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Identity-by-descent (IBD) inference is the problem of establishing a genetic connection between two individuals through
a genomic segment that is inherited by both individuals from a recent common ancestor. IBD inference is an important
preceding step in a variety of population genomic studies, ranging from demographic studies to linking genomic variation
with phenotype and disease. The problem of accurate IBD detection has become increasingly challenging with the
availability of large collections of human genotypes and genomes: Given a cohort’s size, a quadratic number of pairwise
genome comparisons must be performed. Therefore, computation time and the false discovery rate can also scale qua-
dratically. To enable accurate and efficient large-scale IBD detection, we present Parente2, a novel method for detecting IBD
segments. Parente2 is based on an embedded log-likelihood ratio and uses a model that accounts for linkage disequilibrium
by explicitly modeling haplotype frequencies. Parente2 operates directly on genotype data without the need to phase data
prior to IBD inference. We evaluate Parente2’s performance through extensive simulations using real data, and we show
that it provides substantially higher accuracy compared to previous state-of-the-art methods while maintaining high
computational efficiency.

[Supplemental material is available for this article.]

When two individuals co-inherit a genomic segment from a com-

mon ancestor, the shared haplotypes are identical to each other

except for occasional lineage-specific de novo mutations. Such

shared segments are called identical-by-descent (IBD).

Computational detection of IBD segments from genotyping

or sequencing data serves as the foundation for many downstream

applications (Browning and Browning 2012). IBD detection is the

prevalent method for finding familial relatives in direct-to-con-

sumer genomics companies such as 23andMe (23andme.com) and

AncestryDNA (ancestry.com) and is a key step in analyzing re-

latedness within a population and across populations; for exam-

ple, IBD analysis was applied to study the demographic history

across Ashkenazi Jewish and Masai populations (Palamara et al.

2012), to demonstrate increased sharing across Welsh individuals

as compared to individuals from other regions in the United

Kingdom (Browning and Browning 2011), and to compare re-

latedness across hunting-gathering, agricultural, and pastoralist

African populations (Soi et al. 2011). IBD detectionwas also shown

to be useful in estimating narrow-sense (additive) heritability

(Yang et al. 2010; Price et al. 2011) and imputation (Kong et al.

2008; Setty et al. 2011). In genome-wide association studies, IBD

detection has been applied to remove the confounding effect of

hidden relatedness in cohorts of individuals that are assumed to be

unrelated to each other (Gusev et al. 2009; Pemberton et al. 2010;

Kyriazopoulou-Panagiotopoulou et al. 2011) and to correct for

hidden relatedness when inferring associations between genotype

and phenotype (Slager and Schaid 2001; Bourgain et al. 2003;

Browning et al. 2005; Choi et al. 2009; Thornton and McPeek

2010).

IBD segment detection can be applied directly as a way to

identify regions of the genome associated with a phenotype with

a technique called IBD mapping (Alkuraya 2010; Bercovici et al.

2010; Moltke et al. 2011; Browning and Thompson 2012;

Thompson 2013), narrowing the search to regions in which most

cases are identical by descent (Roach et al. 2010; Rodelsperger et al.

2011; Smith et al. 2011). Examples of successfully applying IBD

mapping include the study of genes related to an individual’s

plasma plant serol (PPS) level, a surrogate measure of cholesterol

absorption from the intestine (Kenny et al. 2009), where an anal-

ysis of 44 individuals from the Micronesian island of Kosrae

identified a 526-kbp shared haplotype that led to the discovery of

a putative missense causal variant. Simulation studies have shown

that IBD mapping has higher statistical power to detect disease

susceptibility genes when multiple rare causal variants cluster

within them (Browning and Thompson 2012).

Extensive previous work has focused on developing methods

for IBD segment detection. One of the earlier methods, PLINK

(Purcell et al. 2007), uses a three-state hidden Markov model

(HMM) with states corresponding to zero, one or two co-inherited

copies of the genome, and assumes that all markers are in linkage

equilibrium. BEAGLE IBD (Browning and Browning 2010) uses

a model of haplotype frequencies that simultaneously phases and

infers the particular shared haplotype by a pair of individuals.

BEAGLE IBD is based on a factorial HMMthat incorporates amodel

of IBD and a descriptive model of linkage disequilibrium. IBDMap

(Bercovici et al. 2010) uses a factorial HMM that explicitly models

the inheritance vector capturing the relationship between two

individuals. IBDMap models linkage disequilibrium (LD) with

a first-order Markov model of the founders. In an effort to reduce

the computational cost of IBD detection among all pairs of in-
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dividuals in a group, GERMLINE (Gusev et al. 2009) is a hash-map-

based method that relies on string matching; it uses a sliding

window based on hashing of haplotype strings, hence scaling

linearlywith the number of individuals analyzed. Similarly, toward

the goal of reducing running time, fastIBD (Browning andBrowning

2011) incorporates a sliding window approach like GERMLINE and

uses the phasing and haplotype frequency model of BEAGLE

(Browning 2006; Browning and Browning 2007). fastIBD identifies

pairs of individuals sharing the same state in its factorial HMM and

extends shared haplotype segments when the probability of IBD is

high.Henn et al. (2012) developed amethod for detecting longer IBD

segments that identifies long stretches of markers where the in-

dividuals share at least one allele in common. Moltke et al. (2011)

developed a Markov chain Monte Carlo (MCMC) method designed

to identify IBD shared among many individuals within a cohort

rather than focusing on each pair independently. Recently we de-

veloped Parente (Rodriguez et al. 2013), a method that estimates the

likelihood of windows of markers under both related and unrelated

states producing a likelihood ratio score, followed by estimating the

empirical likelihood of that score under the two states; we refer to this

technique as the embedded likelihood ratio. Parente assumes that

markers are in linkage equilibrium and does not require phasing for

inference. As a result, the method is computationally efficient.

