review a large number of patients across multiple
locations within the hospital, those with significant pain may not be prioritized for early assessment, which can increase the risk of
untreated pain.
Machine learning has been used to develop risk stratification predictive models for postoperative pain, owing to its capability to

identify patterns within large datasets with complex interactions. Nair et al. identified Random Forest as the best algorithm to predict
opioid requirements among patients after ambulatory surgery [5]. Tighe et al. found that linear regression with Least Absolute
Shrinkage and Selection Operator (LASSO) outperformed in predicting postoperative pain for general non-ambulatory surgery [6].
However, these studies have several limitations: i) the models/algorithms were not generalizable and not applicable to caesarean
deliveries; and ii) the developed models may not be applicable in Singapore’s multi-ethnic population.
To address these issues and improve postoperative pain outcomes, we identified predictors and developed risk stratification pre-

dictive models for significant postoperative pain after caesarean delivery with spinal morphine administration. We compared several
machine learning algorithms including regularized logistic regression models (ridge regression, LASSO, and Elastic net) and ensemble
learning algorithms (Random Forest, XGBoost, and LightGBM).

2. Methods

2.1. Ethics and perioperative management protocols

We conducted a retrospective analysis using deidentified perioperative database (“SingHealth-IHiS Electronic Health Intelligence
System (eHIntS)”) that recorded patient, surgical, anaesthesia and postoperative data obtained from women aged 18–50 years old who
had caesarean delivery with spinal morphine administration for pain management between Aug 2019 and Aug 2022 in KK Women’s
and Children’s Hospital, a Singapore’s major public maternity institution. The study received a waiver of consent from the SingHealth
Centralised Institutional Review Board ((10 Hospital Boulevard #19-01 SingHealth Tower Singapore 168,582; reference number CIRB
2022/2505; chairperson Dr Steve Yang; approved on Sep 22, 2022). This study adheres to the applicable Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines [7].
Perioperative management was administered at the discretion of the attending clinicians in accordance with the hospital’s routine

standards of care for caesarean delivery. In brief, patients received spinal anaesthesia using 0.5 % bupivacaine with dextrose as the
anaesthetic agent. All patients were administered spinal bupivacaine, along with intrathecal 15 μg fentanyl and 100 μg morphine as
adjuncts for intraoperative anaesthesia. Testing and monitoring of the spinal block and pain were performed at various time points
throughout the surgery. During the postoperative period, patients were discharged from the post-anaesthesia care unit (PACU) to
respective ward upon resolution of the spinal block to T4 or below. The postoperative analgesics including paracetamol andmefenamic
acid were administered following routine clinical practice, while tramadol was provided upon patient request for additional pain relief
with pain score 3 or more.
The primary outcome of significant pain was defined as whether a patient experienced a maximum postoperative numerical rating

scale (NRS) pain score on movement of 3 or more (from a scale of 0–10) at 13th to 24th hour after spinal morphine administration. A
cut-off of 3 is considered clinically relevant in clinical practice, including our institution, as those who score 3 and above would require
additional pain assessment and treatment (e.g., tramadol which is provided in our institution) [8]. If the data were missing in the
primary outcome, the records were excluded from the analysis.

2.2. Cohort selection and variables definition

We randomly selected 80 % of the patient data (n = 5248) as the training cohort to develop the risk stratification models for
postoperative pain after spinal morphine administration, while the remaining 20 % (n = 1313) were used for model validation. To
address class skewness and reduce bias during machine learning, random undersampling of the majority class without replacement
was implemented on the training cohort [9].
Independent variables from six categories were retrieved from electronic medical records and computed based on the information
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prior to the 13th hour after spinal morphine administration: patient characteristics, surgery information, vital signs, PACU infor-
mation, medication records, and patients’ self-reported pain scores (Fig. 1). The extracted data were coded and deidentified to protect
patient privacy and confidentiality. Data reviews were conducted to identify any missing data in the independent variables. For un-
available data, categorical variables were labelled as missing, whereas ordinal and continuous variables were filled using mode and
mean, respectively.
Continuous variables were summarized as mean with standard deviation (SD), while medians with interquartile range (IQR) were

used as alternative for skewed data distributions. Categorical variables were presented as frequencies with corresponding proportions.
Statistical significance was set at P < 0.01, and all tests were two-tailed. Statistical analysis and machine learning algorithms were
developed in Python (version 3.11.5) using the Pandas (version 1.5.3), NumPy (version 1.26.4), featurewiz (version 0.5.5) and scikit-
learn (version 1.2.2) packages. Featuring engineering was conducted to convert the deidentified patient data into clinically relevant
variables based on clinician inputs. A total of 120 variables were created and summarized into broad categories (Appendix S1).

2.3. Feature selection

Feature selection optimization is the process of identifying the most relevant input variables that are important to the prediction
tasks while minimizing redundancy [10]. Multicollinearity was found from our pairwise Pearson correlation analysis performed on our
120 variables, with 37 pairs of variables having absolute correlation coefficient greater than 0.9. To address this challenge of mul-
ticollinearity, we employed the Searching for Uncorrelated List of Variables (SULOV)-recursive method to detect highly correlated
pairs of variables, evaluate their importance to the target, and remove the less informative variable of each pair from the feature set
[11]. By shortlisting the variables with the highest informational value and the least correlation with one another, we parsed the
features to the recursive XGBoost algorithm to identify the most predictive variables in an iterative manner using five
training-validation cycles, with the top features collated from varying data subsets. All these operations were performed using the
“featurewiz” python package, resulting in the selection of a total of 23 features for further model development (Table 1).

