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Abstract 

Background:  A lack of communication with people suffering from acquired brain 
injuries may lead to drawing erroneous conclusions regarding the diagnosis or therapy 
of patients. Information technology and neuroscience make it possible to enhance the 
diagnostic and rehabilitation process of patients with traumatic brain injury or post-
hypoxia. In this paper, we present a new method for evaluation possibility of com-
munication and the assessment of such patients’ state employing future generation 
computers extended with advanced human–machine interfaces.

Methods:  First, the hearing abilities of 33 participants in the state of coma were evalu-
ated using auditory brainstem response measurements (ABR). Next, a series of interac-
tive computer-based exercise sessions were performed with the therapist’s assistance. 
Participants’ actions were monitored with an eye-gaze tracking (EGT) device and with 
an electroencephalogram EEG monitoring headset. The data gathered were processed 
with the use of data clustering techniques.

Results:  Analysis showed that the data gathered and the computer-based methods 
developed for their processing are suitable for evaluating the participants’ responses 
to stimuli. Parameters obtained from EEG signals and eye-tracker data were correlated 
with Glasgow Coma Scale (GCS) scores and enabled separation between GCS-related 
classes. The results show that in the EEG and eye-tracker signals, there are specific 
consciousness-related states discoverable. We observe them as outliers in diagrams 
on the decision space generated by the autoencoder. For this reason, the numerical 
variable that separates particular groups of people with the same GCS is the variance 
of the distance of points from the cluster center that the autoencoder generates. The 
higher the GCS score, the greater the variance in most cases. The results proved to be 
statistically significant in this context.

Conclusions:  The results indicate that the method proposed may help to assess the 
consciousness state of participants in an objective manner.

Keywords:  Acquired brainstem response, Multimedia computers, Human–computer 
interfaces, Eye tracking, Electroencephalography, Auditory brainstem injuries, Data 
clustering analysis
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Background
The incidence rate of traumatic brain injuries (TBI) in Europe in 2006 was reported as 
235 cases per 100,000 people per year [1]. An efficient tool for communicating with such 
patients and for evaluating their communication abilities is needed. Unfortunately, both 
communication and assessment of the progress made in the course of care by partici-
pants with disorders such as TBI, sudden cardiac arrest (SCA), and hypoxia may pose 
a real challenge to a therapist. All the groups of disorders mentioned could collectively 
be called acquired brain injuries (ABI). Typical procedures concerning participants with 
TBI and other disorders include examination employing one of the various imaging 
techniques. The current literature indicates several common ways to assess conscious-
ness in people suffering from acquired brain injuries ABI. Many of them involve some 
use of EEG signal measurement, however, techniques such as transcranial stimulation, 
deep brain stimulation are also possible, and they were described in the literature [2]. 
EEG-based techniques often apply measurement and analysis of event-related poten-
tials (ERP) [2]. They also may involve using external stimuli such as auditory signals [3]. 
Another example of an EEG-based technique is a mismatch negativity (MMN) approach 
[4, 5]. Over the last two decades, computed tomography (CT) and magnetic resonance 
imaging (MRI) scans have become standard medical practice, and they are widely used 
for many aspects of modern medicine, like for example detection of tumors or identi-
fication of sites of injury from impact [6–8]. Although positron emission tomography 
(PET) and functional magnetic resonance imaging fMRI are also employed for medical 
diagnostics, they are not standard medical procedures, because of their high cost, thus 
they are more often used for research purposes [9]. Some works also identify the need 
for cheap and wide-applicable solutions for the estimation of the state of patients suffer-
ing from ABI [2]. Researchers and physicians have proved that the use of PET and espe-
cially fMRI is eventually inevitable in the clinical examination of patients with disorders 
of consciousness [10–13] due to their accuracy and usability. However, high cost is still 
the factor that significantly limits their use for daily care, especially outside hospitals. 
Thus, a less expensive and more portable solution is required, which would be capable of 
evaluating the response of participants to stimulation performed reliably by a therapist 
and of improving the understanding of their current needs.

