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Yeast surface display for protein engineering and
characterization
S Annie Gai1 and K Dane Wittrup1,2
Yeast surface display is being employed to engineer desirable

properties into proteins for a broad variety of applications.

Labeling with soluble ligands enables rapid and quantitative

analysis of yeast-displayed libraries by flow cytometry, while

cell-surface selections allow screening of libraries with

insoluble or even as-yet-uncharacterized binding targets. In

parallel, the utilization of yeast surface display for protein

characterization, including in particular the mapping of

functional epitopes mediating protein–protein interactions,

represents a significant recent advance.
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Introduction
Frequently, improvements in protein function are sought

with respect to binding affinity, catalytic activity, and/or

structural properties. Given our limited, albeit expanding,

understanding of protein sequence/function relation-

ships, achieving the desired improvements through

rational protein design is still difficult. However,

approaches involving random mutagenesis and directed

evolution have been applied with great success for obtain-

ing proteins with defined characteristics.

Yeast surface display is a particularly powerful platform for

engineering proteins by directed evolution. Since its intro-

duction 10 years ago [1], yeast surface display has been

used to engineer a variety of proteins for improved affinity,

specificity, expression, stability, and catalytic activity. A

significant feature of the yeast surface display system is its

employment of a eukaryotic host possessing the secretory

biosynthetic apparatus for promoting efficient oxidative

protein folding and N-linked glycosylation. As such, a
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diverse assortment of proteins has been successfully dis-

played on the surface of yeast, enabling their subsequent

engineering by yeast surface display. As shown in Figure 1,

these include growth factors, antibody fragments, and

complex cell-surface receptors such as epidermal growth

factor receptor (EGFR), demonstrating the complexity of

proteins amenable to engineering by yeast display. How-

ever, although well suited to biosynthesis of secreted

eukaryotic proteins, the yeast secretory pathway is likely

to inefficiently express some cytoplasmic or nuclear

proteins due to the presence of multiple reduced cysteines

(e.g. zinc finger proteins). Other key beneficial attributes of

yeast display include: rapid and quantitative library screen-

ing by fluorescence-activated cell sorting; minimization of

artifacts due to host-expression-bias through concurrent

expression labeling; and convenient evaluation of mutant

characteristics (e.g. affinity, stability) in surface-displayed

format without soluble expression and purification of each

individual clone [2�].

Equipped with these features, yeast surface display is

now a well-established method for protein directed evol-

ution. As illustrated in Figure 2, the number of published

studies employing yeast surface display is currently in an

exponential growth phase. A recent direct comparison of

the yeast and phage display systems, using identical

immune antibody libraries and target antigens, also found

yeast display to sample the library repertoire ‘consider-

ably more fully’ while being ‘less labor-intensive’ [3��].
Notably, of the 12 novel clones identified by yeast dis-

play, only five were functional when subcloned and

displayed on phage, although 11 could be expressed

solubly in functional form in Escherichia coli [3��].

Here we review recent applications of yeast surface dis-

play, highlighting its role in both protein engineering and

characterization. We also discuss recent methodological

developments, including new techniques for library

screening, that have further expanded the utility of this

display platform.

Identifying protein–protein interactions
Recently, several groups used yeast surface display to

identify natural protein–protein interactions. For

instance, yeast surface display was employed for a pro-

teome-wide search of proteins that interact with either

EGFR or focal adhesion kinase, in a tyrosine phosphoryl-

ation-dependent manner [4]. By displaying a human

cDNA library on the surface of yeast and screening with

synthetic phosphopeptides, the authors identified

several interactions previously unreported [4]. Renner
Current Opinion in Structural Biology 2007, 17:467–473
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Figure 1

A selection of proteins successfully displayed as Aga2p fusions on the surface of yeast. Top row, left to right: human epidermal growth factor [31��]

(1JL9), human interleukin-2 [61] (2B51), single-chain antibody fragment 4m5.3 [62] (1X9Q), green fluorescent protein [63] (1EMA), human aL

integrin inserted domain [19] (1LFA), and human fibronectin [18] (1FNA). Bottom row, left to right: West Nile Virus envelope protein [32�] (2I69), human