2.4. Predictive model development and validation

We implemented and compared six machine learning models, including the regularized logistic regression models (ridge regres-
sion, LASSO, and Elastic net) and the ensemble learning algorithms (Random Forest, XGBoost, and LightGBM) (Table 2).
In the context of logistic regression, increasing the number of features and coefficients may capture more intricate relationships

between predictor variables and the dependent variable. However, this also raises the likelihood of overfitting to the training data and
modelling random noise [12]. Ridge Regression, LASSO and Elastic net are different regularization techniques used to balance the
bias-variance trade-off in machine learning by adding a penalty term to the loss function of the logistic regression [13]. Ridge
regression, is particularly useful in situations with a high degree of multicollinearity among predictor variables, as it can shrink the
coefficients toward zero [14]. LASSO regression penalizes the absolute values of individual coefficients, allowing some to shrink to
zero; hence effectively performing feature selection by removing those features from the model [12]. Elastic net, on the other hand,
combines both regularization techniques into a single loss function, making it useful for handling highly correlated features while
facilitating feature selection [15].
Random Forest, XGBoost and LightGBM are supervised ensemble learning methods used for classification and regression tasks. The

Random Forest model trains multiple decision trees with different bootstrap samples in parallel, aggregating their predictions based on
the majority votes of individual trees [16]. This method, known as bagging, helps reduce overfitting during model training. In contrast,
XGBoost uses adaptive boosting to sequentially integrate weak classifiers using a gradient descent algorithm. Lastly, LightGBM, known
for its relatively fast gradient boosting technique on large datasets, grows trees leaf-wise based on the maximum delta loss [17].
For each model, we applied five-fold cross-validation with a grid search to tune the hyperparameters and reduce overfitting in the

training dataset. K-fold cross-validation is a resampling technique that divides data into k partitions, trained on and validated k times,
each time using a different subset for validation and the remaining data for training [18]. To evaluate the performance of the models,
all six predictive models were assessed by receiver operating characteristics (ROC) analysis with the validation cohort. The overall
predictive performances of the models were compared using the area under the curve (AUC) metric, which illustrates the trade-off
between the true positive rate and false positive rate. In addition to AUC, sensitivity, specificity, positive predictive value (PPV),

Fig. 1. Timeline view of variables used for the study.
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Table 1
The top 23 features selected using SULOV-recursive method for model development.

Patient Characteristics Age (y)

Height (cm)

Body mass index (kg/m2)

Surgery Information Duration of operation (mins)
PACU Pain Score Patient’s last PACU pain score recorded (NRS 0 to 10)

Standard deviation of all PACU pain scores recorded
Postoperative pain score (at rest) Maximum postoperative pain score at the 6th hour (NRS 0 to 10)

Maximum postoperative pain score at the 9th hour (NRS 0 to 10)
Mean of each hour’s maximum postoperative pain score at the 0th to 12th hour
Standard deviation of each hour’s maximum postoperative pain score at the 0th to 12th hour
Whether more than one pain score was recorded within an hour at any point of time (yes/no)
Mean time difference between each postoperative pain score recorded (mins)
Minimum time difference between each postoperative pain score recorded (mins)
Time taken from last recorded postoperative pain score to the 12th hour prediction point (mins)
Time taken from the 2nd last to the last postoperative pain score recorded (mins)
Time taken from the 3rd last to 2nd last postoperative pain score recorded (mins)

Postoperative pain score (on movement) Last recorded postoperative pain score before prediction (NRS 0 to 10)
Minimum postoperative pain score (NRS 0 to 10)
Maximum postoperative pain score at the 1st hour (NRS 0 to 10)
Time taken from the 1st to 2nd postoperative pain score recorded (mins)
Time taken from the 2nd to 3rd postoperative pain score recorded (mins)
Time taken from the 3rd to 4th postoperative pain score recorded (mins)
Time taken from the 4th last to 3rd last postoperative pain score recorded (mins)

NRS, numerical rating scale; PACU, post-anaesthesia care unit; SULOV, Searching for Uncorrelated List of Variables.

Table 2
The hyperparameters of the six machine learning algorithms used in this study.

Machine Learning
Models

Hyperparameters Definition Defined Parameters

Ridge regression Solver The algorithm used to optimise the loss function newton-cg, lbfgs, liblinear, sag,
saga

C-value Constant 0.001–100
LASSO Solver The algorithm used to optimise the loss function newton-cg, lbfgs, liblinear, sag,

saga
C-value Constant 0.001–100

Elastic net L1 ratio value The ratio between L1 (LASSO) and L2 (Ridge) regularization 0.1–0.9
Solver The algorithm used to optimise the loss function newton-cg, lbfgs, liblinear, sag,

saga
C-value Constant 0.001–100

Random Forest n_estimators The number of decision trees 62–700
max_features The number of features to consider when looking for the best split sqrt, log2, all features
max_depth The maximum depth of each tree 3–7
min_samples_leaf The minimum number of samples required to form a leaf node 2–11
min_samples_split The minimum number of samples required to split an internal node 2–11
Bootstrap Whether bootstrap samples are used when building trees True, False

XGBoost reg_lambda The L2 regularization term on weight 0–30
reg_alpha The L1 regularization term on weights 0–30
gamma The minimum loss reduction required to make a further partition on a

leaf node
0.1–0.4

max_depth The maximum depth of each tree 1–8
n_estimators The number of boosting rounds or trees to build 50–1500
learning_rate The step size shrinkage used in update to prevent overfitting 0.01–0.2

LightGBM num_leaves The maximum number of leaves in each tree 20–50
max_depth The maximum depth of each tree 1–6
num_iterations The number of iterations of boosting rounds 25–100
learning_rate The step size shrinkage used in update to prevent overfitting 0.03–0.2
Boosting The type of boosting to use gbdt, dart
data_sample_strategy The strategy for sampling data bagging, goss

LASSO, Least Absolute Shrinkage and Selection Operator.
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and negative predictive value (NPV) were also calculated using optimal cut-off values determined by the intersection between
sensitivity and specificity.