Some studies have concluded that in case of communication with patients with locked-
in syndrome, it may be possible to employ EEG [14] or eye-tracker data [15] as a means 
of interaction. Some research also suggests that long-term monitoring of EEG signals 
gathered when participants are sleeping may help to predict the outcome of the thera-
peutic process [16]. Recently, an approach applying an eye-tracker device was employed 
to assess the emotional states of healthy participants [17]. There are also works that 
identify the need for cheap and widely applicable solutions for the estimation of the state 
of patients suffering from ABI [2]. We would like to propose a direction of diagnosis 
based upon the bimodal measurement of the activity of people taking part in therapeu-
tic sessions. Participants of our research suffered from acquired brain injuries, and they 
took part in therapeutic sessions which involved interaction with computer by using the 
eye-gaze tracking device (EGT). During those sessions, we measured EEG signals and 
collected data from the eye tracker. Next, we employed an autoencoder neural network 
to perform clustering and separability analysis of data collected in the experiment. We 
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were especially interested in employing this method for session-to-session assessment 
of GCS score, as the literature indicates, that such comparison of GCS values over time 
may provide valuable clinical information to be used for monitoring the state of patients 
[18]. This kind of assessment tool may improve therapists’ communication with their 
patients entailing more effective communication which can help, in turn, to provide reli-
able and a capacity to objectively evaluate the patients’ state.

The structure of this article is as follows: in the next section results from the analysis 
of signals obtained from the EEG and eye-tracker devices are presented together with 
outcomes of the statistical analysis; next, a discussion and conclusions drawn from the 
results observed are presented in two consecutive sections; the last section provides a 
brief profile of participants who took part in the experiments together with methodology 
for verifying the hearing abilities of participants. It also provides a detailed description 
of the methodology used for making measurements and processing of the data obtained 
from the experiment participants.

Results
The signals gathered during therapeutic sessions performed with the study participants 
were split into a series of 12-s-long epochs. Each epoch contained signals from both 
the EEG headset and the eye-tracker device. It was then used to train the multimodal 
autoencoder neural network, which performed unsupervised data segmentation. Data 
were collected with two headsets consisting of 5 and 14 electrodes. A separate analysis 
was performed for each dataset. The only difference between neural networks employed 
for this purpose is number of EEG-related channels in each network. In each network 
this number of channels was equal to the number of electrodes in the processed data-
set. The encoder part of the autoencoder was utilized to generate vectors of parameters 
associated with pairs of epochs extracted from EEG and EGT signals. To visualize them 
on a two-dimensional space, a PCA-based projection onto a plane was determined. 
Additionally, values of GCS and its components associated with participants from whom 
the epochs of signals are gathered are marked with color on those figures. Visualizations 
are shown in Figs. 1, 2, 3, 4, 5.

It is discernible in the coloring of points associated with three sessions of data acquisi-
tion marked consecutively as A, B, and C. This visualization is visible in Fig. 5. During 
the session A, only a 5-electrode headset was used. Both headsets were employed during 
the session B, and during the session C, only the 14-electrode headset was employed. 
Such a situation permits an interesting comparison for separability of GCS classes for 
parameters derived from 5-channel headset and 14-channel headset. Separation of 
classes is more prominent for the cluster associated with a 14-electrode headset. This 
is especially prominent for verbal and motoric components of GCS scale. There is also 
a separation between classes for the cluster related to a dataset gathered with a 5-elec-
trode headset, however it is less pronounced. It should be noted that no information 
about GCS was delivered to the algorithm, therefore all the separation between GCS-
related classes are the result of the training process of the multimodal autoencoder.