While there have been numerous advances in this field, im-

provement inaccuracyaswell as speedcompared to the state-of-the-art

isnecessary inorder tohandle increasingly large cohorts of individuals.

As the number of individuals increases, the number of pairs of in-

dividuals that need to be analyzed and the number of falsely discov-

ered segments grow quadratically.

In this work we present Parente2,

a novel method for IBD detection that

incorporates a model accounting for link-

age disequilibrium by explicitly model-

ing haplotype frequencies, as well as a

novel technique of aggregating infor-

mative overlapping windows of non-

consecutive, randomly selectedmarkers.

We demonstrate that these novel steps

result in significant improvements in

accuracy over previous state-of-the-art

methods such as Parente and fastIBD.

Furthermore, Parente2 requires signifi-

cantly less total computational time

than fastIBD and GERMLINE.

Results

Overview of algorithms

Parente2 uses a sliding-window approach

for detecting IBD across the genomes of

two individuals. Inspired by bootstrap

aggregating (bagging), multiple weak

haplotypic models are aggregated to esti-

mate the likelihood of genotypes under

both related and unrelatedmodels. These

weak haplotypic models are indepen-

dently constructed by the random selec-

tion of features, which correspond in our

case to the observed markers. The con-

struction of these weak models is as fol-

lows. Given a target IBD segment length

(in our experiments, 1–4 cM), a block B of that length is examined,

starting at every marker of the genomes. Each sliding block B

covers multiple overlapping window subsets, which in turn are

composed of multiple overlapping windows (Fig. 1). A window is

defined as a set of markers, which may be nonconsecutive. A

window subset is defined as a set of such windows. In the results

described, all windows have the same number of markers, con-

trolled by the parameter winsize (typically, five to 10); all window

subsets have the same number of windows, controlled by the

parameter subsetsize (by default, five). As illustrated in Figure 1,

the default set of windows consists of: (1) all nonoverlapping

windows of consecutive markers tiling B (referred to as the basic

windows), and (2) an additional c (by default, 10) sets of over-

lapping windows tiling B, where each such window samples

winsize random markers out of a region of length r markers (by

default, 40) (referred to as the augmented windows).

The above windows are sorted by the genomic coordinate of

their first marker; a window subset is formed for every successive

subsetsize window. Each window subset is scored by the outer log-

likelihood ratio (Equation 5 inMethods), which is a score computed

from the empirical distribution of the inner log-likelihood ratio

(Equation 1 in Methods) in the training data. This latter quantity,

the inner log-likelihood ratio, is defined here as the log-likelihood

ratio of two scenarios: (1) The observed genotypes within the

windows of the subset originated from related individuals that

share a common ancestor, and (2) the observed genotypes corre-

spond to nonrelated individuals. Our model assumes that the

windows are independent. The markers within each window,

however, are derived by a haplotype distribution that accounts for

Figure 1. Overview of Parente2. A sliding block B of equal size to the minimum target size for IBD
segment detection is examined, starting at every marker of the genome. In this figure, a block B of
length 2 cM is displayed. The block contains windows, which are sets of winsize possibly non-
consecutive markers (by default, winsize = 8; in our benchmarks against other methods prior to opti-
mizing this parameter, winsize = 5). A set of consecutive-marker windows tiles B; these are called the
basic windows. In addition, c sets of nonconsecutive-marker windows tile B (by default, c = 10). Each
such nonconsecutive window is generated by choosing winsizemarkers out of rmarkers (by default, r =
40; in this figure, r = 30). These are called the augmented windows. Windows are ordered lexico-
graphically by their leftmostmarkers and grouped into window subsets by forming a subset out of each
successive subsetsizewindow (by default, subsetsize = 5). Each window subsetWSi is scored according to
the outer log-likelihood ratio (Equation 6 in Methods) to yield ELRi; the score of B is the sum of these
window subset scores according to Equation 7 in Methods.
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LD, as well as for genotyping or sequencing errors (see Methods).

Once all window subsets’ likelihoods are estimated, the corre-

sponding scores are summed up for the block B. Block B will be

reported as IBD in all cases where the resulting score exceeds

a predefined threshold T.

Benchmark data sets

We benchmark the performance of Parente2 in two data sets: the

HapMap Phase III panel (HapMap) (The International HapMap 3

Consortium 2010) and The Wellcome Trust Case Control Con-

sortium (WTCCC) (TheWellcome Trust Case Control Consortium

2007). In HapMap we used haplotypes from three Asian pop-

ulations: Han Chinese in Beijing, China (CHB); Japanese in Tokyo,

Japan (JPT); andChinese inmetropolitanDenver, Colorado (CHB),

resulting in a total of 520 haplotypes. Because haplotypes are re-

quired to perform simulations, the genotype data in WTCCC was

first phased using HAPI-UR (Williams et al. 2012), which resulted

in 2960 haplotypes. To expedite running time, we restricted

benchmarks to the long arm of Chromosome 1, spanning 46,580

markers for HapMap and 14,777 markers for WTCCC. For each

data set, we randomly partitioned individuals into training and

testing sets; one-third was used for training and two-thirds were

used for testing. To train its underlying model of IBD, Parente2

generated from the training data 1000 pairs of individuals sharing

one haplotype along the entire length of the chromosome and

1000 pairs of individuals without any IBD segments. In order to

break up latent IBD segments in the testing data set, we generated

composite individuals from the original haplotype pairs for each

individual in a manner similar to previous work (Browning and

Browning 2011), except that our protocol retained 50% of the data

rather than the 10% that was suggested in previous work. Each

composite individual was generated by tiling 0.2-cM segments

from different haplotypes in the testing data. When generating

a composite individual, at each marker position, each source was

guaranteed to appear in at most one composite individual (see

Methods for details).