3. Results

A total of 7251 caesarean patients were administered postoperative spinal morphine within 48 h from August 2019 to August 2022;
690 were excluded due to missing primary outcome (Fig. 2). The remaining 6561 patients were included in the study dataset, with 521
(7.9 %) experiencing a maximum postoperative pain score of 3 or more on movement at the 13th to 24th hour after spinal morphine
administration (Table 3).
Eighty percent of the study cohort (n= 5248) were randomly selected for our training cohort, of which 7.8 % (n= 403) experienced

maximum postoperative NRS pain score of 3 or more on movement at the 13th to 24th hour after spinal morphine administration. The
predictive performance of the models was validated using the remaining 20% of the study cohort (n= 1313), of whom 8.9 % (n= 118)
experienced a maximum postoperative NRS pain score of 3 or more on movement at the 13th to 24th hour after spinal morphine
administration.
A comparison of the performance of the six different risk stratification predictive models is presented in Table 4. All models except

LightGBM (AUC: 0.691) scored an AUC above 0.7, with ridge regression achieving the highest AUC of 0.719. To demonstrate the
impact of feature selection optimization using the SULOV-recursive method, we compared the model performance on the selected 23
features (Table 1; Appendix S1; Fig. 3A) against the baseline models without feature selection (Fig. 3B, which is based on the full 120
features; Appendix S2). Following the feature selection optimization using the SULOV-recursive method, the AUCs of all the models

Fig. 2. Study workflow.
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Table 3
Demographic and clinical characteristics. Values are mean (SD), median (IQR [range]) or number (proportion).

Variable Training cohort (n = 5248) Validation cohort (n = 1313)

Postoperative pain Postoperative pain

Yes (n = 403) No (n = 4845) Yes (n = 118) No (n = 1195)

Maternal age (y), median (IQR) 30.0 (7.0 [30.0,
37.0])

33.0 (6.0 [30.0,
36.0])

33.6 (6.0 [30.0,
36.0])

33.0 (7.0 [30.0,
37.0])

Race
Chinese 132 (32.8 %) 2248 (46.4 %) 36 (30.5 %) 548 (45.9 %)
Malay 120 (29.8 %) 1040 (21.5 %) 30 (29.7 %) 268 (22.4 %)
Indian 78 (19.4 %) 614 (12.7 %) 19 (16.1 %) 147 (12.3 %)
Others 73 (18.1 %) 945 (19.5 %) 28 (23.7 %) 232 (19.4 %)
Height (cm) 157.6 (5.5) 157.5 (6.8) 157.6 (5.4) 157.7 (6.3)
Weight (kg) 76.3 (15.4) 74.5 (13.7) 76.4 (13.2) 75.3 (13.5)
Body mass index (kg/m2), mean (SD) 30.7 (5.9) 30.0 (6.1) 30.7 (5.1) 30.3 (5.3)
Preoperative analgesiaa

Paracetamol 1 (0.3 %) 11 (0.2 %) 0 (0) 1 (0.1 %)
Mefenamic acid 4 (1.0 %) 27 (0.6 %) 0 (0) 11 (0.9 %)
Tramadol 1 (0.3 %) 0.0 (0) 1 (0.9 %) 1 (0.1 %)
Average dosage if preoperative analgesia was administered
Paracetamol (mg) 975.0 (0.0) 1985.0 (0.0) 0.0 (0.0) 1000.0 (0.0)
Mefenamic acid (mg) 500.0 (0.0) 833.3 (561.1) 0.0 (0.0) 590.9 (287.5)
Tramadol (mg) 100.0 (0.0) 0.0 (0.0) 50.0 (0.0) 50.0 (0.0)
Type of admission
Emergency delivery 176 (43.7 %) 1864 (38.5 %) 52 (44.1 %) 462 (38.7 %)
Elective delivery 227 (56.3 %) 2981 (61.3 %) 66 (55.9 %) 733 (61.3 %)
Duration of operation (mins), median (IQR) 44.0 (26.0 [33.0,

59.0])
43.0 (22.0 [33.0,
55.0])

43.5 (20.0 [35.0,
55.0])

43.0 (21.0 [34.0,
55.0])

Procedural codeb

Uncomplicated caesarean 349 (86.6 %) 4217 (87.0 %) 98 (83.1 %) 1014 (84.9 %)
Uncomplicated caesarean and tubal ligation 38 (9.4 %) 453 (9.4 %) 14 (11.9 %) 124 (10.4 %)
Complicated caesarean 10 (2.5 %) 131 (2.7 %) 5 (4.2 %) 48 (4.0 %)
Complicated caesarean and tubal ligation 3 (0.7 %) 33 (0.7 %) 1 (0.9 %) 8 (0.7 %)
Caesarean with hysterectomy 1 (0.3 %) 7 (0.1 %) 0 (0) 0 (0)
Others 2 (<0.1 %) 4 (0.1 %) 0 (0) 1 (0.1 %)
Surgery time
0830 to 2029 331 (83.1 %) 3947 (81.5 %) 96 (81.4 %) 960 (80.3 %)
2030 to 0829 72 (17.9 %) 898 (18.5 %) 22 (18.6 %) 235 (19.7 %)
Average PACU pain score (NRS 0–10), median (IQR) 1.0 (0.1 [1.0,

1.1])
1.0 (0.0 [1.0,
1.0])

1.0 (0.0 [1.0,
1.0])

1.0 (0.0 [1.0,
1.0])

Maximum PACU pain score (NRS 0–10), median (IQR) 1.0 (0.5 [1.0,
1.5])

1.0 (0.0 [1.0,
1.0])