EGF receptor ectodomain [27] (1NQL), and human MHC class II HLA-DR4ab in complex with peptide [64] (2SEB). The PDB IDs for the structures

shown are noted in parentheses. This figure was generated using Swiss-Pdb Viewer [65].
and colleagues recently used yeast-displayed tumor anti-

gens to assess tumor-specific antibody responses in

cancer patients [5,6] and have also screened a yeast-

displayed cancer-patient cDNA library for novel tumor

antigens [7]. Notably, the screening of yeast-displayed

libraries revealed many tumor antigens not previously

detected from prokaryote-displayed libraries [7]. How-

ever, given the formal possibility that mimotopes could

be selected due to expression of frameshifted peptides,

confirmation of antisera binding to expressed gene pro-

ducts is necessary following such screens. In addition,

several groups have isolated novel lead antibodies bind-

ing to a variety of targets, from immune [8] or nonim-

mune [9–12] human single-chain variable fragment

(scFv) libraries.
Current Opinion in Structural Biology 2007, 17:467–473
Improving affinity and engineering specificity
Affinity and specificity are key parameters governing a

protein’s function as a diagnostic or therapeutic agent,

and yeast surface display has been widely applied for

improving or altering these binding properties. Recently,

the affinity maturation of several scFvs [13,14] was

reported. More notably, yeast surface display has been

employed to selectively expand or restrict binding speci-

ficity. For example, after affinity maturing several scFvs

against botulinum neurotoxin type A1 [15], Marks and

colleagues were able to broaden the specificity of the

most potent clone, using a dual-selection strategy, to

achieve high-affinity binding to type A2 while retaining

high-affinity binding to type A1 [16��]. Conversely, Wea-

ver-Feldhaus et al. engineered conformational specificity
www.sciencedirect.com
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Figure 2

Comparison of numbers of studies employing phage or yeast display.
into calmodulin-binding scFvs, obtaining clones that

recognize only one of the Ca2+-free or Ca2+-bound cal-

modulin forms [10].

In addition to antibody fragments, yeast surface display

has been used to affinity mature proteins with a variety of

other folds. Two groups recently reported engineering

the 10th human fibronectin type III domain (10Fn3)

alternative scaffold, for high-affinity binding to model

antigens such as maltose-binding protein [17��] and lyso-

zyme [18]. Jin et al. have also applied yeast surface display

to evolve the aL integrin inserted domain, achieving a

200,000-fold increase in ligand-binding affinity [19].

Aside from reporting a remarkable affinity improvement,

this study demonstrates the utility of yeast surface display

for probing protein allostery, as the mutations responsible

for improving affinity locate to a region proposed to

control protein conformation [19]. Other molecules

recently engineered for improved affinity by yeast display

include EGF [20] and single-chain T-cell receptors

(scTCRs) [21,22��,23�].

A notable advantage to engineering affinity by yeast

surface display is the ability to characterize isolated

mutants directly in display format. This feature elimin-

ates the need for soluble expression and purification of

individual clones and becomes especially significant

when many clones require characterization. Importantly,

as shown in Figure 3, the equilibrium dissociation con-

stants measured through titration of proteins on yeast
www.sciencedirect.com
have, to date, shown consistency with those measured by

a variety of other methods.

Increasing stability and expression
Thermal stability and soluble expression level are often

critical parameters determining a protein’s practical uti-

lity. Protein stability affects shelf life and suitability for

applications at elevated temperatures. Concurrently, a

protein’s expression level strongly influences its cost of

production.

The display level of a protein on the surface of yeast, as a

fusion to the yeast agglutinin protein Aga2p, has been

shown to correlate with both thermal stability as well as

soluble expression level [24], enabling engineering of

protein stability and expression by yeast surface display.

Several groups have employed the procedure of random

mutagenesis, yeast display induction, and high-display

screening to improve the stability and expression of

proteins, including scTCRs [21,22��], major histocompat-

ability complex (MHC) class I molecule H-2Ld [25],

tumor antigen NY-ESO-1 [26], and the ectodomain of

EGFR [27]. In all cases, stability engineering enabled

subsequent soluble expression in bacteria [21,22��,25] or

yeast [26,27], where efforts for the wild-type version had

been unsuccessful. However, this stability engineering

approach may not be suitable in all cases, as display levels

did not correlate with stability for artificial proteins of

particularly high thermal stability [28].