For each benchmark experiment, we generated simulated

pairs of related individuals that shared one IBD segment of a fixed

size.We performed benchmarks for segments of size 2 cM and 4 cM

on HapMap and WTCCC. We name these data sets HapMap-2cM,

HapMap-4cM, WTCCC-2cM, and WTCCC-4cM. In our experi-

ments HapMap-2cM is the default data set unless otherwise spec-

ified. Each simulation was composed of 30 bootstrapped trials that

sampled from the training and testing sets described above. For

each trial, we generated a number of pairs of individuals sharing an

IBD segment (termed related pairs of individuals) by choosing two

random haplotypes per individual without replacement; 28 pairs

were generated for each HapMap simulation and 40 pairs were

generated for each WTCCC simulation. Within each trial, no

haplotype from the testing data set was used in more than one

pair; however, each haplotype was used in multiple trial data sets.

To simulate an IBD segment in each pair, we chose a random lo-

cation to start the IBD segment and copied the alleles of one

haplotype from one individual in the pair over one of the haplo-

types of the other individual. Next, we simulated genotyping er-

rors for each generated individual using a genotyping error rate of

0.005, such that when an error was introduced, the genotype was

changed to one of the other two genotypes with equal probability.

Thus, each HapMap trial contained 56 individuals, so that 1540

pairs of individuals were evaluated. Each WTCCC trial data set

contained 80 individuals, so that 3160 pairs were evaluated.

Comparison against other methods

We benchmarked the performance of Parente2 against Parente,

fastIBD, and GERMLINE on the HapMap-2cM and HapMap-4cM

data sets. We ran each method with parameters as described in

Methods.We evaluated the overall accuracy of thesemethodswith

respect to detecting pairs of individuals that share at least one IBD

segment, as well as the positional accuracy, which is defined as the

ability to detect the exact IBD status per position across the ex-

amined segments (see Methods for details). We set the scoring

threshold of each method so as to fix to a given false-positive rate

(FPR) of detecting pairs of related individuals. We compared each

method’s sensitivity (SN) at both low FPR and at higher FPR (Table 1)

and found that Parente2 outperforms the earlier methods in both

scenarios.We alsomeasured the positional accuracy of eachmethod

and found that Parente2 infers the location of IBD segments more

accurately than other state-of-the-art methods.

For effective IBD detection in large cohorts, both computa-

tional efficiency and low FPR are key for practical use; both run-

ning time as well as number of false-positive IBD segments grow

quadratically with cohort size. Parente2 can be tuned to run with

a variety of parameters that affect both running time and accuracy,

allowing one to trade between those two core aspects based on the

application and problem at hand. To further lower the running

time, and independently from the parameter choices, Parente2 can

be applied in conjunction with SpeeDB (Huang et al. 2014),

a coarse-grained filter designed to reduce running time of IBD de-

tection within a large cohort. When considering a pair of in-

dividuals, SpeeDB rapidly filters out regions of the genome that are

Table 1. Pairwise accuracy of Parente2 and other methods

Method

2 cM 4 cM

Pair
SN%

Pair
FPR%

Pair
SN%

Pair
FPR%

Posn
SN%

Posn
FPR%

Pair
SN%

Pair
FPR%

Pair
SN%

Pair
FPR%

Posn
SN%

Posn
FPR%

Parente2 78.7 1 92.6 5 86.0 0.05 99.9 0.1 100 1 78.0 0.01
Parente2 and SpeeDB 79.2 1 92.9 5 86.5 0.05 99.5 0.1 99.6 1 80.0 0.01
Parente 11.4 1 40.2 5 17.8 0.05 61.6 0.1 69.7 1 71.2 0.01
fastIBD 61.2 1 69.9 5 42.4 0.05 31.8 0.1 88.5 1 43.7 0.01
GERMLINE-128 49.1 17.5 98.0 79.9 1.7 0.44 47.6 0.23 87.9 2.5 2.7 0.015

Sensitivity of detecting related pairs of individuals and positional sensitivity were measured for lower and higher FPR settings in the HapMap-2cM and
HapMap-4cM data sets. fastIBD was run 10 times with 10 different seeds according to author recommendations. GERMLINE was run on phased data with
GERMLINE’s seed size set to 128. The best performance among the five methods for each setting is shown in bold.
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unlikely to be IBD between the two individuals, while it rarely

filters out true IBD segments. Filtered-out regions can then be ig-

nored by a downstream IBD detection method such as Parente2.

SpeeDB is based on a statistical model that identifies regions where

a pair of individuals has too many opposite homozygous loci for

the region to be within an IBD segment (Huang et al. 2014). We

compared the running time and accuracy of Parente2 to Parente

and other methods on the HapMap-2cM data set (Table 2). Run-

ning Parente2 using the augmented window set was five times

faster than running fastIBD and also resulted in significantly

higher accuracy. When using the SpeeDB filter, Parente2 ran 50

times faster than fastIBD and also had slightly higher accuracy than

without the filter (SpeeDB’s threshold pth was set to 0.1). If even

lower running time is required, Parente2 can be run using the basic

window set instead of the augmented window set, which in our

experiments resulted in a further threefold reduction in running

time; this change, however, came at the cost of reduced accuracy.