1.0 (0.0 [1.0,
1.0])

1.0 (0.0 [1.0,
1.0])

Average postoperative pain score at the 0th to 12th hour (NRS 0–10, at
rest), median (IQR)

0.5 (0.8 [0.1,
0.9])

0.1 (0.5 [0.0,
0.5])

0.6 (0.8 [0.1,
0.9])

0.1 (0.5 [0.0,
0.5])

Maximum postoperative pain score at the 0th to 12th hour (NRS 0–10, at
rest), median (IQR)

1.0 (1.0 [1.0,
2.0])

1.0 (1.0 [0.0,
1.0])

1.0 (1.0 [1.0,
2.0])

1.0 (1.0 [0.0,
1.0])

Average postoperative pain score at the 0th to 12th (NRS 0–10, on
movement), median (IQR)

1.0 (1.1 [0.5,
1.6])

0.6 (0.8 [0.2,
1.0])

1.1 (1.0 [0.6,
1.6])

0.6 (0.9 [0.2,
1.1])

Maximum postoperative pain score at the 0th to 12th hour (NRS 0–10, on
movement), median (IQR)

2.0 (2.0 [1.0,
3.0])

1.0 (1.0 [1.0,
2.0])

1.0 (1.0 [1.0,
2.0])

1.0 (1.0 [1.0,
2.0])

Nausea 10 (2.5 %) 163 (3.4 %) 3 (2.5 %) 45 (3.8 %)
Pruritus 24 (6.0 %) 148 (3.1 %) 0 (0) 38 (3.2 %)
Vomit 12 (3.0 %) 170 (3.5 %) 4 (3.4 %) 39 (3.3 %)
SpO2 < 95 % 9 (2.2 %) 49 (1.0 %) 3 (2.5 %) 15 (1.3 %)
Respiration rate <10 breaths per min at any point of time 0 (0) 16 (0.3 %) 0 (0) 1 (0.1 %)
Supplementary oxygen therapy (nasal prong/nasal cannula) at any point

of time
37 (9.2 %) 169 (3.5 %) 8 (6.8 %) 49 (4.1 %)

Average postoperative pain score at the 13th to 24th hour (NRS 0–10, at
rest), median (IQR)

0.4 (0.5 [0.2,
0.7])

0.0 (0.1 [0.0,
0.1])

0.5 (0.5 [0.2,
0.7])

0.0 (0.1 [0.0,
0.1])

Maximum postoperative pain score at the 13th to 24th hour (NRS 0–10,
at rest), median (IQR)

2.0 (2.0 [1.0,
3.0])

0.0 (1.0 [0.0,
1.0])

2.0 (2.0 [1.0,
3.0])

0.0 (1.0 [0.0,
1.0])

Average postoperative pain score at the 13th to 24th hour (NRS 0–10, on
movement), median (IQR)

1.0 (0.7 [0.6,
1.3])

0.1 (0.4 [0.0,
0.4])

0.9 (0.7 [0.6,
1.3])

0.1 (0.4 [0.0,
0.4])

Maximum postoperative pain score at the 13th to 24th hour (NRS 0–10,
on movement), median (IQR)c

3.0 (0.0 [3.0,
3.0])

1.0 (1.0 [0.0,
1.0])

3.0 (0.0 [3.0,
3.0])

1.0 (1.0 [0.0,
1.0])

Average body temperature (◦C), median (IQR) 36.9 (0.4 [36.8,
37.1])

36.9 (0.3 [36.8,
37.1])

37.0 (0.3 [36.8,
37.1])

36.9 (0.3 [36.8,
37.1])

Maximum body temperature (◦C), median (IQR) 37.2 (0.5 [36.9,
37.4])

37.1 (0.5 [36.9,
37.4])

37.2 (0.4 [37.0,
37.4])

37.1 (0.3 [37.0,
37.3])

Postoperative analgesia

(continued on next page)
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increased by 7 %–13 % (Table 4).
To further analyse the findings of the top four performing models (ridge regression, LASSO, Elastic net, and XGBoost), we assessed

the impact of individual features on each model by referencing the coefficients of the regularized regression models and the variable
importance scores of the ensemble learning algorithms (Appendix S3). Notably, these four modelling techniques identified the same
top three variables that contributed to predictive performance: the last recorded postoperative pain score (on movement) before the
prediction point, the standard deviation of each hour’s maximum postoperative pain score (at rest) at the 0th to 12th hour, and the
mean of each hour’s maximum postoperative pain score (at rest) at the 0th to 12th hour. Ridge regression utilizes the maximum number
of variables by incorporating all 23 selected features, whereas LASSO regression employs the fewest, specifically retaining only the
same top three variables as the other three modelling techniques.

4. Discussion

We reported significant pain in 8 % of the study cohort, with a maximum postoperative pain score of 3 or more on movement at the
13th to 24th hour after spinal morphine administration during caesarean delivery. The predictive performances of six different risk
stratification models were compared using 120 clinical variables extracted or generated from the medical records: Ridge regression,
LASSO, Elastic net, Random Forest, XGBoost, and LightGBM. Four of the six modelling techniques (ridge regression, LASSO, Elastic net,

Table 3 (continued )

Variable Training cohort (n = 5248) Validation cohort (n = 1313)

Postoperative pain Postoperative pain

Yes (n = 403) No (n = 4845) Yes (n = 118) No (n = 1195)

Paracetamol 9 (2.2 %) 46 (1.0 %) 3 (2.5 %) 13 (1.1 %)
Mefenamic acid 322 (79.9 %) 4440 (91.6 %) 101 (85.6 %) 1131 (94.6 %)
Tramadol 0 (0) 2 (<0.1 %) 0 (0) 0 (0)
Average dosage if postoperative analgesia was administered
Paracetamol (mg) 1000.0 (0.0) 997.39 (9.9) 1000.0 (0.0) 1000.0 (0.0)
Mefenamic acid (mg) 508.5 (69.1) 513.85 (86.1) 517.33 (101.1) 511.27 (75.3)
Tramadol (mg) 0.0 (0.0) 50.0 (0.0) 0.0 (0.0) 0.0 (0.0)

IQR, interquartile range; NRS, numerical rating scale; PACU, post-anaesthesia care unit; SD, standard deviation; SpO2, oxygen saturation.
a The medication data was taken within the first 12 h only.
b Complicated caesarean refers to case of abnormally invasive placenta, massive postpartum haemorrhage>1.5 L, preterm caesarean<34 weeks, or
abruptio placenta [30].
c The primary outcome of the study.