Improvement of soluble expression levels can also be

achieved through engineering the expression host instead

of the protein itself. Here, yeast display allows the estab-

lishment of the critical link between the desirable high-

secretion phenotype and its causative genotype. Wentz

and Shusta recently employed yeast surface display to

screen a yeast cDNA library for yeast genes whose over-

expression improved the yield of scFvs and scTCRs [29].

The authors found Aga2p fusion to alter the secretory

processing of the heterologous protein, necessitating the

performance of screens under conditions where the domi-

nant determinant of display level is the heterologous

protein and not Aga2p [29]. Nonetheless, they identified

several genes whose over-expression enhanced secretion

even in the absence of Aga2p. An approach that elimin-

ates the potential artifacts resulting from Aga2p fusion

but that still maintains the link between secretory phe-

notype and genotype has been reported by Rakestraw

et al. [30]. Here, yeast are first tagged with the target

protein’s binding partner, which subsequently captures

the protein of interest as it is secreted by the cell [30].

Mathematical modeling and experimental observations

indicate that this selection method is capable of dis-

tinguishing subtle differences in secretion level and also

possesses a sizable time window for library screening [30].

In addition, since the binding partner is used as bait, only

clones secreting well-folded proteins are selected.
Current Opinion in Structural Biology 2007, 17:467–473
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Figure 3

Comparison of dissociation constants determined by yeast surface display, Kd YSD, and other methods, Kd other. scFv binding to fluorescein;

Kd other determined by fluorescence quenching. scFv binding botulinum neurotoxin type A; Kd other determined by surface plasmon resonance

(SPR) [15]. scFv binding to carcinoembryonic antigen (CEA); Kd other determined by titration of soluble scFv against mammalian-cell-surface-expressed

CEA (Michael M Schmidt, unpublished results). scFv binding to hen egg white lysozyme (HEL); Kd other determined by fluorescence quench

titration. scFv binding to p53 peptides; Kd other determined by SPR. scFv binding to EGF; Kd other determined by SPR. scFv binding to heparin-binding

EGF; Kd other determined by SPR. scFv binding to xeroderma pigmentosum-complementing protein group A; Kd other determined by SPR.

Fibronectin binding to HEL; Kd other determined by equilibrium competition titration using purified fibronectin mutants [18]. Fibronection binding to

maltose-binding protein; Kd other determined by SPR [17��]. scTCR binding staphylococcal enterotoxin C3; Kd other determined by SPR. scTCR

binding toxic shock syndrome toxin-1; Kd other determined by SPR [21]. Figure modified from Figure 8 of Lipovsek et al. [18].
Mapping functional protein epitopes
Identifying the key residues that mediate protein–protein

interactions provides insight into biological processes and

can also facilitate protein design. Recently, the yeast

surface display platform was adapted for identifying such

residues in a systematic and high-throughput manner.

Specifically, as demonstrated by Chao et al. for EGFR and

several anti-EGFR antibodies, screening yeast-displayed

libraries of the antigen yields epitope maps with residue-

level resolution [31��]. Notably, this technique enables

the identification of discontinuous and conformational

epitopes. Also, it interrogates protein–protein interactions

more comprehensively than alanine scanning. Indeed,

Chao et al. noted several energetically important residues

for which alanine scanning would have yielded false

negative results [31��].

Several other groups have applied this technique for the

characterization of antibody–antigen interactions. For

instance, Diamond and colleagues used this approach

to determine the antigenic epitopes recognized by various

antibodies and scFvs capable of neutralizing West Nile

Virus [32�,33–36]. Importantly, for antibody E16, whose

structure in complex with its ligand was determined, the

results of yeast-display epitope mapping studies [32�,33]

were validated by crystallographic data [33]. Other anti-
Current Opinion in Structural Biology 2007, 17:467–473
bodies recently analyzed by this method include those

against botulinum neurotoxin [37], the B and T lympho-

cyte attenuator [38], the nucleocapsid protein of severe

acute respiratory syndrome coronavirus [39], and, in a case

of serendipity, NY-ESO-1 [26]. While the examples cited

here all represent antibody–antigen interactions, this

technique should be applicable for dissecting protein–

protein interactions in general. However, a potential

limitation is its requirement for an independent means

of verifying proper antigen folding.