Application of Parente2 to the discovery of cryptic
relationships

We evaluated the performance of Parente2 on the discovery of IBD

segments among the 368 haplotypes from Maasai in Kinyawa,

Kenya (MKK) in the HapMap Phase III panel, in which a large

number of cryptic relationships across individuals were previously

reported (Pemberton et al. 2010), and assessed the ability of

Parente2 to discover such relationships as compared to previous

work. First, we performed simulations on the long arm of chro-

mosome 1 to establish baseline IBD detection accuracy on 2-cM

and 4-cM segments using the same procedures as we used for

generating HapMap-2cM and HapMap-4cM. As in all our simula-

tions, latent IBD was broken up through shuffling (see Methods,

‘‘Generation of benchmark test individuals’’). Parente2 achieved 100%

sensitivity and no false positives (i.e., zero FPR) on the African-4cM

data set, and 98.9% sensitivity at 1% FPR on the African-2cM data set.

We then applied Parente2 to every pair of the 184 MKK

samples.We set the target IBD lengthminimumto 4 cMand a strict

scoring threshold and performed whole-genome IBD detection.

The region near the telomere of Chromosome 15 (0–4.35 cM),

where an abnormally high number of IBD segments were detected,

were removed from our analysis. We compared the related in-

dividuals inferred by Parente2 to the discovered relationships

previously reported (Pemberton et al. 2010), which included 68

parent-offspring pairs, 16 full-sibling pairs, and 80 second-degree

relative pairs. Using Parente2 we confirmed all previously identi-

fied pairs (Supplemental Fig. 1; Supplemental Table 1). The mini-

mum percentage of genome in IBD detected was 99.05% for

parent-offsprings (mean, 99.29%), 66.24% for siblings (mean,

74.89%), and 28.81% for other relatives (mean, 49.01%). In addi-

tion, of the remaining 16,672 pairs of individuals, we identified

677 pairs to have blocks of IBD covering at least 6.75% of their

genomes, of which 318 pairs have IBD covering at least 12.5% of

their genomes, and 83 pairs have IBD covering at least 25% of their

genomes (Supplemental Table 2). In addition, we identified four

new putative relationships between individual NA21737 and in-

dividuals NA21344, NA21366, NA21301, and NA21302 with IBD

levels 99.33%, 99.09%, 78.39%, and 55.2%, respectively. Also,

individual NA21318 exhibited IBD with individuals NA21455,

NA21678, andNA21597 at levels 34.88%, 34.26%, and 34.08%. A

full demographic and family analysis of this data set is beyond the

scope of this work.

Performance on homozygous IBD detection

The IBD model used by Parente2 assumes that the two examined

individuals share either zero or one IBD segment at any location of

the genome. When examining populations for cryptic relation-

ships, it may be important to detect IBD in regions where pairs of

individuals share two haplotypes; such cases may arise when

a small population has significant inbreeding, or when applying

the analysis on siblings. We performed simulations similar to

HapMap-2cM and HapMap-4cM, except that the simulated in-

dividuals shared IBD segments in both haplotypes and evaluated

the ability of Parente2 to discover pairs of individuals who share

IBD under that scenario. Parente2 performed better under the

homozygous IBD scenario, exhibiting 99.8% sensitivity with

0.03% FPR in the 4-cM case and 82.9% sensitivity with 1% FPR in

the 2-cM case.

Amount of training data required for Parente2

In order to perform inference, Parente2 requires haplotype fre-

quencies that are empirically estimated from phased training data.

To estimate the amount of training data required for high perfor-

mance, we measured the sensitivity of Parente2 while varying the

number of training individuals from 50 to 500 (Fig. 2).We used the

WTCCC-2cMdata set for this experiment due to the larger number

of available training individuals than HapMap, allowing for better

trend resolution. We observed diminishing returns as the number

of training individuals increased: 250 training individuals were

sufficient to achieve near-peak performance. In all of our experi-

ments on theHapMapdata set, we used only 85 training individuals,

so the WTCCC results suggest that Parente2’s performance on

HapMapmay increase with additional training data. The number of

training individuals needed to reach saturation is likely to depend

on the window size used as well as the haplotype diversity within

the cohort.

We evaluated the accuracy of Parente2 as a function of density

of assayed positions. Figure 3 shows the sensitivity of Parente2 at

a 1% FPR when run on the HapMap data set after downsampling

Table 2. Accuracy and running time of evaluated IBD inference
methods

Method SN (%) FPR (%)
Running
time Pairs/sec

Parente2 78.7 1 3.9 h 1.1
Parente2-SpeeDB 79.2 1 24 min 10.7
Parente2-Std. 69.0 1 7 min 36.7
Parente 11.4 1 78 sec 197.4
fastIBD 61.2 1 20.9 h 0.2
GERMLINE-64 98.0 79.9 1.5 h 2.9
GERMLINE-128 49.1 17.5 1.5 h 2.9

Each method was used to detect 2-cM IBD segments in 10 trials of the
HapMap data set. The Parente2 entry represents running Parente2 using
the augmented window set with the window filter. Parente2-SpeeDB is the
same but with the application of the SpeeDB filter. The Parente2-Std. entry
represents running Parente2 using the basic window set without the win-
dow filter and without SpeeDB. fastIBD was run 10 times with 10 different
random seeds according to author recommendations, and the sum of the
running time of all 10 runs is reported. GERMLINE-64 and GERMLINE-128
refer to running GERMLINE while using seed sizes of 64 and 128, re-
spectively. The phasing pipeline provided with GERMLINE was used to
phase the data prior to running GERMLINE, and its running time is included
in the reported running time. The number of pairs of individuals processed
per secondby eachmethod is reported in the Pairs/sec column. The highest
SN (%), shortest running time, and highest pairs/sec are shown in bold.
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themarkers to various densities.We observe that increasingmarker

density results in an increase in sensitivity, and the curve has yet to

reach a saturation point. We expect that Parente2 will perform

better on high-density sequencing-based genotyping studies.

