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Abstract: Recent studies have shown that patients with kidney stone disease, and particularly
calcium oxalate nephrolithiasis, exhibit dysbiosis in their fecal and urinary microbiota compared
with controls. The alterations of microbiota go far beyond the simple presence and representation of
Oxalobacter formigenes, a well-known symbiont exhibiting a marked capacity of degrading dietary
oxalate and stimulating oxalate secretion by the gut mucosa. Thus, alterations of the intestinal
microbiota may be involved in the pathophysiology of calcium kidney stones. However, the role
of nutrition in this gut-kidney axis is still unknown, even if nutritional imbalances, such as poor
hydration, high salt, and animal protein intake and reduced fruit and vegetable intake, are well-known
risk factors for kidney stones. In this narrative review, we provide an overview of the gut-kidney axis
in nephrolithiasis from a nutritional perspective, summarizing the evidence supporting the role of
nutrition in the modulation of microbiota composition, and their relevance for the modulation of
lithogenic risk.
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1. Introduction

The gastrointestinal system plays a pivotal role in the pathophysiology of idiopathic calcium
oxalate nephrolithiasis, the most common form of kidney stone disease [1–3]. Gut mucosa absorption
consistently influences both calcium and oxalate metabolism and represents a fundamental driver
of hypercalciuria and hyperoxaluria, the two most important pro-lithogenic urinary metabolic
abnormalities found in calcium oxalate stone formers [4–6]. The concepts of “absorptive hypercalciuria”
and “enteric hyperoxaluria” imply the presence of a cross-talk between the gut and the kidney
contributing to the pathophysiology of calcium oxalate stones [4–6].

The role of gut microbial communities, i.e., the microbiota, in these mechanisms remained uncertain
until a few years ago [7]. The research was, in fact, mainly focused on only one component of the
human gut microbiota, Oxalobacter formigenes [7]. The oxalate-degrading capacity of this Gram-negative
anaerobic bacterium led to the assumption that calcium oxalate nephrolithiasis was associated with
intestinal depletion of Oxalobacter [8]. Conversely, probiotic intervention with Oxalobacter or other
species engineered with oxalate-degrading functionalities was believed to reduce the lithogenic
risk [9,10]. Unfortunately, both observational and intervention studies gave conflicting results, leaving
great uncertainty on the role of the microbiota in lithogenesis [7].
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In the last decade, advanced omics techniques have allowed deep sequencing and functional
characterization of gut microbial communities at an unprecedented level [11]. Thus, the early
physiological concept of the gut-kidney axis in nephrolithiasis has been brushed up in light of the
so-called microbiota revolution [7]. Recent studies have shown that calcium kidney stone formers have
a different fecal microbiota composition than stone-free individuals, supporting the hypothesis that
the microbiota is a major player in the pathophysiology of nephrolithiasis [7,12,13].

These studies have shed light on the gut-kidney axis in nephrolithiasis, but in most cases, failed
to provide integration with clinical aspects of nephrolithiasis, and particularly nutrition. Nutritional
imbalances, such as poor hydration, high salt, and animal protein and low calcium, fruit and vegetable
(FAV) intake, are considered the main risk factors for calcium oxalate kidney stone disease [14,15].
Conversely, water therapy, adequate consumption of dairy products, FAVs, and low-salt low-animal
protein diets are considered the pillars of non-pharmacological prevention of nephrolithiasis [16,17].
It is still uncertain how these well-established clinical concepts can be integrated into the novel
microbiome-centered acquisitions on the gut-kidney axis, despite the fact that dietary habits are
well-known determinants of gut microbiota composition.

The aim of this narrative review is thus to summarize the current knowledge on the relationship
between gut microbiota and calcium oxalate kidney stone disease from a nutritional perspective.

2. Gut Microbiota and Calcium Oxalate Stone Disease: An Overview

2.1. Before the Microbiota Revolution: Focus on Oxalobacter

Oxalobacter formigenes was isolated for the first time in 1980 from the rumen of some mammals
and metabolically characterized as having a strong oxalate-degrading capacity [18]. It remains the
most efficient oxalate-degrading biological system known to date, thanks to the expression of two
enzymes, oxalyl-CoA decarboxylase, and formyl-CoA transferase, that allow the production of the
soluble compound formate and CO2, with the release of energy that is used by the bacterium for
cellular activities [19,20]. In the following years, Oxalobacter was isolated from the intestine of several
mammals, including humans, and cultured on oxalate-rich mediums [21]. An inverse relationship
between Oxalobacter presence in the intestinal lumen and oxalate absorption was also demonstrated in
guinea pigs [22].

However, the possible role of Oxalobacter in human kidney stone disease was not further
investigated until the late 1990s, when a polymerase chain reaction (PCR)-based method of Oxalobacter
identification and quantification was developed [23]. Oxalobacter was detected in 30–70% of stool
samples of humans, and its presence was significantly associated with high dietary oxalate intake
and with reduced fractional absorption of oxalate [24]. The clinical significance of Oxalobacter in
modulating lithogenic risk was, therefore, investigated. Oxalobacter may, in fact, protect against calcium
nephrolithiasis through two distinct mechanisms: oxalate degradation in the gut lumen with reduction
of mucosal absorption and promotion of endogenous oxalate secretion by the gut mucosa [25].

