
Miura et al. Robot. Biomim.  (2017) 4:12 
DOI 10.1186/s40638-017-0071-5

RESEARCH	

Accuracy to detection timing 
for assisting repetitive facilitation exercise 
system using MRCP and SVM
Satoshi Miura1*, Junichi Takazawa2, Yo Kobayashi3 and Masakatsu G. Fujie3

Abstract 

This paper presents a feasibility study of a brain–machine interface system to assist repetitive facilitation exercise. 
Repetitive facilitation exercise is an effective rehabilitation method for patients with hemiplegia. In repetitive facilita-
tion exercise, a therapist stimulates the paralyzed part of the patient while motor commands run along the nerve 
pathway. However, successful repetitive facilitation exercise is difficult to achieve and even a skilled practitioner 
cannot detect when a motor command occurs in patient’s brain. We proposed a brain–machine interface system for 
automatically detecting motor commands and stimulating the paralyzed part of a patient. To determine motor com-
mands from patient electroencephalogram (EEG) data, we measured the movement-related cortical potential (MRCP) 
and constructed a support vector machine system. In this paper, we validated the prediction timing of the system at 
the highest accuracy by the system using EEG and MRCP. In the experiments, we measured the EEG when the partici-
pant bent their elbow when prompted to do so. We analyzed the EEG data using a cross-validation method. We found 
that the average accuracy was 72.9% and the highest at the prediction timing 280 ms. We conclude that 280 ms is the 
most suitable to predict the judgment that a patient intends to exercise or not.
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Background
The number of cerebral stroke patients is increasing 
worldwide. For example, in Japan, cerebral stroke patients 
exceeded 2.8 million people in 2015 [1]. Patients often 
suffer from aftereffects following a stroke, the most fre-
quent of which is hemiplegia. To recover motor function 
following hemiplegia, patients must endure a long course 
of difficult rehabilitation. Many studies have investigated 
methods to shorten the recovery time through efficient 
rehabilitation after hemiplegia [2, 3].

Neurorehabilitation has been shown to be very efficient 
[4, 5]. Neurorehabilitation is a method to prompt the 
recovery of the injured neural system. Repetitive facilita-
tion exercise is drawing attention as a particularly effec-
tive rehabilitation. Kawahira demonstrated the efficacy of 

repetitive facilitation exercise [6]. Patients using repeti-
tive facilitation exercise can recover motor control three 
times faster than those using usual therapy [7]. Repetitive 
facilitation exercise also improves the paralysis part to 
health compared with usual therapy [8].

Figure 1 shows the mechanism of the repetitive facili-
tation exercise. The patient imagines moving a paralyzed 
body part. Within the patient’s body, motor commands 
travel from the brain, through the spinal cord, to the 
paralyzed part. The therapist then stretches the paralyzed 
part of the patient using physical or electrical stimula-
tion before the motor command reaches the spinal cord. 
This stimulation excites the nerves in the spinal cord and 
activates the path of the motor command. Because the 
motor command can pass more easily through the nerve 
pathway, the patient becomes likely to regain the ability 
to move the paralyzed part unaided.

The most important point of repetitive facilitation 
exercise is the stimulation timing. It is necessary for the 
stimulation to occur before the motor command reaches 

Open Access

*Correspondence:  miura.s@aoni.waseda.jp 
1 Faculty of Science and Engineering, Waseda University, 3‑4‑1, Okubo, 
Shinjuku‑ku, 169‑8555 Tokyo, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-017-0071-5&domain=pdf


Page 2 of 7Miura et al. Robot. Biomim.  (2017) 4:12 

the spinal cord for success of the repetitive facilitation 
exercise. However, it is difficult to successfully perform 
repetitive facilitation exercise because even a skilled ther-
apist cannot detect the timing of the motor command. 
The success of repetitive facilitation exercise is depend-
ent on the intuition and experience of the therapist.