Engineering proteins against insoluble or
unknown targets
One of the key advantages to engineering and character-

izing proteins by yeast surface display is the ability to

analyze large populations rapidly and quantitatively by

flow cytometry. However, this approach requires a soluble

ligand that is not always available. Recently, this limita-

tion was addressed by two new screening methods, both

employing intact mammalian cells [40��,41��].

First, Wang and Shusta reported screening yeast-dis-

played libraries against integral membrane targets by

monolayer panning [40��]. Here, desirable clones become

selectively enriched by virtue of their affinity for the cell-

surface target, while low-affinity clones are washed away
www.sciencedirect.com
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from the monolayer [40��]. Several selection conditions,

such as wash stringency and ligand density, can affect the

success of this approach and were thoroughly investigated

for a model system [40��]. This approach enabled the

isolation from a nonimmune human scFv library of clones

that recognize antigens expressed on the surface of brain

endothelial cells [11]. Notably, the identities of the

cognate antigens were not defined or known at the outset

of selection. However, the isolated scFvs, in yeast-display

format, allowed these antigens to be immunoprecipitated

from cell lysates for further characterization [11]. Belcher

and colleagues have employed an analogous panning

approach to screen libraries of yeast-displayed scFvs

and peptides for ones possessing high affinity and speci-

ficity for inorganic materials such as cadmium sulfide

[12,42] and sapphire [43].

Independently, Kranz and colleagues have developed a

cell-surface screening method using density centrifu-

gation [41��]. This approach takes advantage of the

differential sedimentation characteristics of yeast and

mammalian cells, which, upon centrifugation, sediment

through or settle above the density medium Ficoll-Paque,

respectively. As yeast expressing high-affinity variants

can form conjugates with mammalian cells, they are

selectively enriched through retention in the upper layer

[41��]. This method has enabled the isolation of high-

affinity TCR mutants specific for either class I or class II

MHC, which are particularly difficult to solubilize [41��].

Immobilized proteins and enzymes
The recent literature also includes reports of protein

immobilization by yeast surface display. Analogous to

covalent linkage of proteins to solid beads, such immo-

bilization offers proteins a physical support that often

improves stability and facilitates reusability. However,

unlike bead conjugation, yeast display does not require

additional steps of protein purification and immobiliz-

ation.

Recent examples of yeast surface immobilized proteins

include metal-binding metallothioneins, which sequester

toxic cadmium ions [44], as well as streptavidin [45] and

protein A [46], which enable capture of desired soluble

proteins. Mutants of the integrin aL inserted domain have

also been displayed on the surface of yeast, for investi-

gating the effects of ligand-binding affinity on cell

adhesion and rolling [47]. In addition, several groups have

proposed using antigen-displaying yeast as preventative

or therapeutic vaccines [48–50].

A host of enzymes have been functionally displayed on

the surface of yeast, including lipase [51,52], biotin ligase

[53], organophosphorous hydrolase [54], carboxylesterase

[55], epimerase [56], cyclodextrin glucanotransferase [57],

and neurolysin [58]. While efforts to engineer mutants

with improved catalytic activity have been reported
www.sciencedirect.com
[51,52], systematic and high-throughput examples of

catalysis engineering have yet to be described. The

use of yeast surface display for engineering enzymes

and their substrates will be an interesting direction for

the future.

Conclusion
In summary, yeast surface display facilitates efforts to

engineer proteins with defined characteristics, and can

also provide valuable quantitative information regarding

protein–protein interactions. The eukaryotic nature of

the yeast secretory pathway has enabled the study and

manipulation of even complex proteins by this method.

However, yeast and mammalian glycosylation structures

differ, prompting development of human cell display

[59]. Nonetheless, yeast display remains suitable for most

proteins of interest; for situations where glycosylation

differences matter, yeast strains possessing the human

glycosylation pathway may also serve as an alternative

[60].
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