Observational studies conducted with cultural and PCR-based methodology showed that
Oxalobacter colonization in fecal samples was significantly lower in stone formers, or patients with
high lithogenic risk, than stone-free controls (Table 1) [26–30]. In idiopathic stone formers, a significant
correlation between the status of Oxalobacter colonization and 24-h urinary oxalate excretion was
detected in one study [30], but not in another [29]. Such a correlation was instead found in subjects at
high risk of nephrolithiasis due to cystic fibrosis [26] or inflammatory bowel disease [28], but not in
the morbidly obese [31]. The relationship between colonization status and oxaluria may depend on
dietary oxalate intake, becoming more evident in experimental conditions under controlled dietary
regimens [32].
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Table 1. Overview of human observational studies investigating the association between nephrolithiasis
and prevalence of Oxalobacter formigenes in feces.

AUTHOR, YEAR [REF]
METHODS OF
MICROBIOTA

ANALYSIS
PARTICIPANTS MAIN RESULTS NOTES

Sidhu H et al., 1998 [26] Culture + PCR if
cultures negative

43 children with cystic
fibrosis, 21 healthy

children

Prevalence of Oxalobacter 16% in
patients and 71% in controls; patients

without Oxalobacter had
hyperoxaluria and high stone risk

None of the
participants had
kidney stones.

Sidhu H et al. 1999 [27] Culture + PCR
51 adult idiopathic

calcium oxalate SFs, 44
healthy volunteers

Prevalence of Oxalobacter:
- 75% in controls

- 80% in first time stone formers
- 38% in recurrent stone formers
- 13% in highly recurrent stone

formers

Cases and controls
inhomogeneous for

age and geographical
location.

Kumar R, et al. 2004 [28] PCR

37 ulcerative colitis, 11
Crohn’s disease, 87

calcium SFs, 48 healthy
controls

Prevalence of Oxalobacter: 10% in IBD,
29% in stone formers, 56% in controls.
Oxalate excretion significantly higher

in those without Oxalobacter
colonization

The study focused on
IBD-associated forms

of calcium stones.

Kaufman DW, et al. 2008 [29] Culture

247 calcium SFs, 259
age-, sex- and

location-matched
controls

Prevalence of Oxalobacter: 17% in
stone formers, 38% in controls. No

association between Oxalobacter and
oxalate excretion.

Absence of genomic
methods of Oxalobacter

detection

Siener R, et al. 2013 [32] Culture + PCR 37 calcium SFs

Prevalence of Oxalobacter: 30%. In
colonized subjects, oxalate excretion is
lower only under controlled dietary

oxalate intake.

Study focused on
oxalate metabolism; no

controls enrolled.

Tavasoli S, et al. 2020 [30] PCR

29 SFs with
hyperoxaluria, 29 SFs

without hyperoxaluria,
29 controls

Oxalobacter more prevalent and
abundant in controls and inversely

related to oxaluria

Investigated also
Oxalobacter abundance

in feces

PCR = Polymerase Chain Reaction; IBD = Inflammatory Bowel Disease; SFs = Stone Formers.

Recent population-based studies combining the traditional species-specific microbiological
techniques with metagenomics have highlighted that Oxalobacter is stably present in the fecal
microbiome of only 31% of healthy young people living in the US [33]. This prevalence is much lower
than that detected in tribal populations from Venezuela and Tanzania, supporting a possible role of
diet and lifestyle in establishing Oxalobacter colonization [34]. In a large group of samples from the
American Gut Project, the main factors associated with Oxalobacter colonization in gut microbiota
were ethnicity, country of residence, older age, level of education, recent exposure to antibiotics, body
weight, alcohol, and FAV intake [35]. A healthy lifestyle and nutrition may thus favorably influence
gut microbiota composition towards stable colonization by Oxalobacter.

Since the late 1990s, several intervention studies have investigated whether the administration of
Oxalobacter or other probiotic blends engineered with oxalate-degrading functionalities could result in
the reduction of lithogenic risk (Table 2) [36–43]. All these studies were conducted on small samples
(the largest one having enrolled only 42 participants) and were highly heterogeneous for the type
and duration of the intervention and for the clinical characteristics of participants, ranging from
healthy volunteers to children with severe forms of primary hyperoxaluria (Table 2). The results were
conflicting overall, with some studies reporting significant reductions in urinary oxalate excretion
after probiotic treatment [36–38,40–42], and others showing no changes from baseline [39,43] (Table 2).
The clinical significance of detected reductions in urinary oxalate excretion was also uncertain, since
oxalate excretion is a surrogate outcome of stone recurrence, and only one of many elements concurring
to the definition of lithogenic risk.
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Table 2. Overview of human intervention studies investigating the effects of the administration of
oxalate-degrading bacteria on lithogenic risk.

AUTHOR, YEAR [REF] PROBIOTIC
DESIGN, PARTICIPANTS

AND FOLLOW-UP
DURATION

KEY FINDINGS

Campieri C, et al. 2001 [36]
Lactobacilli (L. acidophilus, L.

plantarum, L. brevis) +
Bifidobacterium infantis

Prospective single-arm
intervention, 6 calcium stone
formers, 4-week of follow-up

All participants experienced
redution of urinary oxalate

excretion (average 40%)

Duncan SH, et al. 2002 [37]
Oxalobacter formigenes strain
HC1 isolated from human

feces

Prospective single-arm
intervention, 2 healthy

volunteers, 6-h follow-up

Decrease of urinary oxalate
excretion after a dietary oxalate

load following the probiotic
administration.