Even an experienced therapist cannot achieve a 100% 
success rate with the repetitive facilitation exercise 
because therapists cannot detect patient motor inten-
tions. It has been reported that five of twelve patients 
showed increased motor evoked potential after repetitive 
facilitation exercise by therapists [21]. This shows that 
the nervous systems of these patients underwent some 
reconstruction. Although there are individual differences, 
it is said that the conventional success rate is about five 
of twelve, that is just 45%. To improve the higher success 
rate than the target value 45%, therapists require a system 
to assist repetitive facilitation exercise. An upper limb 
reaching device has been proposed to reduce fatigue and 
pain in the paralyzed arm and to decrease the burden on 
the therapist [9]. The patient repeats inward and outward 
movements to push the front and back buttons alter-
nately. When the patient pushes the button, the device 
generates vibrations and electric stimulation to make it 
easier to move the paralyzed arm. However, the device 
cannot control the accurate stimulation timing because 
the device cannot detect the motor command generated 
in the brain.

Related work
There have been many studies of real time detect-
ing the motor command in brain. Most of these have 
used electroencephalogram (EEG) because it has a 
higher time resolution than other brain measure-
ment devices. EEG is simple to analyze in real time. 
For example, Lucian reported that EEG can show the 
steering timing of a driver during driving [10, 11, 12]. 

He measured and analyzed EEG data while partici-
pants operated a driving simulator. Using this method, 
the turn direction was detected 811  ms before steer-
ing with an accuracy of 74.6%. In another study, Choi 
showed that a brain–machine interface system using 
EEG could be used to control a wheelchair [13]. This 
system analyzed EEG data and moved forward or 
turned left or right based on the measured EEG sig-
nals within 125 ms.

These studies are useful for realizing real-time brain–
machine interfaces for healthy individuals. However, 
these studies have not been adapted to the rehabilitation.

Objective
Our motivation is to develop a brain–machine interface 
system to assist repetitive facilitation exercise. The sys-
tem detects motor intention in real time by measuring 
the brain and stimulates the paralyzed body part before 
the motor command reaches the spinal cord, as shown 
in Fig.  2. The system overview and flow are shown in 
Figs. 3 and 4. The system is consisted of the EEG meas-
urement device and FES generator, shown in Fig. 3. The 
system detects motor commands from the patient’s EEG 
data using support vector machine (SVM). It then stimu-
lates the paralyzed part by functional electric stimulation 
(FES) before the motor command reaches the spinal cord. 
The system provides stimulation at the same time the 
SVM detects the motor command; thus, the stimulation 

Fig. 1  Principle of repetitive facilitation exercise. When a motor 
command occurs in the brain, the synapse bond strengthens. The 
neural networks are excited. At this time, the therapist stimulates the 
patient’s paralyzed arm. This stimulation is transmitted to the brain. 
When the intention to move the arm and the stimulus overlaps, the 
brain recognizes this as if the patient had moved the paralyzed hand. 
This recognition promotes the reconstruction of the nerve pathway 
to the paralyzed arm

Fig. 2  Proposed system. The system measures the patient’s EEG 
using the EEG amp and analyzes EEG data using the SVM. The system 
actuates FES using the stimulation device. The system stimulates the 
paralyzed part electrically
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occurs after the motor command is produced, but before 
it reaches the spine.

In this paper, we validate our proposed motor com-
mand detecting method. The prediction accuracy 
changes as to the timing before action. It is not clear that 
the accuracy changes as to the prediction timing chang-
ing. We clarify the appropriate prediction timing by the 
accuracy of the system using SVM. We constructed an 
SVM system and carried out experiments to clarify the 
detection ratio of motor commands. In the experiment, 
we collected EEG data when the participant bent their 
elbow, shown in Fig.  5. To facilitate the timing, we dis-
played a bar on a monitor to indicate to the participant 
when to bend their elbow. The bar was displayed on the 
monitor and shortened gradually until it disappeared. 
At the same time the bar disappeared, the participant 
had to bend their elbow. We analyzed EEG data using a 
cross-validation method to clarify the detection ratio of 
the motor command. We confirmed that the calculated 
detection ratio was above the target value, verifying the 
utility of the proposed system.