In the case of both headsets, the feature which is causing the separation is the vari-
ance of clusters associated with each GCS. This can support the hypothesis that for 
two groups with different GCS values, various amounts of outliers are present, and 
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thus, there is a difference in the variance of data points. The variance of distance 
between the point and the cluster center was calculated for the 32-dimensional set 
of vectors produced by neural networks. The calculation was carried out separately 
for each of headset-related dataset and each unique value of GCS or its component. 
To test the statistical significance of results, the Brown–Forsythe statistic test was 
employed. This test checks if variances of multiple groups of observations are differ-
ent. The calculation was also performed separately for each cluster (associated with 5 
or 14 electrodes), and each GCS value within that cluster. As a post hoc test after the 
Brown–Forsythe test, a modified Dunn test was used. Under standard circumstances, 
the Dunn test is employed for repeated testing of equality of medians of multiple 

Fig. 1  Image of clusters obtained from the autoencoder with different values of GCS score marked with 
color

Fig. 2  Image of clusters obtained from the autoencoder with different values of the verbal response 
component of GCS marked with color. Value of 1 indicates making no sounds, 2—the ability to make sounds, 
and 3—the ability to say single words
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groups of observations. However, it can also be employed as a post hoc variant of the 
Brown–Forsythe test, which is equivalent to the ANOVA test performed on vectors 
of observations transformed in the following way:

where x is a vector of observations, and x̄ is a mean value of this vector.
As the processing was carried out separately for dataset originating from the 5-elec-

trode headset and 14-electrode headset, statistical analyses were also performed 
separately for the 32-dimensional result vectors obtained from the encoding part of 

(1)x = |x − x̄|,

Fig. 3  Image of clusters obtained from the autoencoder with different values of the motoric component 
of GCS marked with color. Value of 1 indicates that participant does not move, 2—extends limb in response 
to painful stimuli, 3—abnormally flexes a limp in response to painful stimuli, and 4—flexion/withdrawal in 
response to painful stimuli

Fig. 4  Image of clusters obtained from the autoencoder with different values of eye component of GCS 
marked with color. Value of 2 indicates that participants can open eyes, 3—opens eyes in response to voice, 
4—opens eyes spontaneously
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autoencoder neural networks. Values of variances calculated for each cluster and each 
value of GCS are depicted in Table  1. Results of calculations related to statistic test 
are shown in Table 2. It can be observed that many differences seen in values of vari-
ance are statistically significant for both the standard significance factor of 0.05 and 
even 0.001. From Table  1 it also can be observed, that in most cases, the variance of 
distance between points and center of the cluster increases with the value of GCS. As 
it can also be observed in the visualization from Figs. 1, 2, 3, 4, this may not be true for 

Fig. 5  Image of clusters obtained from the autoencoder with three sessions of data acquisition marked with 
color

Table 1  Variance of  distance between  of  center of  cluster (associated with  5 
or  14-electrode headset) and  points associated with  given  GCS values, nex denotes 
number of points used for variance calculation

Calculations were performed for points in a 32-dimensional space of autoencoder-generated embedding vectors

5 electrodes, GCS (sum) 5 electrodes, GCS (eyes) 5 electrodes, GCS 
(motor)

5 electrodes, GCS 
(verbal)

GCS Variance nex GCS Variance nex GCS Variance nex GCS Variance nex

5 12.860 410 2 29.211 1835 1 18.581 336 1 37.107 1915

6 21.247 592 3 71.507 1295 2 67.480 1259 2 58.221 2758

7 55.822 1953 4 55.497 1876 3 42.782 2777 3 65.401 333

8 61.848 1046 4 72.903 634

9 37.872 841

10 79.022 524

14 electrodes, GCS (sum) 14 electrodes, GCS (eyes) 14 electrodes, GCS 
(motor)

14 electrodes, GCS 
(verbal)

GCS Variance nex GCS Variance nex GCS Variance nex GCS Variance nex

5 32.239 349 2 32.239 349 1 21.061 281 1 52.001 2361

6 21.061 281 3 53.590 588 2 51.859 1088 2 39.748 639

7 57.074 1006 4 52.022 2063 3 60.515 1313

8 63.194 1046 4 18.385 318

10 18.385 318
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all cases. Some of the classes are also separated by the decreasing values of the variance, 
and points associated with a higher GCS value are concentrated near the center of the 
cluster.