Lieske JC, et al. 2005 [38]
Oxadrop®(L. acidophilus, L.

brevis, S. thermophilus, B.
infantis)

Prospective single-arm
intervention, 10 stone formers
with intestinal malabsorption,

1-month follow-up

Decrease of urinary oxalate
excretion shown in 7 participants

over 10 (average effect size:
−19%).

Goldfarb DS, et al. 2007 [39]
Oxadrop®(L. acidophilus, L.

brevis, S. thermophilus, B.
infantis)

RCT, 20 calcium oxalate stone
formers with hyperoxaluria,

4-week follow-up

No significant variation of urinary
oxalate excretion after treatment in
both intervention and control arm.

Okombo J, et al. 2010 [40] VSL#3 (L. acidophilus, L. gasseri,
B. lactis)

Prospective single-arm
intervention, 11 stone-free

volunteers, 4-week follow-up

Reduction of fractional oxalate
absorption after a dietary oxalate

load (from 31% to 12%).

Hoppe B, et al. 2011 [41] Oxabact®(Oxalobacter
formigenes)

RCT, 42 adolescents with
primary hyperoxaluria,

24-week follow-up

Reduction of urinary oxalate
excretion in both intervention and

control arm (average effect size
20% in both groups)

Al-Wahsh I, et al. 2012 [42] VSL#3 (L. acidophilus, L. gasseri,
B. lactis)

Prospective single-arm
intervention, 11 healthy

stone-free volunteers, 24-h
follow-up

Reduction of urinary oxalate
excretion after a standardized

dietary oxalate load

Siener R, et al. 2013 [43]
Oxadrop®(L. acidophilus, L.

brevis, S. thermophilus,
B. infantis)

Randomized cross-over trial,
20 stone-free healthy

volunteers under high-oxalate
diet, 5 week follow-up

No significant variation of
oxaluria detected.

RCT = Randomized Controlled Trial.

2.2. Beyond the Microbiota Revolution: Oxalobacter as Part of a Network

To date, the fecal microbiota composition of calcium stone formers has been investigated with
next-generation sequencing techniques in seven different studies [44–50], summarized in Table 3.
Two studies also investigated urinary microbiota composition comparing it with the microbiota of
stones [50,51].
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Table 3. Overview of human studies investigating the fecal or urinary microbiota composition in kidney stone formers by using next-generation sequencing techniques.

AUTHOR, YEAR
[REF] PARTICIPANTS STONE TYPES COUNTRY SAMPLES MAIN FINDINGS IN STONE FORMERS TAXA DEPLETED IN

STONE FORMERS

Suryavanshi et al.,
2016 [44]

24 recurrent KSF
15 controls Calcium oxalate India Feces

Gut microbiota dysbiosis with different clusterization of
composition and functionality. Urinary oxalate excretion

correlated with the abundance of 12 taxa.
Several taxa harboring oxalate-degrading functionalities

identified in both KSF and controls.

Several species, including
Faecalibacterium prausnitzii

Stern et al., 2016 [45] 23 KSF
6 controls

Calcium
Uric acid United States Feces Different microbiome composition with the prevalence of

Bacteroides over Prevotella. Prevotella

Tang et al., 2018 [46] 13 multiple KSF
13 controls Radio-opaque China Feces

Trend towards reduced biodiversity.
Different microbiome composition clusters between KSF

and controls.

Eubacterium, Dorea,
Ruminiclostridium, Anaerostipes,

Fusicatenibacter,
Subdoligranulum, Holdemania,

Dialister, Ruminococcus,
Parasutterella, Bilophila

Ticinesi et al., 2018
[47]

52 recurrent KSF
48 controls Calcium Italy Feces

Reduced fecal microbiota biodiversity.
Separate clusterization of KSF and controls.

Urinary oxalate excretion correlated with the abundance of
5 taxa.

Reduced representation of bacterial genes involved in
oxalate degradation.

Oxalate-degrading functionalities harbored in several
species.

Dorea, Enterobacter,
Faecalibacterium prausnitzii

Suryavanshi et al.,
2018 [48]

24 recurrent KSF
48 controls Calcium oxalate India Feces

Dysbiosis not limited to eubacteria and also involving
archaea and eukaryotes.

Species able to metabolize oxalate and produce butyrate
were depleted in KSF not colonized with Oxalobacter.

Several species with
oxalate-metabolizing

properties and butyrate
producers, including Prevotella

and Ruminococcus

Miller et al., 2019 [49] 17 KSF
17 controls

Calcium oxalate
Uric acid
Struvite
Cystine

Canada Feces

KSF has reduced representation of a network of bacteria
directly involved in oxalate degradation or co-occurring

with Oxalobacter in network analysis.
These taxa include those stimulated by oxalate intake in

rodent models.

103 bacterial taxa, including
Ruminococcus and Oscillospira

Zampini et al., 2019
[50] 24 KSF43 controls

Calcium
Uric acid

Mixed calcium+ uric acid
United States

Feces
Urine
Stones

Fecal microbiota similar in KSF and controls.
Urinary microbiota had composition independent of stool

microbiota.
KSF had urinary microbiota dysbiosis correlated with

antibiotic treatments, sex and family history.
Stones harbor an independent microbiota population.

