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Sepsis remains a difficult clinical challenge, since our understanding of its immuno-
pathology is incomplete and no efficacious treatment currently exists. Its earlier stage 
results from an uncontrolled inflammatory response to bacteria while in the later stage 
disturbed immune response with immunodeficiency syndrome develops. More than a 
hundred of clinical trials have not provided an efficient therapy which could ascertain 
an improvement or cure. Recent advancements in immunobiology of bacterial viruses 
(phages) indicate that in addition to their well-known antibacterial action phages have 
potent immunomodulating properties. Those data along with preliminary observations in 
experimental animals and the clinic strongly suggest that clinical trials on the efficacy of 
phages in sepsis are urgently needed.
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Sepsis is the leading cause of death in critically ill patients. More than 30 million cases of sepsis occur 
worldwide each year, and it is increasing 9–13% annually with a mortality rate of approximately 
33% (1). Sepsis is considered to be an uncontrolled inflammatory response to bacterial infection 
associated with immunosuppression, an inability to clear infection and predisposition to nosocomial 
infections. Excessive release of oxidants and proteases by neutrophils is responsible for associated 
organ injury, especially in the lungs, as intrapulmonary sequestration of neutrophils and acute 
respiratory distress syndrome are its frequent complications (2), while the abdomen and urinary 
tract are also often affected (1). Also, exacerbated release of inflammatory cytokines and the resulting 
hyperactivation of immune cells (“cytokine storm”) appears to be important contributing factors. 
Although no single mediator or pathogen is responsible for the pathophysiology of sepsis, bacterial 
toxins (especially endotoxins) play a pivotal role in this disorder. In the past 25 years, the definitions 
of sepsis and septic shock and concepts of their pathophysiology have been hotly debated, with no 
gold standard achieved (3). Given the complexity of sepsis pathophysiology and its non-specificity 
with regard to infection, more than a hundred clinical trials have been carried out targeting the host 
response to infection, yet none of them has yielded a reliable treatment modality assuring clear clini-
cal efficacy (1). Therefore, the development of new treatment modalities to prevent the progression of 
initial stages of sepsis to multiorgan failure and death is urgently needed (4). Host-directed therapy 
(HDT) is an emerging concept in anti-infective therapy meant to counteract the action of host fac-
tors required by pathogens for replication and persistence, to stimulate protective immunity, and to 
achieve a balance of immune reactivity to pathogens. Its major strategy is to upregulate the activity 
of phagocytes and limit inflammation (5). This strategy is supported by observations indicating that 
neutrophils may play a beneficial and deleterious role in the outcome of sepsis (6).

In the past decade, our understanding of bacteriophages (phages) and their current and potential 
position in microbiology and immunobiology has undergone major changes and has gained a new 
dimension. The original concept of phage highlighted its well-known antibacterial action, and the 
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resulting practical therapeutic implications included the use of 
phage in antimicrobial therapy—especially in antibiotic-resistant 
infections. Given the increasing crisis of antimicrobial resistance, 
the interest in phage therapy has increased tremendously as 
more data suggesting its safety and efficacy have accumulated. 
Nevertheless, data showing the ability of phages to interact with 
the immune system and to modify its functions strongly suggest 
that phages may cause immunomodulating effects which can 
have practical implications for therapy. Of particular interest are 
the following immunomodulating activities of phages:

(1) Phages show strong anti-inflammatory properties that may 
be independent of their well-known antibacterial activities. 
The possible mechanisms responsible for this effect may 
involve LPS binding, inhibition of excessive reactive oxygen 
species production and induction of IL-10 production. It has 
been shown that phages and their proteins may diminish 
inflammatory infiltration induced by endotoxin and alloge-
neic transplantation, and lower clinical indices of inflamma-
tion in patients on phage therapy (CRP, sedimentation rate, 
leukocytosis). In fact, a decrease of CRP in some patients 
may be very significant even though eradication of infections 
has not been achieved (7, 8).