Parente2’s runtime is linear in the number of markers used, so the

running time will increase with an increase in marker density.

However, as previously demonstrated, SpeeDB is more effective at

filtering out non-IBD segmentswithhighermarker density (Huang

et al. 2014). Therefore, when using Parente2 in conjunction with

SpeeDB, we expect a lower-than-linear increase in running time as

marker density increases.

Recommended settings for Parente2

Subsequent to obtaining the above results with parameters set as

described inMethods, we sought to derive a final default parameter

set that is informed by our extensive experimentation. We tested

Parente2 on the HapMap-2cM benchmark with and without the

basic and augmented window sets, with and without using the

window filter (set to filtering winfilter = 20% of the windows, see

Methods), and with and without using the outer-LLR (Supple-

mental Fig. 2). We confirmed that the best settings for Parente2 are

using the augmentedwindow set, thewindow filter, and the outer-

LLR. In all settings of window sets and filter, the outer-LLR scoring

significantly outperforms the inner-LLR. Furthermore, all of our

experiments indicated that SpeeDB resulted in a significant de-

crease in running time, and in a small and often positive effect on

accuracy. Tomeasure the effect of window size on performance, we

ran Parente2 using the augmented window set by setting winsize

between 3 and 10, and reported sensitivity at 1% FPR (Fig. 4). These

results indicate that window size 8 provided the highest accuracy,

with slightly decreased accuracy aswindow size is further increased

to 9 or 10. Finally, we ran Parente2 using different levels of window

filtering, setting winfilter = 0%–90%, and found that performance

was best for values between 30%and70% (results not shown). Based

on our above experiments, we modified two parameters to the final

default values winsize = 8 and winfilter = 50%. Using the new pa-

rameters, we tested Parente2 on the HapMap and WTCCC-2cM

and -4cM benchmarks and also on an additional HapMap-1cM

benchmark, and we confirmed that performance is significantly

improved under these parameters (Table 3).

We note that the performance of Parente2 is still low in the

1-cM IBD inference. We evaluated the performance of fastIBD in

the 1-cM IBD inference on theHapMap data set. To accomplish the

highest accuracy for fastIBD, we set its minimum IBD segment size

to 0.8 cM. We found that fastIBD achieved per-pair sensitivity of

1.6%, 27%, 41.2%, and 47.5% with per-pair FPR of 0.1%, 1%, 5%,

and 10%, respectively, and positional sensitivity of 24%, 33%, and

36% with positional FPR of 0.01%, 0.05%, and 0.1%, respectively,

and thus performed slightly worse than Parente2 on most mea-

sures (see Table 3). We conclude that given the size of the data set

used, detection of IBDwith 1 cM resolution is a challenging task for

all existing methods.

Discussion
In future applications of Parente2 on new cohorts, training data

from the cohort’s population may not be available. When only a

single genotyped cohort is available, one may attempt to estimate

haplotype frequencies from the cohort directly after first phasing

the data; building our haplotypicmodel on the ‘‘test’’ data could in

principle lead to overfitting. To quantify the impact on perfor-

mance under this scenario, we measured Parente2’s accuracy on

WTCCC-2cM when haplotype frequencies are estimated from the

testing data itself and compared the results to Parente2’s perfor-

mance when haplotype frequencies are estimated using a separate

training data sampled from the same population. In both cases we

used 370 individuals to control for training set size. The previous

default parameters were used for this test. The sensitivity of

Parente2 on the testing data was 68.7% when trained on training

data and 72.0% when trained on the testing data, with FPR set to

1%. With a difference in sensitivity of only 3.3% in this experi-

ment, we expect that Parente2 will perform reasonably well in

a real-world scenario when one does not have access to separate

training data.

As DNA sequencing is increasingly replacing genotyping,

there will be a dramatic increase in the number of variants

observed, including additional types of variants beyond SNVs,

such as insertions and deletions. While some recent work has

explored methods specifically for sequencing (Browning and

Browning 2013), Parente2 is a general method that operates on

Figure 3. Performance of Parente2 as a function of marker density.
Parente2 performance is shown as a function of marker density; tests are
performed on the HapMap-2cM benchmark with FPR fixed at 1%.

Figure 2. Parente2’s sensitivity as a function of the number of training
individuals. Parente2 was run on the WTCCC-2cM data set. The vertical
axis shows sensitivity at a 1% false-positive rate.
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observed polymorphic sites. In a na€ıve approach, Parente2 can

be applied to sequencing data by simply restricting analysis to

SNVs in known sites of variation such as sites from HapMap III.

Equation 4, however, can be adjusted to more accurately ac-

count for both of the genotyping errors, as well as the missing,

or poorly covered, variants. Namely, the standard phred-scaled

likelihoods provided with the sequencing-based genotypes

can be directly incorporated to compute the probability of the

sequencing reads given the two assumed haplotypes and the

derived expected genotype. In cases where only very low

coverage data is available for sampled individuals, many of the

variation sites will remain unobserved; the likelihood function

in Equation 4 can be extended to account for missing data by

using a uniform probability for all possible genotypes given

the assumed haplotypes. We leave such extensions for future

work.