Lactobacillus underrepresented
in urinary samples

Dornbier et al., 2019
[51] 52 KSF Any composition United States Urine

Stones

In 20% of KSF, stone samples exhibit microbial
communities with a composition independent of urine.
Main components of these communities: Staphylococcus,

Veillonella, Streptococcus, Enterobacter, Escherichia.

No comparison with controls
provided in the study

KSF = Kidney Stone Formers.
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All these studies support the concept that gut microbiota dysbiosis, i.e., reduction of overall
biodiversity with alteration of physiologic composition, is present in stone formers [44–50]. In recurrent
stone formers with hyperoxaluria, Suryavanshi and colleagues found an increased representation of
pathobionts and species with oxalate-degrading capacity, including Oxalobacter, compared with the
controls [44]. Several of these taxa co-occurred in bacterial networks identifying different microbiota
compositions between stone formers and controls. Most notably, Prevotella, Dialister, and Faecalibacterium
were depleted in stone formers, while Bacteroides were overrepresented [44].

The concept of gut microbiota dysbiosis associated with nephrolithiasis was later confirmed
by two small-sized studies conducted on heterogeneous groups of stone formers [45,46] and by
a larger case-control study conducted on recurrent idiopathic calcium oxalate stone formers [47].
In that study, the differences of gut microbiota composition between stone formers and controls
were independent of body composition, diet, hydration, urinary factors of lithogenic risk, and bowel
movements, and included reduced representation of some key taxa for the maintenance of eubiosis,
such as the short-chain fatty acid (SCFA) producer Faecalibacterium prausnitzii [47]. Moreover, the
oxalate degrading capacity of the microbiota, inferred by shotgun metagenomics sequencing, was
higher in controls, with the average abundance of several bacterial taxa that were inversely correlated
with urinary oxalate excretion [47], a finding that was also coherent with the Suryavanshi’s study [44].

Further studies have shown that, in healthy controls, Oxalobacter presence is associated with
a complex network of bacteria, that may exhibit oxalate-degrading capacity themselves or exert a
permissive role on the metabolic activity of Oxalobacter [48,49]. These networks are someway less
represented in calcium stone formers [47,49] and, most of all, in stone formers not harboring Oxalobacter
in their fecal microbiota [48]. Therefore, the oxalate degrading capacity of the intestinal microbiota
relies on a complex ecosystem and not solely on Oxalobacter, as believed before the emergence of high
throughput sequencing techniques of the microbiota [7]. This concept has been confirmed in mice
transplanted with human feces colonized by Oxalobacter, where the transplantation procedure resulted
in selective expansion of the network of bacteria related to Oxalobacter [52].

Recently, Zampini et al. found that urine samples of stone formers exhibit a local microbiota, which
is only minimally related to the intestinal microbiota, unrelated to the presence of urinary tract infection
and composed of taxa with low pathogenic potential [50]. Compared with controls, stone formers have
a different composition of urinary microbiota, and particularly exhibit depletion of Lactobacillus [50].
In around 20% of stone formers, next-generation sequencing techniques also allowed to clearly identify
a stone microbiota, mainly composed of members of the genera Staphylococcus, Enterobacter, Escherichia,
and Lactobacillus and with a different composition than the urinary microbiota [51]. Interestingly, the
presence of these potentially pathogenic taxa was not associated with clinically evident infections [51].

3. The Role of Diet in the Gut-Kidney Axis

3.1. The Determinants of Nephrolithiasis-Associated Gut Microbiota Dysbiosis

It has been postulated that the nephrolithiasis-associated gut and urinary microbiota dysbiosis
could depend on increased exposure to antibiotic therapies [53]. This hypothesis is supported by
two large population-based epidemiologic studies, showing that lifetime exposure to antibiotics, and
particularly long-course treatments occurring during the younger age, are associated with increased
risk of developing kidney stone disease [54,55]. In 25,981 patients with nephrolithiasis and 259,797
controls, the adjusted odds ratios for kidney stone disease ranged from 1.27 (95% CI 1.18–1.36) to 2.33
(95% CI 2.19–2.48) for prescription in the 12 months before assessment of broad-spectrum penicillins
and sulfonamides, respectively [54]. Intermediate odds ratio values were found for cephalosporins,
fluoroquinolones, and nitrofurantoin, irrespective of the reason for prescription [54]. In 5010 females
participating to the Nurses’ Health Study I and II, cumulative use of antibiotics for 2 or more months
in the age ranges of 40 to 49 and 40 to 59 were significantly associated with a higher risk of developing
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incident kidney stones (pooled hazard ratios 1.48, 95% CI 1.12–1.96, and 1.36, 95% CI 1.00–1.84,
respectively) [55].

Although prolonged antibiotic exposure is able to disrupt intestinal microbiota composition
inducing long-lasting alterations, it represents just one among a plethora of environmental factors
associated with gut microbiota composition [56]. The metagenome-wide association study conducted
in a Dutch population of 1135 subjects by Zhernakova and colleagues has shown that several factors
related to lifestyle, diet, diseases, and drugs are associated with inter-individual differences of gut
microbiota composition [57]. Among these factors, dietary factors represent the longest and most
complex list [57].

In spite of this, a nutritional investigation has been comprehensively performed in only two
studies comparing the fecal microbiota composition between stone formers and controls [47,49]. Stone
formers generally have higher salt and animal protein intake, and lower calcium and FAV intake than
stone-free controls [58–60]. The differences in gut microbiota composition between stone formers and
controls may thus, at least partly, depend on different dietary habits, and nutrition could represent one
of the main forces driving the so-called “gut-kidney axis” in kidney stone disease.