(2) Phages do not activate murine and human dendritic cells 
and may inhibit skin allograft rejection in normal and 
presensitized mice as well as dampen autoimmune reaction 
in a mouse model of collagen-induced arthritis (9, 10). 
They induce the anti-inflammatory IL-1 receptor antagonist 
(IL-1RA) synthesis by human mononuclear cells, a cytokine 
blocking the expression of pro-inflammatory cytokines and 
inhibiting the activation of Th1 cells and macrophages (11). 
Interestingly, IL-1RA blockade was associated with signifi-
cant improvement in survival of patients with sepsis (12). 
Recent data confirm that the administration of recombinant 
IL-1RA can be beneficial in septic patients in whom its 
adequate levels have been achieved (13). Phages may also 
downregulate the expression of TLR4 (whose activation 
induces secretion of pro-inflammatory cytokines) (11). 
Interestingly, it was recently demonstrated that in a model 
of post-septic mice TLR4 deficiency improves immune 
paralysis; therefore, modulation of TLR4 activity may be 
useful in treating sepsis (14). Phages may also interact with 
platelets (PLT), which may be viewed as “the underap-
preciated orchestrator of the immune system” (15). PLT 
may participate in the leukocyte recruitment leading to 
increased severity of inflammation and their aggregation 
in this condition in response to agonist is amplified (15). 
Phages inhibit platelet (PLT) adhesion to fibrinogen and 
cause some reduction of T cell adhesion to that protein. In 
addition, thrombin-induced PLT aggregation in vitro may 
be decreased (9). PLT role in host response to sepsis has 
been subject of intense research (16) and more studies are 
needed to determine if indeed phage interactions with PLT 
may contribute to beneficial effects in sepsis.

Phage therapy may lead to downregulation of excessive 
immune responses, thus contributing to maintenance of 

immune homeostasis. This mode of action may depend on the 
initial immune status of an individual causing upregulation 
when the immune response is depressed and downregulation 
when it is hyperactive: for example, abnormal B cell function 
returned to normal values in patients on phage therapy (7). 
Furthermore, phage therapy-dependent upregulation of 
cytokine production when it was initially low and lowering 
in patients in whom it was initially high was also noted (17). 
Recent reviews have described immunomodulating activi-
ties of phages in detail (7, 9, 18).

 (3)  In almost 50% of patients on phage therapy, an increase in 
phagocytosis was noted which was associated with good 
clinical outcome. This observation seems to be a strong 
argument for phage treatment of sepsis: as noted, stimula-
tion of phagocytosis is recommended as an important part 
of anti-sepsis strategy (5). Phages do not induce granulocyte 
degranulation, an effect which could contribute to further 
tissue injury (19). When confronted with bacteria phages 
facilitate microbial phagocytosis by human granulocytes 
(20). In this regard, it should be noted that the discoverer 
of phages, d’Herelle, determined that phages act as specific 
opsonins markedly facilitating bacterial phagocytosis (21).

Our data strongly suggest that phage therapy does not impair 
human granulocyte and monocyte ability to kill invading 
and standard strain bacteria and may even correct monocyte 
deficiency in patients with urinary tract infections treated with 
phages (22). The observed amelioration of phagocytosis reflects 
the outcome of a variety of factors influencing phagocyte func-
tions in patients on phage therapy, one of the most important 
being pathogen burden. It is well known that pathogens have 
developed countermeasures to avoid detection, thereby impair-
ing signaling and paralyzing machinery underlaying phagocyto-
sis and that neutrophil functions are depressed in patients with 
chronic infections. This deficiency may result from pathogen 
activity and therapy (e.g., antibiotics) (23, 24). Other authors 
have shown that neutrophils are required to control both phage-
sensitive and phage-resistant pathogens; importantly, phages 
alone were unable to clear bacterial infection in neutrophil-
depleted mice. Thus, the success of phage therapy depends on 
synergistic activities of phagocytes and phages, a phenomenon 
referred to as “immunophage synergy” (25). In accord with 
this assumption, reducing pathogen burden by phages may 
contribute to alleviating pathogen-dependent impairment of 
phagocyte functions. Evidently, those activities of phages in 
combination with their antibacterial functions strongly suggest 
that they could be of value in the treatment of sepsis. In particu-
lar, early phage administration could help eradicate infection, 
limit inflammation, and upregulate phagocytosis (which are 
the key recommendations of the HDT and may prevent the 
development of full-blown sepsis with resulting organ failure 
and death) (5). Recent data indicate that phages may induce 
IL-10 production by human mononuclear cells (11). IL-10 has 
been recognized as a potent anti-inflammatory cytokine limit-
ing cell and tissue injury during bacterial infections. In a rat 
model of sepsis-induced acute kidney injury, upregulating IL-10 
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table 1 | Phage-induced immunomodulation at the early and advanced stage 
of sepsis.

sepsis

early stage advanced stage

↑ Production of IL-10 ↑ Immunomodulation
↓ ROS production ↓ ROS production
↓ Inflammatory infiltration ↓ Inflammatory infiltration
↑ Phagocytosis ↑ Phagocytosis
↑ Intracellular killing ↑ Intracellular killing
↑ LPS-binding Lack of granulocyte degranulation

↑, increase; ↓, decrease.
Phage therapy may induce various types of immunomodulation in consecutive stages 
of sepsis.
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table 2 | Bacteriophages and phage lysins in the treatment of sepsis.

antibacterial agent bacteriophage  
(b) or lysin (l)

animal model Pathogen route/time of phage/lysin administration  
(bold font—the best protection)

reference

B Mouse model Acinetobacter baumanii i.p./2 h postinfection, up to 7 days postinfection (32)