Parente2 provides substantial improvements in accuracy as

well as speed over previous state-of-the-art methods, and as such,

is more suitable for performing IBD analysis of large cohorts. In

addition, the novel use of sparse window sets for capturing the

statistics of LD across a population may prove useful in other

population genetic applications such as ancestry inference and

imputation. Parente2 is open source and publicly and freely

available at http://parente.stanford.edu.

Methods

Description of algorithm
Let g denote an individual’s genotype, represented as a vector ofM
bi-allelic markers m1 . . .mM . Let gi 2 f0;1;2g represent the ob-
served genotype at marker mi as the number of minor alleles the
individual has at mi. The alleles at mi on the individual’s chro-
mosomes are denoted by a1i ; a

2
i 2 f0;1g, where 0 represents the

minor allele and 1 represents the major allele. A window w is de-
fined as a set of winsize possibly nonconsecutive markers, and
mðwÞ= fijmi 2 wg is defined as the set indices corresponding to the
markers associated with a window w (Fig. 5A). Awindow haplotype
hðwÞ is defined to refer to the alleles at markers mðwÞ, i.e.,
hðwÞ = faiji 2 mðwÞg. The frequency of a haplotype hðwÞwithin the
examined population is denoted by f ðhðwÞÞ. The underlying idea is
that intermarker LD may be captured by different sets hðwÞ of
markers within the block B. Given a set of windows defined over
a set of markers on a chromosome, a window subset s is defined
simply as a subset of windows (Fig. 5A).

For a target IBD block length l (in cM), the Parente2method is
defined as follows. Given the genotype calls of two individuals, g
and g9, the genome is scanned by sliding a block B for each marker

across each chromosome. B spans a set of windowsw, into window
subsets grouped into window subsets s as defined precisely in the
corresponding subsections of Methods (see also Fig. 1). Within B,
and specifically within each associated window subset s 2 B, the
inner log-likelihood ratio (inner-LLR) is computed by estimating
the likelihood of the individuals’ genotypes within each block
under two models: a model PI corresponding to the hypothesis
that the two examined individuals are IBD; and a model PI corre-
sponding to the hypothesis that the two individuals are not IBD
(Fig. 5B,C).

We model the genotypes within a window subset s using
a na€ıve Bayes approach, whereby windows are independent given
the IBD status of the two examined individuals within s. The
probabilities of the genotypes within each window w 2 s are con-
sidered separately, and the product of these probabilities defines
the probability of the observed genotypes within s (or as a sum,
under our log formulation). Namely, given s, and given the geno-
type of two examined individuals g and g9, the inner-LLR score gs is
defined as

gsðg; g9Þ= +
w2s

log
PI
�
gðwÞ; g9ðwÞ�

PI ðgðwÞ; g9ðwÞÞ: ð1Þ

To calculate these joint probabilities of observed genotypes,
we sum over all possible underlying haplotypes h. We denote fwðhÞ

Table 3. Accuracy of Parente2 with the recommended default settings

Pair SN At FPR = Positional SN At FPR =

Benchmark Resolution 0.1% 1% 5% 10% 0.01% 0.05% 0.1%
HapMap 1 cM 7.1 23.2 41.3 53.4 21.2 37.1 47.8

2 cM 59.6 84.7 94.4 96.7 72.0 91.3 94.7
4 cM 99.6 99.6 99.6 99.6 80.9 99.6 99.6

WTCCC 2 cM 59.7 81.3 90.1 93.5 76.2 89.1 92.3
4 cM 98.9 99.6 99.9 99.9 75.3 99.6 99.6

Subsequent to performing the analyses described in Results, we optimized Parente2 parameters of winsize and winfilter on the HapMap-2cM benchmark.
As default, we recommend that Parente2 be applied with winsize = 8, winfilter = 50%, and with SpeeDB integrated. Under these settings, we measured
the accuracy on HapMap-1cM, -2cM, -4cM, and onWTCCC-2cM and -4cM, and found significantly improved accuracy in all test sets as compared to the
previous parameters we used for benchmarking and analyses in Results.

Figure 4. Effect of window size on Parente2’s performance. Increasing
the window size of Parente2 results in better performance (test performed
on the HapMap-2cM benchmark).
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as the frequency of a haplotype h with respect to the markers
within window w. Once established or approximated, fwðhÞ is used
to compute the probability of the observed genotypes under both
models, namely, PI and PI , as follows:

PI ðgðwÞ; g9ðwÞÞ
= +

h1 ;h2 ;h3

p
�
gðwÞjh1;h2

�
pðg9ðwÞjh1;h3Þfwðh1Þfwðh2Þfwðh3Þ; ð2Þ

PIðgðwÞ; g9ðwÞÞ
= +

h1 ;h2 ;h3 ;h4

p
�
gðwÞjh1;h2

�
p
�
gðwÞjh3;h4

�
fwðh1Þfwðh2Þfwðh3Þfwðh4Þ:

ð3Þ

The probability pðgðwÞjh1;h2Þ that the genotype gðwÞ was
sampled, conditioned on haplotypes h1 and h2, needs to account
for genotyping errors. Hence, we define pðgðwÞjh1;h2Þ as follows:

p
�
gðwÞh1;h2

�
=
Y

"i2mðwÞp
�
gija1i ; a2i

� ð4Þ

p
�
gðwÞa1i ; a2i

�
=

8<
:

1� e gi = a
1
i + a

2
i

e
2

otherwise
;

where the parameter e is tuned to capture the amount of expected
genotyping error, using a1i and a2i to correspond to the allele as-
sociated with marker i in haplotype h1 and h2, respectively. To re-
duce FPR, during inference we replace e in the above equationwith

de, where d is a scaling factor that increases the contrast between IBD
andnon-IBD segments. In all benchmarks, we used e= 1

200 and d= 1
100.