Although no studies have specifically focused on this topic to date, there is much evidence
showing that the dietary alterations associated with nephrolithiasis have the potential of influencing
the microbiota composition.

3.2. Salt and Microbiota

High salt intake has been considered one of the main nutritional imbalances favoring calcium
stone formation, especially through an increase in urinary calcium excretion and a decrease of urinary
excretion of lithogenesis inhibitors, such as citrate [61]. Dietary salt restriction is significantly associated
with a reduction of urinary calcium excretion and the prevention of recurrences in idiopathic calcium
stone formers [62,63].

Salt has been used as a popular cure for centuries due to its antimicrobial properties [64]. However,
the effects of salt intake on gut microbiota have been investigated only in very recent times. In the
Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study, Derkach and colleagues
showed that in 119 patients at high risk for hypertension, different levels of salt intake were associated
with different urinary levels of several metabolites, including some of gut microbial origin [65]. Namely,
high-salt intake was associated with decreased urinary levels of compounds related to fatty acid,
benzoate, indole, isovalerate, methionine, and tryptophan metabolism and of the microbial metabolites
4-ethylphenylsulfate and 4-hydroxyphenylpiruvate [65].

The hypothesis that salt intake can modulate gut microbiota composition has been later confirmed
in animal studies [66–69]. The administration of 2% NaCl in drinking water to mice resulted in the
induction of gut microbiota dysbiosis, the elevation of gut mucosa permeability, and translocation of
gut bacteria into the kidney, with the induction of hypertension and renal injury [66]. The strongest
effect of a high-salt diet on mouse microbiota was the depletion of Lactobacillus. This alteration was also
associated with the induction of T helper 17 cells, potentially contributing to hypertension by sustaining
autoimmunity [67]. The high-salt diet was also associated with increased murine plasma concentrations
of trimethylamine N-oxide (TMAO), an emerging marker of cardiovascular disease produced by the
gut microbiota [68], and altered morphology of murine intestinal villi and crypts [69]. Interestingly, the
administration of a probiotic blend containing Lactobacillus or a betaine-based prebiotic supplement
was able to almost completely counteract the detrimental consequences of a high-salt diet for murine
microbiota diversity and blood pressure [67,69].

To date, the effects of a high-salt diet on the human microbiota composition and functionality have
been investigated in only two studies. A moderate 14-day salt challenge caused a significant reduction
of the representation of Lactobacillus in a small group of volunteers [67]. In a large group of subjects
of multi-ethnic origin and different geographical provenience, the fecal salinity was significantly
associated with decreased microbiota diversity, depletion of bacteria with purported health-promoting
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activity, such as Bifidobacterium and Akkermansia muciniphila, and increased representation of halophilic
bacterial and archeal species [70]. These results support the hypothesis that the gut microbiota is
actively involved in the pathophysiology of salt-sensitive hypertension and modulates cardiovascular
risk [71]. The relationship between salt and gut microbiota has not been investigated in kidney stone
formers yet. However, the mentioned studies support the hypothesis that nephrolithiasis-associated
gut microbiota dysbiosis is at least partly dependent on dietary salt intake.

3.3. Animal Proteins and Microbiota

High-protein intake, particularly of animal origin, is considered an important risk factor for
calcium nephrolithiasis. Animal proteins raise the renal acid load, which is associated with reduced
excretion of lithogenesis inhibitors such as citrate [72,73] and incident kidney stones in population-based
studies [74]. Amino acid and protein supplementation are also associated with increased urinary
calcium excretion [75,76], while mild protein intake restriction reduces calcium excretion [77]. Thus,
limiting animal protein intake is one of the cornerstone measures for preventing calcium lithiasis
recurrence [16,17,62]. In the only rigorous randomized controlled trial on dietary prevention of calcium
nephrolithiasis published to date, balanced animal protein intake was part of the dietary strategy that
proved more effective in reducing recurrence of renal colic after a 5-year follow-up, compared with the
control low-calcium diet [62].

The relationship between protein intake and gut microbiota composition has been investigated
in several animal studies, giving conflicting results [78–85]. Rats fed a high-protein diet exhibited
pro-inflammatory changes in gut microbiota composition, with an overrepresentation of pathobionts,
such as Escherichia/Shigella and Enterococcus, depletion of species associated with the synthesis
of short-chain fatty acids (SCFAs), such as Faecalibacterium, and protection of mucosa, such as
Akkermansia [78,79]. These alterations of gut microbiota composition were emphasized when proteins
were of animal origin [80]. However, other studies have shown that the intake of protein, especially of
chicken origin, may also be associated with positive changes in gut microbiota composition of rats,
including overgrowth of Akkermansia [81], Lactobacillus [82], and SCFA-producing taxa [83]. Red meat
intake was also associated with increased representation of Lactobacillus and increased biodiversity in
two studies [84,85], but in one of them, these changes were also accompanied by depletion of Prevotella
and SCFA producers [85].

A recent experimental study has demonstrated that the impact of protein intake on gut microbiota
composition of mice may depend on the absolute amount of proteins, with the highest representation
of beneficial taxa, such as SCFA-producing genera, for moderate intake, and lowest representation for
very high or very low intakes [86]. Therefore, the relationship between protein intake and microbiota
composition may be U-shaped. However, the influence of nutritional intakes of other macronutrients,
and particularly lipids, may be stronger than that of proteins for shaping the mouse microbiota
composition [87].