Methods
Participants
Three healthy participants (male, age 22–23, two right-
handed and one left-handed) were enrolled in the experi-
ment. We did not enroll paralyzed patients because the 
aim of the present study was only to validate the pro-
posed method for detecting motor commands. Informed 
consent was obtained from all participants. All partici-
pants attested to having slept well the night before the 
experiment to exclude the influence of sleep deprivation. 
All participants did not intake the drugs such as caffeine, 
alcohol, nicotine, and other medicines. The experiments 
were approved by the Waseda University Institutional 
Review Board (No. 2014-156).

Experimental setup
We used an EEG (g. USBamp, gtec, USA) to measure 
brain activity. We set up the device as shown in Table 1. 
The sampling frequency was set to 256  Hz because the 
real-time measurement using MRCP needs a high tem-
poral resolution. We used 17 analog input channels and 
1 GND passive channel. On an EEG cap, 14 channels 
were located to measure EEG based on the international 
10–20 system, as shown in Fig. 6. The reference electrode 
was put on the earlobe.

We used a three-degree-of-freedom accelerometer 
(ACL300, Biometric Inc., USA) to detect the time when the 
participant moved their arm. We affixed the accelerometer 
to the participant’s wrist as shown in Fig. 6 and connected 
it to an analog input–output board (AIO-163202FX-USB, 
Contec Inc., USA) to get the analog input value. The accel-
erometer used three channels, as shown in Table 1.

Fig. 3  Overview of the system. An EEG cap is set on the patient’s 
head. EEG data are measured by the EEG cap, amplified by the EEG 
amp and output via the A/D board to a PC. The PC is used to analyze 
the EEG data and actuate the FES

Fig. 4  Flow of the system. The system measures the patient’s EEG 
data and analyzes it using SVM. If classification class by SVM is 1, the 
trigger is on and the system actuates the FES to stimulate the patient

Fig. 5  Experimental overview. The EEG cap is set on the participant’s 
head, and the accelerometer is put on the participant’s wrist. First, 
the participant remains relaxed. A red bar is displayed on the monitor 
and shortens gradually. At the same time the bar disappears, the 
participant bends their elbow. We detect when the participant bends 
the elbow by analyzing the acceleration of the wrist
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Experimental task
We conducted the experiment in a closed room to mini-
mize noise disturbances. During the experiment, the par-
ticipant did not talk and sat still. In addition, we asked the 
participant to try to avoid swallowing saliva or blinking 

hard. The temperature was 20 ± 15 °C, and the humidity 
was 45–85%.

We put the EEG cap and the accelerometer on the par-
ticipant. The experimental procedure is shown in Fig. 8. 
In the initial state, the participant relaxed with their right 
forearm resting on the desk, palm up. One measurement 
session consisted of rest, preparation and act periods 
within 10 s. During the rest period, from 0 to 3 s, the par-
ticipant relaxed and looked at the monitor. During the 
preparation period, from 3 to 6 s, a red bar was displayed 
on the monitor and became smaller until disappearing at 
6 s, as shown in Fig. 7. During the act period, after 6 s, at 
the same time as the red bar disappeared, the participant 
bent their arm at the elbow. The participant kept their 
elbow bent for approximately 0.5 s and then set their arm 
to the initial resting state. This experimental procedure 
was performed 100 times by each participant.

Experimental condition
The experimental condition is the prediction timing. 
The prediction accuracy changes as to the timing before 

Table 1  Device settings of a g. USBamp and ACL300

Title Specification Mounting position

Sampling rate Hz 256

Analog input channel ch 17

Mounting position ch1 F7

ch2 F3

ch3 Fz

ch4 F4

ch5 F8

ch6 T7

ch7 C3

ch8 Cz

ch9 C4

ch10 T8

ch11 P3

ch12 Pz

ch13 P4

ch14 Oz

ch15 Acceleration sensor ch1
(X-axis)

ch16 Acceleration sensor ch2
(Y-axis)

ch17 Acceleration sensor ch3
(Z-axis)

GND Nz

Fig. 6  Measured points on the EEG cap, viewed from directly above 
the patient’s head. The 14-ch EEG data are measured at these points