Finally, to accommodate for missing data, whenever a genotype
value for a particular window w is missing the probabilities under
bothmodels PI and PI are set to 1, whichwill not affect the gs score.

In the above model, the individuals share zero or one hap-
lotype in a given genomic region. Homozygous IBD resulting from
inbreeding is not explicitly modeled; however, homozygous IBD
regions across two individuals should be significantly more likely
under the IBD scenario PI rather than under PI, and thus easily
detectable. This is indeed the case in our experiments, as reported
in Results.

As the size of window w grows, enumerating over all possible
haplotypes hðwÞ becomes impractical: Given k markers in a win-
dow, there are 2k possible distinct haplotypes; when k = 10, iter-
ating more than 1 million haplotype pairs would be necessary to
evaluate the likelihood of an individual’s genotype at each win-
dow. While there are 1024 distinct 10-marker possible haplotypes,
the number of observed haplotypes in an examined population is
significantly smaller. To reduce computation time at the possible
cost of accuracy of the likelihood function estimation, we only
iterate over the topHmost commonwindow haplotypes observed
in training data. In practice, we found that for a window size of 10
markers, 99% of windows on the long arm of Chromosome 1 had
nomore than 50 distinct haplotypes in our data sets. Therefore, in all
of our experiments we set H = 50. We note that setting H = 50 only
impacted experiments where windows could have more than 50
distincthaplotypesperwindow (i.e.,whenwindowsizewas at least 6).

Outer log-likelihood ratio

The model described thus far can be utilized directly for IBD de-
tection by simply summing Equation 1 over all window subsets
scores gs within a block B (i.e., s 2 B) and reporting as IBD blocks
with scores higher than a threshold. Nonetheless, computing
a single na€ıve Bayes LLR score may be sensitive to a small subset of
windows that exhibit scores with high variance. To correct for
potentially high-variance windows, we empirically examine the
performance of each window subset s on the training set. Specifi-
cally, we treat the inner-LLR described in Equation 1 as a random
variable Gs. We then define two empiricalmodelsQI ðGsÞ andQI ðGsÞ
for the distribution of Gs given related individuals, and given un-
related individuals, respectively. We estimate these distributions
by using phased training haplotypes that we use to simulate NI

pairs of individuals sharing IBD along the entire chromosome, and
NI individuals without any IBD segments. Then, we compute the
LLR for each window subset for the IBD and non-IBD pairs and
estimate the probability density functions QIðGsÞ and QIðGsÞ via
binning. We define numbins as equally sized, nonoverlapping bins
that span the domain of each distribution and we use a pseudo-
count r for each bin. Our modified score, which we call the outer
log-likelihood ratio (outer-LLR), is defined as

lsðg; g9Þ = logQ IðGs =gðg; g9ÞÞ
Q IðGs =gðg; g9ÞÞ; ð5Þ

and the scores of all window subsets associated with a block s 2 B
are combined via a na€ıve Bayes model, to produce the block score:

LBðg; g9Þ = +
s2B

lsðg; g9Þ: ð6Þ

The above block score is used to infer IBD segments. We call
a pair of individuals IBD in block BwheneverLBðg; g9Þ>T, where T
is a predefined threshold. Since each marker may be contained in

Figure 5. (A) Example of windows and window subsets. Here, windows
contain three markers and window subsets contain two windows. (B,C)
Graphical models used for the inner log-likelihood ratio described in
Equation 2. (B) Model for two unrelated individuals that do not share an
IBD segment in the window. (C ) Model for two related individuals sharing
a single IBD segment in the window. The variables h1; h2; h3; and h4 rep-
resent hidden haplotypes for a given window of markers. The variables g
and g9 represent the observed genotype vectors from the first and second
individual in a pair of individuals being evaluated for IBD in the window.
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several blocks, Parente2 reports, for each marker, the maximum
block score of any block containing the marker. We call a pair of
individuals related if any block in the genome is called to be IBD.
The block scoreLBðg; g9Þ can be computed efficiently: As we slide B
across the genomes of two individuals, scores corresponding to
windows that are no longer part of the block are subtracted from
the current block score LB9 ðg; g9Þ, and scores corresponding to
newly joining windows are added.

The phased haplotypes used for training could be either
generated from data sets containing trios, or via computationally
phased individuals. Current phasing methods offer a sufficiently
low switch-error rate for their performance to have a negligible
effect when considering haplotypes within a window of moderate
size. For our experiments in the Results andDiscussion sections,we
set NI =NI =1000, numbins=30, and r =0:01.

Windows and window subsets

In the above description of our model, both windows and window
subsets were defined in general terms. There are several ways to
instantiate the definitions of windows. We have tested two dif-
ferent ways, which we term the basic and augmented windows:

• The basic windows set is the set of all nonoverlappingwindows of
winsize markers. Formally, the ith window is composed of
markers in the interval ½i �winsize; i �winsize+winsizeÞ.

• The augmented windows set is the set of windows that includes
the basic windows as well as a set of overlapping windows de-
fined as follows. We let r > winsize be the number of markers in
a region, and define the ith region to span the markers in the
interval ½i � r; i � r + rÞ. We construct c windows for each such re-
gion by picking for each such window winsize markers at ran-
dom. For most of our experiments we used winsize = 5; r = 40; c =
10, which for a genome of length L markers resulted in
L=5+ c � ðL=rÞwindows (ignoring boundary effects), each of them
sampling five markers.