Human studies in this field have been recently reviewed in a position paper on high-protein
diets by the My New Gut Study Group [88]. In summary, these studies highlight that high-protein
diets with unrestricted calories and fibers are associated with increased representation of bile-tolerant
bacteria (Alistipes, Bacteroides, Bilophila) and decreased representation of Firmicutes, Bifidobacterium
and Roseburia [89]. However, high-protein diets may also increase the microbiota abundance of
Faecalibacterium prausnitizii, which is generally considered a health-promoting species due to its
capacity to produce SCFA [90]. When diets include fixed amounts of calories and fibers, quantitative
and qualitative variations of protein intake were not able to significantly modify gut microbiota
composition, but modulated bacterial metabolism towards different metabotypes [91,92].

In this perspective, the microbiota composition and metabolic function are much more dependent on
the overall nutritional pattern than on the intake of a single nutrient. Adherence to a Mediterranean-style
diet was associated with beneficial effects in gut microbiota composition in two distinct studies [93,94].
In both studies, high animal protein intake was instead associated with the reduced representation
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of Prevotella and SCFA producers and increased representation of Ruminococcus [93,94]. Interestingly,
reduced adherence to a Mediterranean-style diet is associated with an increased risk of incident
nephrolithiasis in a large population-based study conducted in Spain [95]. Moreover, reduced adherence
to the DASH-style diet (i.e., high salt and high animal protein intake) was associated with increased risk
of kidney stones due to pro-lithogenic urine chemistry in three US cohorts [96,97].

Therefore, protein intake could represent, together with the overall dietary pattern, one of the
main elements driving the alterations of gut microbiota composition detected in calcium stone formers.

3.4. Oxalate Intake and Microbiota

Human oxalate metabolism is rather complex, and only marginally depends on dietary oxalate
intake [5,98]. Intestinal oxalate absorption is, in fact, much more influenced by the calcium/oxalate ratio
in the diet than by absolute oxalate intake [98,99]. Moreover, a consistent fraction of urinary oxalate is
of endogenous origin as a product of hydroxyproline and ascorbic acid catabolism [98,100]. Dietary
intake of these substances also has some part in determining urinary oxalate excretion [5,98,100].
Finally, hyperoxaluria, a urinary metabolic abnormality frequently found in calcium oxalate stone
formers, is often caused by active oxalate secretion in kidney tubules [101].

In this scenario, a high dietary oxalate intake is associated with only a mild increase in the risk of
kidney stones, although in some cases, this risk may retain great clinical relevance [102]. Reduction of
oxalate intake can paradoxically increase urinary oxalate excretion and stone risk if it is not associated
with other dietary measures [103,104]. Reducing oxalate intake is, therefore, indicated for preventing
recurrences only in the case of mild hyperoxaluria [16,17]. Moreover, the reduction of indirect dietary
sources of oxalate, such as animal proteins or ascorbic acid, is generally more effective than a low-oxalate
diet for reducing oxaluria and preventing calcium oxalate stones [105,106].

In spite of these clinical concepts, dietary oxalate intake seems to be a powerful modulator
of gut microbiota composition. In the last 5 years, Miller and colleagues have shown that the
intestinal microbiota of the mammalian herbivore Neotoma albigula has an extremely high capacity
of oxalate degradation regardless of oxalate intake levels [107–109]. In fact, the microbial ecosystem
harbored in the gastrointestinal system of this rat shows several adaptive changes to increasing
levels of oxalate intake [108]. In this ecosystem, oxalate-degrading capacities rely on several species,
including Lactobacillus, Enterococcus, and Clostridium, either with a direct or a permissive role on oxalate
degradation [107]. Dietary oxalate challenge resulted in an increased representation of 117 taxa within
the microbial ecosystem, including the well-known Oxalobacter [109]. Interestingly, many of these taxa
were found to be significantly depleted, compared with controls, in a group of human stone formers
(Table 3) [49].

Adaptive changes of gut microbiota composition in stone formers following a high-oxalate diet
could also help to explain why, in the Suryavanshi study mentioned above [44], stone formers had
a high representation of oxalate-degrading species, a finding that is not coherent with the other
studies listed in Table 3. A high intake of foods with elevated oxalate content, such as almonds,
hazelnuts, walnuts, and pistachios, has been associated with specific changes of gut microbiota
composition [110–115]. These changes are generally considered beneficial for human health and include
an increased relative abundance of Lachnospira, Roseburia, Dialister, Faecalibacterium, and Lactobacillus
with increased production of SCFA [110–115]. The effects on Bifidobacteria and non-pathogenic
Clostridia were uncertain, with some studies reporting increased representation and others reporting
depletion [111,113].

The role of oxalate in inducing these microbiota modifications is, however, uncertain. Nuts, and
particularly the hazelnut skin, contain a high amount of polyphenol compounds that interact with the
microbiota, are metabolized at this level and can shape the composition of microbial communities [116].
The effect of the intake of foods with high oxalate content on the gut microbiota may also depend on
the pre-existing microbiota metabotype. Haaskjold and colleagues recently reported the absence of
oxalate-degrading capacity in the gut microbiota as the main cause of renal failure in a patient who ate
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extremely high amounts of almonds, corresponding to a dietary oxalate challenge [117]. Therefore, the
interaction between dietary oxalate, gut microbiota, and lithogenic risk may be extremely complex and
needs further investigation in the future.