Table 4
Comparison of performance of different models.

Feature Selection Model AUC (99 % CI) Cut-
off

Sensitivity (99 %
CI)

Specificity (99 %
CI)

PPV (99 % CI) NPV (99 % CI)

With feature selection
(Top 23 features)

Ridge
regression

0.719
(0.659–0.775)

0.51 0.653
(0.550–0.748)

0.705
(0.674–0.735)

0.179
(0.136–0.224)

0.954
(0.936–0.968)

LASSO 0.717
(0.654–0.778)

0.52 0.644
(0.538–0.740)

0.685
(0.655–0.715)

0.168
(0.128–0.210)

0.951
(0.933–0.967)

Elastic net 0.718
(0.653–0.777)

0.53 0.695
(0.597–0.796)

0.644
(0.613–0.677)

0.162
(0.124–0.201)

0.955
(0.937–0.972)

Random
Forest

0.704
(0.639–0.759)

0.53 0.636
(0.529–0.735)

0.657
(0.627–0.687)

0.155
(0.116–0.195)

0.948
(0.930–0.965)

XGBoost 0.715
(0.652–0.771)

0.52 0.644
(0.537–0.742)

0.653
(0.620–0.684)

0.155
(0.117–0.194)

0.949
(0.930–0.966)

LightGBM 0.691
(0.624–0.752)

0.54 0.644
(0.540–0.743)

0.662
(0.633–0.693)

0.158
(0.120–0.198)

0.950
(0.931–0.966)

Without feature selection
(Full 120 features)

Ridge
regression

0.649
(0.595–0.699)

0.52 0.653
(0.554–0.745)

0.645
(0.615–0.677)

0.154
(0.116–0.192)

0.950
(0.932–0.966)

LASSO 0.669
(0.613–0.722)

0.53 0.661
(0.553–0.758)

0.676
(0.646–0.706)

0.168
(0.128–0.210)

0.953
(0.936–0.969)

Elastic net 0.649
(0.596–0.703)

0.51 0.661
(0.559–0.760)

0.636
(0.606–0.668)

0.152
(0.115–0.191)

0.950
(0.931–0.967)

Random
Forest

0.653
(0.599–0.702)

0.54 0.653
(0.550–0.746)

0.654
(0.622–0.685)

0.157
(0.117–0.197)

0.950
(0.932–0.967)

XGBoost 0.620
(0.567–0.674)

0.52 0.627
(0.526–0.726)

0.613
(0.579–0.644)

0.138
(0.103–0.174)

0.943
(0.925–0.962)

LightGBM 0.637
(0.585–0.688)

0.52 0.627
(0.523–0.726)

0.646
(0.613–0.678)

0.149
(0.112–0.188)

0.946
(0.928–0.963)

AUC, area under the curve; LASSO, Least Absolute Shrinkage and Selection Operator; NPV, Negative predictive value; PPV, Positive predictive value.
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and XGBoost) demonstrated similar performance in terms of AUC, sensitivity, specificity, PPV and NPV when predicting significant
postoperative pain after caesarean delivery. Reducing the number of predictor variables to 23 using the SULOV-recursive method
enhanced the accuracy of the tested algorithms. Ridge regression exhibited the best performance with both the full and selected feature
sets.
There is increasing interest in applying machine learning techniques in acute postoperative pain settings [5,6,19]. With a sample

size of 8071 patients undergoing non-obstetric, non-ambulatory surgeries, Tighe et al. extracted 796 clinical variables from a surgical
database for further model comparison, including demographic data, comorbidities, outpatient analgesia, and surgical information
[6]. By predicting the moderate-to-severe acute postoperative pain at the 0th to 24th hour, the authors showed that LASSO algorithm
had the highest area under the receiver-operating curve (ROC) of 0.704 when all 796 variables were used, while logistic regression
performed poorly with an ROC of 0.500 [6]. Interestingly, the study did not consider the use of perioperative analgesia despite
extracting more variables than our study. In addition, the study lacked data on the mean and SD of pain scores, as well as the time
differences between the pain scores. One plausible explanation for this could be the occurrence of over-fitting issues, stemming from an
excessive number of variables and hence leading to increasedmulticollinearity [20]. This further emphasizes the importance of feature
selection in reducing model overfitting and enhancing the predictive power of the algorithms. In our case, we observed an AUC in-
crease of 7 %–13 % across all models after optimizing the feature selection [10].
Similarly, Davoudi et al. also investigated the model predictive performance for acute postoperative pain from 14,263 patients who

underwent orthopaedic surgery. The authors utilized a similar gradient boosting algorithms (XGBoost and LightGBM, CatBoost etc.)
with a reported AUC of 0.71, albeit with potential biases related to age, race, area deprivation index, and type of insurance [21].
Notably, both our study and Davoudi et al. did not collect any preoperative psychological data, as this information is not universally
collected and often takes the form of questionnaires. In a previous prospective cohort study (n= 217), we found that only anxiety about
upcoming surgery was significantly associated with moderate-to-severe acute postoperative pain at the 24th hour [22]. In a similar
vein, Kalkman et al. incorporated psychological data such as quality of life and anxiety to enhance model performance [23].
Considering that pain is a multifactorial experience, incorporating psychological information could improve our understanding of