B Mouse model Staphylococcus aureus i.p./6 h postinfection (33)

B Mouse model Klebsiella pneumonia NK-5 i.p./30 min postinfection (34)

intragastric/30 min postinfection

B Mouse model S. aureus i.p./30 min postinfection; in delayed treatment  
0, 1, 2, 3, 4, 6 h postinfection

(35)

B Mouse model Pseudomonas aeruginosa MDR i.p./45 min postinfection (36)

B Mouse model P. aeruginosa per os/1 day before, 1 day, 6 days postinfection (37)

i.p./1 day before or simultaneously with strain

B Mouse model P. aeruginosa IMPR-Pa i.p./up to 1 h; 3, 6 h postinfection (38)

B Mouse model Escherichia coli ESBL (+) i.p./40 min, up to 60 min postinfection (39)

B Mouse model K. pneumonia MDR i.p./45 min postinfection (40)

B Rat model E. coli ESBL (+) s.c./7 h and 24 h postinfection (41)

B Chickens, calves E. coli K1 i.m./simultaneously with strain (chickens) (42)

i.m./8 h postinfection (calves)

L Mouse model Streptococcus pneumoniae i.p./1 h postinfection (43)

L Mouse model S. aureus MR i.p./30 min postinfection (44)

L Mouse model Streptococcus pyogenes i.p./3 h postinfection (45)

S. aureus MR

L Mouse model S. aureus MR i.p./2 h postinfection (46)

L Mouse model S. pneumoniae i.p./1 h postinfection (daptomycin + lysin) (47)

L Mouse model S. aureus MR i.p./1 h postinfection (48)

L Mouse model S. pneumoniae i.p./1 h postinfection (49)

i.p., intraperitoneal injection; s.c., subcutaneous injection; i.m., intramuscular injection.
Summary of the data showing the efficacy of phages and their lysins in the treatment of experimentally induced sepsis.

expression by macrophages was associated with attenuation of 
sepsis (26). In a positive feedback loop, IL-10 may also induce 
this cytokine in neutrophils, both in vitro and in vivo (27). Using 
a whole blood assay simulating the in vivo situation it was shown 
that IL-10 downregulates neutrophil phagocytosis of bacteria 
(28) confirming earlier data (29). On the other hand, IL-10 may 
upregulate phagocytosis in monocytes (28, 30). Therefore, IL-10 
may have opposing effect on different phagocyte populations. 
Excessive secretion of IL-10 may contribute to immunosup-
pression typical for later stages of sepsis (31). Therefore, phage 
treatment of later stages of the syndrome may be more problem-
atic when ensuing immunosuppression prevails. However—as 

pointed out previously—phages have been demonstrated to 
upregulate in vivo and in vitro cytokine production in patients 
with immunodeficiency; moreover, available data suggest that 
phage therapy is safe also in animals and patients with various 
forms of immunodeficiency syndrome (19). Table 1 shows the 
possible influence of phages on immune response during early 
and advanced stage of sepsis.

Interestingly, the potential application of phages (and their 
enzymes, lysins) in the treatment of sepsis has already received 
some experimental support, both in experimental animals and 
the clinic. Table  2 presents the reported data on phage/lysin 
efficacy in the treatment of sepsis caused by different pathogens 
(32–49). In addition, there are initial clinical observations sup-
porting the experimental data. We have reported good results 
in sepsis patients when phages were administered orally (50). 
Phages can translocate from the gastrointestinal tract; in addi-
tion, this route of administration was also found to be efficient in 
the mouse model (34).

In 2017, two cases of successful phage treatment of sepsis were 
reported. A patient with peritonitis, severe abdominal sepsis 
and renal insufficiency received phage against his Pseudomonas 
aeruginosa isolate intravenously. Immediately, blood cultures 
turned negative, CRP dropped and fever disappeared, and renal 
function recovered. Recently, a dramatic result was reported in 
a patient with sepsis in the course of necrotizing pancreatitis 
caused by Acinetobacter baumannii. Administration of phages 
intravenously and percutaneously into abscess cavities caused 
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prompt clearance of infection, reversal of the patient’s downward 
clinical course and return to health (51). Those clinical data may 
suggest that phage therapy may also be efficient—at least in some 
cases—when administered at later stages of sepsis.

Recently, an important clinical trial evaluating the efficacy of 
phage therapy in urinary tract infection was announced which 
may indicate that further progress in the introduction of this 
treatment is on the horizon (52). The fact that practically all 
clinical trials reported so far failed to result in a really significant 
progress in the treatment of sepsis and the data reported in this 
article suggest that clinical trials on the efficacy of phage therapy 
in sepsis are urgently needed.
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