Fig. 7  One measurement session. The rest period is 0–3 s from start-
ing measurement. The preparation period is 3–6 s and includes the 
appearance, gradual shortening and disappearance (at 6 s) of the red 
bar. The act period is 6–10 s, beginning at the same time as the bar 
disappears. In the act period, the participant bends their elbow

Fig. 8  Classification by the support vector machine (SVM). The 
separation plane divides the data into Class 1 and Class 2. The margin 
is the distance between the separation plane and the closest data 
point. SVM sets the separation plane to maximize the margin



Page 5 of 7Miura et al. Robot. Biomim.  (2017) 4:12 

action. However, the timing is influenced by the recog-
nition delay. Even the participant bent his/her elbow as 
soon as the disappearance of the bar, and there is actually 
the delay because it takes time to recognize it. The recog-
nition delay is said to about 200 ms, but there is no clarity 
of accurate delay. In this paper, the experimental condi-
tion is the prediction timing around 200 ms before action 
timing. The condition is 70, 140, 210, 280 and 350  ms 
before action timing.

Analysis
Movement‑related cortical potential (MRCP)
We focused on the functions of EEG. For exam-
ple, event-related potential is the electric fluctuation 
detected from neurons following light or sound stimu-
lus [14]. The P300 speller, a communication device for 
severely paralyzed patients, utilizes the event-related 
potential function. Event-related desynchronization is 
another function in which the power spectrum of the 
EEG alpha band decreases following motor commands 
[15]. Event-related desynchronization is often used in 
rehabilitation systems. In the present study, we used 
movement-related cortical potential (MRCP). MRCP 
is the change in EEG signal resulting from the plan and 
action of voluntary exercise [16, 17]. MRCP is detectable 
before and after exercise. In particular, MRCP that starts 
about 800 ms before exercise is called the motor readi-
ness potential. We hypothesized that the motor readi-
ness potential would show the timing of when a motor 
command occurs in the brain.

Support vector machine (SVM)
To detect MRCP, a pattern identification unit is required. 
There are two kinds of pattern identification unit: One 
uses a parametric method for which the probability dis-
tribution of data is known in advance and another uses 
a nonparametric method which requires collected data 
because the probability distribution of data is unknown. 
We used the nonparametric method because EEG data 
are different for each patient.

We employed a support vector machine (SVM) 
because it can divide known data into two classes [18, 19, 
20]. Compared with other algorithms, SVM is suitable 
to judge the two classes that the human tends to move 
his body or not. Using this SVM system, we divided the 
EEG data into data during rest and data during action. 
The system needs to detect EEG data during action as a 
motor command.

SVM is a supervised learning method that can con-
struct pattern identification to two classes. SVM learns 
the parameters required to maximize the margin from 

training sample data. SVM decided the two outputs using 
the following:

where W is the weight parameter and h is the threshold. 
If u > 0, sign(u) is 1. If u≤0, sign(u) is − 1. Figure 7 shows 
the SVM classification. The Class 1 and Class 2 mean that 
the label of each class is 1 and -1. The margin is the dis-
tance between the separation plane and the closest data 
point. SVM finds an optimal value of W to maximize the 
margin.

Judgment of movement from acceleration
We recorded the time when the participant bent their 
elbow using the accelerometer. We calculated the 
following:

where Vxyz is the combined acceleration, and Vx, Vy and 
Vz are the X-, Y- and Z-axis components of the accelera-
tion. We clarified the maximum value of the acceleration 
during the rest period. We set the maximum acceleration 
value during rest period as the threshold of the move-
ment starting judge. We judged when the acceleration 
was over the threshold as the timing when the participant 
bent the elbow.

To detect motor commands, we used EEG data from 
0 to 2 s during each measurement session as the feature 
quantity during rest. EEG data at 210 ms after the accel-
eration of the wrist were considered the threshold for 
motor command. There are two reasons to set this thresh-
old to 210 ms: One is the human cognitive delay. In this 
experiment, the participant bent and their elbow based on 
a signaling displayed on a monitor—the disappearance of 
the red bar. Therefore, we considered that it would take 
200 ms after the bar disappears for the participant to rec-
ognize the bar disappearance. Another reason is machine 
delay. There is a machine delay of 10  ms from motion 
intention detection by the SVM to actuation of the FES. 
From the above, we set the expected delay to 210 ms.