Fig. 3. Comparison of ROC curve across models (A) with; and (B) without feature selection.
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patient experiences and enhance model performance in pain risk stratification.
We found that ridge regression outperformed other conventional modelling techniques in this study, especially when only selected

features were used in the model. This may be attributed to its relation to ensemble learning algorithms with simpler structured data,
and the linear relationships between variables and the outcome of postoperative pain after caesarean delivery. Our ridge regression
model included the top 23 features selected for model development, encompassing variables such as age, height, BMI, duration of
surgery, pain scores, time, and intervals at which pain scores were documented. In contrast, the other regularized logistic regression
model such as LASSO included only three variables that contributed to the predictive model’s performance. This is likely due to its
built-in ability to perform feature selection by penalizing the absolute value of each individual coefficient and shrinking the co-
efficients of irrelevant variables to 0 [12].
Among the features selected via the SULOV-recursive method, the last recorded postoperative pain score, the mean and SD of each

hour’s maximum postoperative pain score (at rest) were the top three features, particularly the postoperative pain scores reported by
the patients prior to the 13th hour after spinal morphine administration. Notably, these three variables also overlapped with the top
three predictors for ridge regression, LASSO, Elastic net, and XGBoost, which underscores the importance assessing and monitoring
inpatient pain scores in high-risk patients. However, this also highlights the underlying issue in patients with cognitive or verbal
difficulties in communicating their pain scores, urging the need to progress towards better automated pain assessments.
We acknowledge that the significant postoperative pain defined in this study was measured using NRS over a finite period; yet the

subjective and dynamic nature of pain, including our primary outcome, may not be applicable to every patient. Our findings also
indicated the time differences between the pain scores, both with and without considering the time elapsed, as part of the selected
features during model development. Rahman et al. previously coined the term “pain volatility” to describe the average absolute
difference between two consecutive pain scores at the respective observation points without accounting for the time elapsed [24]. In
contrast to many studies utilizing retrospective medical records, some research employed mobile apps to collect patients’ demographic
and pain information for further model development. The results showed that Random Forest achieved the best performance of 70 %
accuracy in high volatility, which reflects great uncertainty in pain experiences. Nonetheless, the study was based on self-reported
outcome of persistent pain at six months in community users, and the findings may not be applicable to inpatient settings for bet-
ter clinical decision making.

4.1. Strength and limitations

The strength of the study lies in the large sample size gathered over three years, which enhances the reliability and generalizability
of the models in contemporary clinical settings. The variables selected for modelling are clinically relevant and commonly collected
across different healthcare institutions, facilitating easier future integration into clinical practice. Additionally, the use of six different
predictive modelling techniques provides a comprehensive evaluation of the accuracy and relevance of the developed models with the
selected features.
We acknowledge several limitations in this study. First, we utilized retrospective patient data from a single study site, which limited

our ability to perform personalized treatment at the individual level. The selected top 23 features comprised only three pre-delivery
factors (age, height, BMI) to help in planning pain management. Important maternal (e.g., gestational weeks, gravida, parity, history of
past caesarean delivery), intraoperative (e.g., neuraxial technique, analgesia) characteristics, psychological characteristics (previous
experience, expectation, anxiety [24]), and delivery outcomes (e.g., Apgar scores, blood loss, complications) were not captured sys-
tematically in our enterprise platform and hence could not be extracted for this study. There was also a lack of vocal information and
natural language processing (NLP) from both videos and case notes during model development, which has been reported to improve
model performance on acute postoperative pain in depressed patients [25]. However, despite these challenges, we were still able to
generate meaningful data for risk prediction. Future work will focus on addressing the data domains that were lacking in this study by
enhancing the electronic medical record system to further improve the predictive models.
Second, we reported an incidence of significant postoperative pain of 8 %, which is comparably lower than other reports [26]. It is

important to note that our study was done primarily in Asian population, which may exhibit different pain thresholds and perceptions
compared to other studies [27]. In addition, the local clinical practice discourages the prescription of opioid as the first-line treatment
for acute and chronic pain [28]; instead, the use of alternative pharmacological and non-pharmacological modalities is firstly
maximized for pain relief. This results in a significant proportion of the population being opioid-naïve with varying pain responses.
Furthermore, our institution adopts the effective use of intrathecal morphine as a postoperative analgesia for all patients who un-
derwent Caesarean surgery, which could also contribute to the lower incidence of significant postoperative pain observed in our study.
This low incidence also implies an imbalance in the pain datasets as compared to those without pain. Thus, although the AUCs in the
presented models are high, their precisions are considered relatively low as the analysis focused on the sensitivity and specificity of the
developed models using imbalanced datasets. Lastly, the best-performing model on ridge regression represents a linear relationship
between the features and the significant postoperative pain. There may be other forms of non-linear relationships not measured in this
study, which could be important for evaluating the pain profile.