3.5. Calcium Intake and Microbiota

Regular consumption of foods with high calcium content, either from dairy or non-dairy sources,
is known to be protective against the formation of calcium kidney stones, while consumption of
calcium supplements should be discouraged in stone formers [14,15,118]. Restriction of dietary calcium
intake proved less effective than salt and protein restriction in preventing kidney stone recurrence [62].
However, the effect of dietary calcium on stone-forming propensity also depends on the oxalate content
of the diet (i.e., the calcium/oxalate balance) and on the timing of calcium consumption [99,119–121].
In fact, stone formers have a higher fractional intestinal calcium absorption than subjects not suffering
from nephrolithiasis, and foods with high calcium content should be consumed during balanced meals
to protect against the risk of hypercalciuria [122–124].

To date, little is known about the relationship between dietary calcium intake and gut microbiota.
However, one study conducted in mouse models of obesity has highlighted that the introduction
of calcium supplementation could be associated with beneficial effects on the gut microbiota [125].
Reduced or excessive calcium intake could also influence the development of obesity through
modulation of microbiota in weaning mouse pups [126]. Moreover, modulation of microbiota through
prebiotic supplements can positively modulate dietary calcium absorption in mice, which represents a
promising strategy for reducing the burden of hypercalciuria in kidney stone formers [127].

3.6. FAV Intake, legume Intake, and Microbiota

A high FAV intake is associated with reduced risk of incident kidney stones [14,15,128] and
with a reduction of lithogenic potential in urine chemistry [129]. Thus, increasing FAV intake is
regarded as one of the main non-pharmacologic prescriptions for reducing the risk of kidney stone
recurrence [16,17]. A good FAV intake is in fact able to raise the urinary volume, excretion of inhibitors
of lithogenesis, such as citrate, potassium, and magnesium, and reduce the renal acid load [129].

A high intake of legumes is also generally regarded as protective against lithogenesis, due to the
inhibitory effect of inositol hexaphosphate on urinary crystallization phenomena [130,131]. However,
some legumes also have a moderate-to-high content in oxalate [132], which may be responsible for
increased risk of lithogenesis observed with high legume intake in some reports [133].

Fibers, that is, non-digestible carbohydrates found exclusively in plants, are the main components
of FAV interacting with the microbiota. These compounds can in fact be metabolized by several microbial
species and represent the main substrate for the synthesis of SCFA (acetate, butyrate, propionate) by the
microbiota. Several studies indicate that high fiber intake is also able to modulate the gut microbiota
composition towards an increase of representation of SCFA-producing species, lactic acid bacteria,
and species with purported health-promoting actions, including Faecalibacterium, Bifidobacterium,
and Lactobacillus, at the expense of a reduction of pathobionts [134–136]. These differences also
emerged when comparing subjects who follow a Mediterranean-style diet with subjects who follow a
Western-style diet [93,94].

Soluble fiber supplementation resulted in increased biodiversity of gut microbiota composition,
increased stability over time, and increased representation of Bifidobacteria [137,138]. Interestingly, an
increase in fiber intake was also associated with decreased levels of Oxalobacteraceae, probably as a
consequence of the reduced oxalate content of ingested foods [138].

The effects of insoluble fiber intake on gut microbiota composition are less known and generally
considered negligible in comparison with that of soluble fibers such as inulin [139]. However, one study
showed that the supply of different types of fibers, such as insoluble pectin vs. soluble inulin, resulted in
the selective promotion of growth of different microbial communities in pH-controlled continuous-flow
fermentors containing microbiota of human gut origin [134]. Moreover, a comparison of dietary habits
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and microbiota composition between children from Europe and rural areas of Burkina Faso showed
that the high insoluble fiber intake of Burkinabe participants was associated with selective expansion of
taxa, including Xylanibacter and Prevotella, harboring genes for cellulose and xylan hydrolysis that were
completely absent in European counterparts [140]. Thus, the effects of FAV intake on the microbiota
could also depend on the ratio between insoluble and soluble fibers of ingested foods.

In obese subjects, increasing FAV intake is associated with reduced weight gain, more favorable
body composition, and different urinary metabolic profile compared with obese subjects who follow their
usual diet [141–143]. All these physiological modifications are mediated by the gut microbiota [141–143].
High FAV intake is in fact, associated with microbial metabolism of plant flavonoids, resulting in the
systemic absorption of several compounds acting as metabolic modulators [142,144]. One of these
compounds is hippuric acid, whose urinary excretion is considered a marker of FAV intake of potential
utility in kidney stone formers for monitoring adherence to dietary recommendations [145].

Dietary supplementation with fruit juices that may have positive effects in modulating lithogenesis
of kidney stone formers [146] is also associated with increased gut microbiota biodiversity and
representation of taxa with health-promoting activities, such as Bifidobacteria [147–150]. Consumption
of fruit juices is associated with increased fecal and urinary levels of metabolites of microbial origin
exhibiting favorable metabolic activities [150,151].

Legume intake can favorably affect the microbiota composition in terms of increased representation
of Bifidobacteria and Lactobacilli and reduced Firmicutes/Bacteroidetes ratio [152]. This assumption is
supported by human studies where soy or derivatives were administered to small samples of healthy
subjects [152] and also by animal studies with dietary supplementation of soy or lentils [153,154].
However, these effects are probably not mediated by fibers, and depend on isoflavone-derived
compounds that can be found in high amounts in legumes, and particularly in soy [155].