We clarified the identification ratio using cross-val-
idation of the data from 100 trials by each participant. 
Figure 9 shows the cross-validation method. We divided 
the original data into k blocks. Using the first block as 
test data and the other data as training data, we calcu-
lated the discrimination ratio. Next, using the second 
data as test data and the other data as training data, we 
calculated the discrimination ratio again. By repeating 
the above procedure k times, we used the average of k 

(1)y = sign
(

WTx − h
)

(2)Vxyz =

√

V 2
x + V 2

y + V 2
z − 0.1
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values for discrimination rate to estimate the accuracy of 
the model.

Figure  10 shows the procedure for constructing the 
SVM. The action time is the timing when the accel-
eration of the wrist was over the maximum during rest. 
The detection time is 210 ms before the action time. We 
selected a value for k of 10, and the feature quantity was 
all 14-ch EEG data during 210  ms from the detection 
time to the action time.

To compare with other detection timings, we validate 
the discrimination rate by each 70  ms via cross-valida-
tion. The condition is 70, 140, 210, 280, 350 ms.

Results and discussion
Discrimination ratio by each detection timing is shown 
in Table  2. This discrimination ratio is about 70%. The 
results show that SVM could detect the MRCP effec-
tively. Particularly, the highest average is 72.9% at 280 ms 
so we determine that the most appropriate detection tim-
ing is 280 ms.

We clarified the discrimination ratio at 280 ms for each 
participant, as shown in Fig. 11. The discrimination ratios 
of participants A, B and C were 67.5, 69.4 and 81.9%, 
respectively. The average was 72.9%; this is over the 45% 
target value.

Using EEG data 210 ms after the red bar disappeared, 
all discrimination data were at least 67%. This result was 
above the 45% target value. This indicates that using EEG 
data sorted by SVM, the proposed system can perform 
FES on paralyzed patients with adjustable timing. Repeti-
tive facilitation exercise administered using the proposed 
EEG system is potentially more successful than that 
administered by a therapist.

In the present study, we carried out the experiment 
by only three participants. We should conduct experi-
ments using more participants. In addition, the EEG 
data were collected from only healthy subjects. For 
some stroke patients, although the neural system is 
different from the healthy subject, the sensory rec-
ognition motor loops would be same as to healthy 
because the neural system cannot feedback but can 
feedforward. We should validate the detection using 
EEG signals of paralyzed patients compared with the 
healthy people. In future work, we will develop the sys-
tem using FES.

Fig. 9  Cross-validation method. The red blocks represent test data. 
The purple blocks represent training data. First, we considered the 
first data block as test data, and all other data blocks training data. 
Second, we considered the second data block as test data, and all 
other data blocks training data. We repeated this procedure k times

Fig. 10  Construction method of the SVM. The graph above is a sam-
ple of EEG data. SVM learns the data during rest and act periods

Table 2  Experimental result of detection rate

Subject name Detection rate for shift time r  %

70 ms 140 ms 210 ms 280 ms 350 ms

Average all subjects 70.9 72.0 71.8 72.9 72.5

Subject A 69.0 68.0 69.0 67.5 73.5

Subject B 65.6 69.9 69.4 69.4 65.1

Subject C 78.2 78.2 77.1 81.9 79.3
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Fig. 11  Detection rate for each subject. The discrimination ratios of 
participants A, B and C are 69, 69.4 and 77.1%, respectively. The target 
value is 45%
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Conclusions
In the present study, we proposed a brain–machine inter-
face system to assist repetitive facilitation exercise. As a 
result, the average accuracy was 72.9% and the highest at 
the prediction time 280 ms. We conclude that 280 ms is 
the most suitable to predict the judgment that a patient 
intends to exercise or not. In future work, we will develop 
this repetitive facilitation exercise assistance system.
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