4.2. Clinical significance and future work

Notably, the models presented in this study included many features related to postoperative pain scores. At our institution, clinical
information including vital signs and pain scores, is entered and displayed across different sections of the platform. This fragmentation
renders pain prediction and personalization difficult as the availability of pain scores alone does not allow healthcare professionals to
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access information pertinent to personalized pain experience. Furthermore, the acute pain ward rounds are routinely performed on
postoperative day one (24 h after surgery), while the pain score assessments are performed hourly during the first 24 h. Therefore, a
risk stratification dashboard that utilizes the information prior to the pain rounds will help to identify elective surgery patients at risk
of significant pain in the 13th – 24th hour - time points that typically fall after office hours with limited manpower. The current
morphine dosage used at our institution is considered low-dose analgesia with a range of approximately 10–27 h until the first request
for additional analgesia [29]. With the proposed risk models, we will be able to stratify the patients immediately after the surgery to
enable earlier review and interventions during pain rounds. However, some patients (8 %) with significant pain may still require
additional analgesics even after identification using this risk stratification strategy. In these cases, first-line treatments such as
paracetamol and mefenamic acid are usually administered, while those escalating to severe or prolonged pain will receive tramadol as
a second-line treatment.
Thus, the ability to objectively and reliably identify patients at increased risk of significant postoperative pain in a timely manner

will address critical gaps in post-caesarean pain management. This will allow clinicians to prioritize patient assessment and man-
agement at elevated risk of significant pain, and potentially reduce the risk of pain-related morbidities to improve patient outcomes
and reduce healthcare costs. By deploying the risk stratification model in clinical practice, we could reduce the time needed to identify
patients with significant pain and minimize disruptions to clinical workflow caused by ad hoc pain reviews. In addition, the developed
risk stratification model can be scaled up and integrated with our hospital’s electronic medical record system, for instance a dashboard
that efficiently and intuitively conveys high-risk information to healthcare professionals, helping them prioritize high-risk patients and
streamline their clinical workflows. Other work will also focus on addressing the data domains that were lacking in this study by
enhancing the electronic medical record system to further improve the predictive models.

5. Conclusion

Employing the ridge regression model is the most effective way to predict significant postoperative pain after caesarean delivery.
Future plans include prospective validation and integration into healthcare systems to benefit both caesarean patients and healthcare
professionals by streamlining the clinical workflow with risk stratification, allowing for better responses to patients at high risk of
significant postoperative pain, which ultimately enhances patient outcomes and experience.

CRediT authorship contribution statement

Chin Wen Tan: Writing – review & editing, Writing – original draft, Resources, Project administration, Methodology, Formal
analysis, Conceptualization. Juan Zhen Koh:Writing – review & editing, Visualization, Methodology, Investigation, Formal analysis,
Conceptualization. Hanwei Jin: Writing – review & editing, Visualization, Methodology, Investigation, Formal analysis, Conceptu-
alization. Nian-Lin Reena Han: Writing – review & editing, Software, Investigation, Data curation, Conceptualization. Shang-Ming
Cheng: Writing – review & editing, Methodology, Investigation, Formal analysis, Conceptualization. Andy Wee An Ta: Writing –
review& editing, Visualization, Supervision, Software, Investigation, Conceptualization.Han Leong Goh:Writing – review& editing,
Visualization, Supervision, Software, Investigation, Conceptualization. Ban Leong Sng: Writing – review & editing, Supervision,
Project administration, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Presentation

None.

Trial registration

Not applicable.

Data and code availability

Data will be made available on request.

Financial support and sponsorship

This study was supported by the SingHealth Duke-NUS Anesthesiology and Perioperative Sciences Academic Clinical Program
Philanthropy Grant 2022. The funder had no role in the study design, data collection and analysis, interpretation of data, or the
manuscript writing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing in-
terests: Chin Wen Tan is a section editor of Heliyon, Women’s Health section. All other authors declare no competing interests.

C.W. Tan et al. Heliyon 10 (2024) e40602 

10 



Acknowledgments relating to this article

Assistance with the study: The authors would like to thank Dr Paul Tan Hon Sen (Consultant) and Ms Agnes Teo (Senior Clinical
Research Coordinator) for their administrative support in this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e40602.

References

[1] B.H. Gamez, A.S. Habib, Predicting severity of acute pain after cesarean delivery: a narrative review, Anesth. Analg. 126 (2018) 1606–1614.
[2] S.A. Schug, G.M. Palmer, D.A. Scott, M. Alcock, R. Halliwell, J.F. Mott, Acute Pain Management: Scientific Evidence, fifth ed., Acute pain management scientific

evidence working group of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine, Melbourne, 2020.
[3] J.C. Eisenach, P.H. Pan, R. Smiley, P. Lavand’homme, R. Landau, T.T. Houle, Severity of acute pain after childbirth, but not type of delivery, predicts persistent

pain and postpartum depression, Pain 140 (2008) 87–94.
[4] World Health Organization, Caesarean Section Rates Continue to Rise, amid Growing Inequalities in Access, World Health Organization, Geneva, June 16, 2021.

https://www.who.int/news/item/16-06-2021-caesarean-section-rates-continue-to-rise-amid-growing-inequalities-in-access. (Accessed 26 June 2024).
[5] A.A. Nair, M.A. Velagapudi, J.A. Lang, et al., Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients, PLoS One

15 (2020) e0236833.
[6] P.J. Tighe, C.A. Harle, R.W. Hurley, H. Aytug, A.P. Boezaart, R.B. Fillingim, Teaching a machine to feel postoperative pain: combining high-dimensional clinical

data with machine learning algorithms to forecast acute postoperative pain, Pain Med. 16 (2015) 1386–1401.
[7] G.S. Collins, J.B. Reitsma, D.G. Altman, K.G. Moons, Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD):

the TRIPOD statement, Ann. Intern. Med. 162 (2015) 55–63.
[8] L.L. Xu, C. Wang, C.M. Deng, et al., Efficacy and safety of esketamine for supplemental analgesia during elective cesarean delivery: a randomized clinical trial,

JAMA Netw. Open 6 (2023) e239321.
[9] M. Khushi, K. Shaukat, T.M. Alam, et al., A comparative performance analysis of data resampling methods on imbalance medical data, IEEE Access 9 (2021)

109960–109975.
[10] J. Brownlee, Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python, first ed., Machine Learning Mastery,