Although not specifically focused on kidney stones, the current literature supports the hypothesis
that the beneficial effects of increasing FAV or juice intake on the risk of kidney stone disease may be at
least in part mediated by changes in gut microbiota composition and metabolic function.

3.7. Water Intake and Gut Microbiota

Poor hydration is a fundamental risk factor for kidney stone disease, and daily water intake >2 L
represents a cornerstone measure for preventing recurrences [146]. The mechanisms that link water
intake with lithogenesis are well-known and largely dependent on physicochemical factors and renal
physiology [146]. However, recent studies suggest that hydration, and the type of drunk water, may
also influence the gut microbiota. Therefore, water intake could also influence lithogenesis through the
gut-kidney axis.

Water pH is able to influence the microbiota composition of mice, probably because different pH
allows the growth of different microbial populations in drinking water [156]. The supply of acidified
drinking water to mice was able to induce deep changes of gut microbiota composition, including
the overrepresentation of several taxa that are notable components of microbiota in humans, such as
Bacteroides, Alistipes, Barnesiella, and Lactobacillus [157]. For this reason, some authors recently proposed
that drinking water pH should be considered as a covariate in microbiome studies conducted in animal
models [158].

These surprising findings are also supported by two human studies [159,160]. Murakami et al.
found that regular consumption of alkaline water is associated with significant changes in gut microbiota
composition, namely an increase of representation of Christensenellaceae, Bifidobacteriaceae, and
Oxalobacteraceae [159]. Hansen et al. reported no effect of drinking water pH on microbiota
biodiversity assessed by the Shannon index but showed significant changes in the abundance of some
taxa, including Ruminococcaceae and Prevotella copri after the ingestion of water with a neutral pH [160].

However, these animal and human studies do not fully consider the mineral composition of
drinking water and the effect of diet on the microbiota. Thus, their conclusions should be interpreted
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with much caution, and the relationship between the composition of drinking water and gut microbiota
composition needs further investigation in the future.

4. Conclusions and Perspectives

Several studies support the hypothesis that the intestinal microbiota composition is able to
influence lithogenesis beyond the simple presence or absence of Oxalobacter formigenes. At the same
time, all the main nutritional imbalances associated with increased risk of calcium nephrolithiasis are
associated with specific alterations of gut microbiota composition (Table 4). Although the relevance of
these changes for kidney stone pathophysiology is still unclear, since no study has comprehensively
evaluated the gut-kidney axis from a nutritional perspective, they allow the hypothesis that the
microbiota acts as a metabolic modulator at the cross-road between nutrition and kidney function,
influencing the lithogenic risk (Figure 1).

Table 4. Overview of the main nutritional imbalances associated with high lithogenic risk and their
effects on gut microbiota composition.

NUTRITIONAL
IMBALANCE

EFFECT ON URINE CHEMISTRY AND
LITHOGENIC RISK EFFECT ON GUT MICROBIOTA COMPOSITION

High salt intake
Increase in urine calcium
Decrease in urine citrate

Increased risk of CaOx lithiasis
Depletion of Lactobacillus, Akkermansia, Bifidobacterium

High animal protein intake

Increase in urine calcium
Increase in urine uric acid

Decrease in urine pH
Increase of renal acid load

Increased risk of CaOx and AcUr lithiasis

Depletion of Firmicutes, Bifidobacterium, Roseburia,
Prevotella

Increased representation of bile-tolerant bacteria
Increased representation of Faecalibacterium

High oxalate intake Increase in urine oxalate
Mild increased risk of CaOx lithiasis

Expansion of oxalate-degrading species
Increased representation of Lachnospira, Roseburia,

Dialister, Faecalibacterium and Lactobacillus (probably
due to other nutrients contained in oxalate-rich foods)

Low calcium intake
Increase in urine oxalate

Increase in urine calcium from bones
Increased risk of CaOx lithiasis

Reduced biodiversity with depletion of species
producing SCFAs (in mice)

Low FAV intake
Decrease in urinary inhibitors of

lithogenesis
Decrease in urinary volume

Depletion of lactic acid bacteria
Depletion of species producing SCFAs

Depletion of Bifidobacterium, Faecalibacterium,
Lactobacillus

Poor hydration Decrease in urinary volume

Alterations of representation of some selected taxa,
including Ruminococcaceae, Prevotella,

Bifidobacteriaceae and Oxalobacteriaceae depending
on the pH of ingested fluids

CaOx = Calcium Oxalate; AcUr = Uric Acid; SCFAs = Short-Chain Fatty Acids; FAV = Fruit and Vegetables.

Future studies on the gut-kidney axis in nephrolithiasis should not be limited to the description of
fecal microbiota composition and comparison with healthy controls anymore, but should also embed
thorough nutritional investigation and functional aspects of the interaction between nutrients and
the microbiota. The nutritional intervention targeted at manipulating the microbiota composition
and function is a promising field for modulating lithogenic risk and identifying novel strategies for
the prevention of nephrolithiasis recurrences. Moreover, the role of urinary and stone microbiota
(Figure 1) is another controversial point that should be investigated in the future to identify whether
it is actively involved in kidney stone formation and represents another possible target for novel
therapeutic strategies.
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