We then defined window subsets as follows. We first sorted all
of the abovewindows by their leftmostmarker and then separately
by their rightmost marker. Then, window subsets were defined by
successively picking the next subsetsize windows of the sorted list.
Because we perform this procedure twice, for leftmost marker-
sorted and rightmostmarker-sortedwindows, each of thewindows
appears in exactly two window subsets. For our experiments, we
used as default subsetsize = 5.

Finally, we use a window filter to remove the least in-
formative windows for predicting IBD in each local region. In-
formally, an informative window is one that reliably outputs low
scores for non-IBD pairs and high scores for IBD pairs. We per-
formed experiments that revealed that informative windows
tend to have low variance in the outer-LLR scores of the simu-
lated training IBD pairs (results not shown). Therefore, we used
the negative variance of the IBD training scores as a proxy of
informativeness. The window filter examines all nonoverlapping
0.05-cM segments that tile the chromosome, and removes the
winfilter percent of the windows of lowest informativeness
within each segment.

Generation of benchmark test individuals

For each benchmark data set (HapMap Phase III and WTCCC), we
randomly partitioned individuals into one-third training and two-
thirds testing sets. To break up latent IBD segments in a testing data
set of Ntest individuals (Ntest =170 for HapMap and Ntest =980 for
WTCCC), we generated bNtest=2c composite individuals as follows.

For the ith composite individual, we first choose a random offset,
O, in cM such that 0$O<0:2. The first segment of each composite
individual was established as O cM (the 0th segment), and each
subsequent segment was 0.2 cM in size (segments 1 to S). For ex-
ample, assuming N = 6 and a chromosome of 1.8 cM in size, this
procedure produces three composite individuals each with nine
segments with source individuals of each segment as seen in Table
4. In this way, we significantly reduced latent IBD in the testing
data sets prior to simulating IBD individuals, as in previous practice
(Browning and Browning 2011).

Parameters for each IBD detection method

We set initial parameters of Parente2 at values that we obtained
during development of the method with limited training on
HapMap populations in small subsets of Chromosome 1 (experi-
ments not shown). These initial parameters were used for all ex-
periments described in Results and Discussion, with the exception
of Table 3, which was obtained after setting the final default
parameters. The following initial parameters were used: The
augmented window set was set to r = 40, c = 10, winsize = 5, and
subsetsize = 5, which resulted in each marker being included in 11
windows on average.

We sought to run other methods in the best possible settings.
fastIBD was run using a minimum IBD segment size of 1 cM since
this resulted in better performance than the default or than using
an IBD segment size close to the target IBD segment size, and the
nsamples parameter was set to 20 to achieve better performance
given relatively small simulation sizes. For each run, fastIBD was
provided with both the training and testing data sets, which
resulted in better accuracy than if given only the testing data sets
(results not shown); accuracy was measured only using inferred
pairs where both individualswere in the testing data set. Therefore,
for each benchmark, fastIBD’s model was built on strictly more
data than Parente2’s model. Following the authors’ recommen-
dations to achieve higher accuracy, fastIBD was run 10 times with
10 different seeds and the results were merged by setting the score
of each position to be the maximum score observed in any of the
10 runs. All other parameters of fastIBD were left at their default
values. To evaluate GERMLINE, the data was first phased using
BEAGLE according to the pipeline provided with the GERMLINE
software. GERMLINE was applied on the phased data with default
parameters, except that the -bits parameter was set to 128 to
achieve higher specificity and set to 64 for the results to achieve
higher sensitivity.

Measuring accuracy

In our benchmarks, we measured the positional accuracy and
pairwise accuracy of each method. Accuracy was taken as the av-

Table 4. Example of tiling method used to break up latent IBD

j th segment

0 1 2 3 4 5 6 7 8

i th composite individual 0 0 1 2 3 4 5 0 1 2
1 2 3 4 5 0 1 2 3 4
2 4 5 0 1 2 3 4 5 0

In this example, six source individuals are used to generate three com-
posite individuals, each having nine genomic segments (e.g., assuming
a chromosome of length 1.8 cM with a segment size of 0.2 cM). Each
entry in the table contains the index of the source individual used for the
j th genomic segment of the i th composite individual.
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erage over all the trials in each simulation. For positional ac-
curacy, the basic units evaluated were tuples containing
a marker, a pair of individuals, and a label indicating whether or
not the marker was a part of an IBD segment shared by the two
individuals in the pair. A tuple was considered to be labeled true
by an IBD inference method if the marker in the tuple appeared
in a predicted IBD segment output by the method. Likewise, the
actual label for a tuple was considered true if the marker was
within a simulated IBD segment of the two individuals. For
pairwise accuracy, the position information was disregarded so
that the tuples evaluated contained only a pair of individuals
and a label. In this case, a tuple was considered to be labeled true
by an IBD inference method if it predicted at least one IBD
segment between the pair of individuals and its actual label was
true if the pair of individuals were simulated to share an IBD
segment.

To estimate sensitivity (SN) and false-positive rate (FPR), we
generatedmanypoints along a receiver operator curve (ROCcurve)
for each method by adjusting a score threshold on the output
scores of themethod. The exception to this was GERMLINE—since
it did not output a score its performance points were collected
based on changingnonthreshold parameters. For Parente2, Parente,
and fastIBD, we estimated SN and FPR values between points on the
curve via linear interpolation.
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