2020.
[11] C. Shu, C. Zheng, D. Luo, J. Song, Z. Jiang, L. Ge, Acute ischemic stroke prediction and predictive factors analysis using hematological indicators in elderly

hypertensives post-transient ischemic attack, Sci. Rep. 14 (2024) 695.
[12] R. Tibshirani, Regression shrinkage and selection via the LASSO, J R Stat Soc Series B Stat Methodol 58 (1996) 267–288.
[13] R. Kohavi, D.H. Wolpert, Bias plus variance decomposition for zero-one loss functions, in: Proceedings of the Thirteenth International Conference on

International Conference on Machine Learning, 1996, pp. 275–283.
[14] A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics 12 (1970) 55–67.
[15] H. Zou, T. Hastie, Regularization and variable selection via the Elastic net, J R Stat Soc Series B Stat Methodol 67 (2005) 301–320.
[16] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[17] G. Ke, Q. Meng, T. Finley, et al., LightGBM: a highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. Syst. (2017) 3149–3157.
[18] J.D. Rodriguez, A. Perez, J.A. Lozano, Sensitivity analysis of k-fold cross validation in prediction error estimation, IEEE Trans. Pattern Anal. Mach. Intell. 32

(2009) 569–575.
[19] L. Juwara, N. Arora, M. Gornitsky, P. Saha-Chaudhuri, A.M. Velly, Identifying predictive factors for neuropathic pain after breast cancer surgery using machine

learning, Int. J. Med. Inf. 141 (2020) 104170.
[20] S. Ray, A quick review of machine learning algorithms, in: International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, 2019,

pp. 35–39.
[21] A. Davoudi, R. Sajdeya, R. Ison, et al., Fairness in the prediction of acute postoperative pain using machine learning models, Front Digit Health 4 (2023) 970281.
[22] J.J. Chan, C.W. Tan, C.T. Yeam, et al., Risk factors associated with development of acute and sub-acute post-cesarean pain: a prospective cohort study, J. Pain

Res. (2020) 2317–2328.
[23] C.J. Kalkman, K. Visser, J. Moen, G.J. Bonsel, D.E. Grobbee, K.G. Moons, Preoperative prediction of severe postoperative pain, Pain 105 (2003) 415–423.
[24] Q.A. Rahman, T. Janmohamed, M. Pirbaglou, et al., Defining and predicting pain volatility in users of the manage my pain app: analysis using data mining and

machine learning methods, J. Med. Internet Res. 20 (2018) e12001.
[25] A. Parthipan, I. Banerjee, K. Humphreys, et al., Predicting inadequate postoperative pain management in depressed patients: a machine learning approach, PLoS

One 14 (2019) e0210575.
[26] B.C. Demilew, N. Zurbachew, N. Getachew, G. Mekete, D.T. Lema, Prevalence and associated factors of postoperative acute pain for mothers who gave birth

with cesarean section: a systematic review and meta-analysis, Pain Manag. Nurs. (2024) in press.
[27] H.J. Kim, G.S. Yang, J.D. Greenspan, et al., Racial and ethnic differences in experimental pain sensitivity: systematic review and meta-analysis, Pain 158 (2017)

194–211.
[28] Singapore Ministry of Health, National guidelines for the safe prescribing of opioids (Apr 2021) librariesprovider5/default-document-library/national-

guidelines-for-the-safe-prescribing-of-opioids-2021.pdf.
[29] P. Sultan, S.H. Halpern, E. Pushpanathan, S. Patel, B. Carvalho, The effect of intrathecal morphine dose on outcomes after elective cesarean delivery: a meta-

analysis, Anesth. Analg. 123 (2016) 154–164.
[30] Singapore Ministry of Health, List of Benchmarks (June 14, 2023). https://www.moh.gov.sg/docs/librariesprovider5/default-document-library/full-list-of-fee-

benchmarks_230615-(2).pdf. (Accessed 18 June 2024).

C.W. Tan et al. Heliyon 10 (2024) e40602 

11 

https://doi.org/10.1016/j.heliyon.2024.e40602
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref1
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref2
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref2
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref3
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref3
https://www.who.int/news/item/16-06-2021-caesarean-section-rates-continue-to-rise-amid-growing-inequalities-in-access
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref5
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref5
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref6
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref6
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref7
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref7
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref8
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref8
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref9
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref9
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref10
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref10
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref11
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref11
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref12
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref13
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref13
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref14
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref15
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref16
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref17
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref18
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref18
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref19
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref19
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref20
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref20
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref21
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref22
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref22
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref23
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref24
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref24
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref25
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref25
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref26
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref26
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref27
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref27
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref28
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref28
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref29
http://refhub.elsevier.com/S2405-8440(24)16633-9/sref29
https://www.moh.gov.sg/docs/librariesprovider5/default-document-library/full-list-of-fee-benchmarks_230615-(2).pdf
https://www.moh.gov.sg/docs/librariesprovider5/default-document-library/full-list-of-fee-benchmarks_230615-(2).pdf

	Machine learning approach to predict postoperative pain after spinal morphine administration during caesarean delivery
	1 Introduction
	2 Methods
	2.1 Ethics and perioperative management protocols
	2.2 Cohort selection and variables definition
	2.3 Feature selection
	2.4 Predictive model development and validation

	3 Results
	4 Discussion
	4.1 Strength and limitations
	4.2 Clinical significance and future work

	5 Conclusion
	CRediT authorship contribution statement
	Presentation
	Trial registration
	Data and code availability
	Financial support and sponsorship
	Declaration of competing interest
	Acknowledgments relating to this article
	Appendix A Supplementary data
	References