We hypothesize that the variance increases because of the occurrence of unique states 
of EEG signal, which are mapped by the autoencoder onto a more distant location when 
compared to more common states. The occurrence of such rare states may be both an 

Table 2  Results of  Brown–Forsythe test and p value matrices for  the  following post  hoc 
test

The value of 0 in the table indicates that the p value was lesser than 10−3 . Statistically insignificant values are marked with a 
italic font
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indicator of higher or lower GCS value, and their presence can be tracked and treated as 
a clue about current GCS value associated with each participant. In the case of 5-elec-
trode headset and motoric component of GCS, a statistical significance was implied by 
Brown–Forsythe test, but none of the pairs compared by Dunn test were found to be sta-
tistically different in the Dunn test. This is probably a consequence of unbalanced count 
of examples, as it can be seen in Table 1. We assume that all the differences, in this case, 
were statistically insignificant.

Discussion
The principal purpose of this study was to propose and to verify a set of procedures that 
could improve the process of assessing the consciousness level of TBI and SCA patients 
and of those who have experienced brain hypoxia. The first stage of our method was 
to administer hearing tests: objective hearing tests were preferred over subjective ones 
because the type of injury prevents normal communication with patients necessary to 
organize subjective hearing tests. Objective hearing tests were carried out to select par-
ticipants who might have been able to receive verbal information. These patients par-
ticipated in mental exercises allowing for an evaluation of their mental state, employing 
data from the system used for performing tasks formulated by the therapist.

We found that some of the parameters calculated based on signals gathered from 
the eye tracker and the EEG headset are associated with the GCS scores or with their 
component values. We identified that in the hyperspace generated by the autoencoder 
employed for the unsupervised data analysis a variance of distance between points in 
hyperspace and center of a cluster is associated with the value of GCS and its compo-
nents. This outcome was confirmed by statistical analysis. The variance of the subset may 
both increase or decrease with the value of GCS of its components, however, placement 
of points in the decision space usually allows partial separation between GCS-related 
classes and this may be utilized as a clue to estimate GCS-related score of patients. 
Such separation is especially visible in the case of GCS components related to motoric 
and verbal response. The above changes of variance may be caused by the occurrence 
of additional, “atypical” vectors of parameters caused by atypical pairs of EEG and eye 
tracker signal-related frames at the input of an autoencoder. They are different from the 
most frequent epochs which were placed in proximity of the center of each headsets 
cluster. Such atypical epochs may indicate rare “states” of EEG and eye-tracker signals 
which occur only in signals collected from participants with higher GCS values. Thus, 
the value of variance is increased if their signals are analyzed.

The analysis of mental activities derived from EEG signal may open new ways of 
assessing engagement and the mental comfort of participants during the mental exercise 
making and also provide new methods to evaluate their therapy progress through the 
use of the association of parameters variance identified in our study with some selected 
components of the GCS score. There are some practical difficulties that have to be over-
come before a more robust system for diagnosing, stimulating, and making mental exer-
cises by participants with traumatic brain injuries is developed. The EEG headset has 
to be less sensitive to small movements from the patients and imperfect skin contact. 
The dry electrode-based setup of the INSIGHT EEG helmet does not satisfy the above 
condition, therefore for future research, the use of a saline-based setup is recommended. 
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Despite that fact, we found that tendencies in the variance changes are also observed in 
signals collected from the 5-electrode headset. The drawback of such heterogeneity in 
data is the fact that data from the 5-electrode and 14-electrode headsets were assigned 
to 2 separate clusters.

Conclusions
We proposed a method for assessing the state of persons with ABI based on the assess-
ment of their hearing abilities and on checking the performance of participants during 
mental exercises supervised by a therapist employing a multimedia computer extended 
with HCI devices. The proposed solution was mainly designed for use in daily therapeu-
tic practice. Moreover, the cost-effective choice of components of the proposed system 
(employing ABR, EGT, and EEG devices) makes it possible to perform diagnostics of 
patients with brain injury even on a limited budget. As a result, more therapists may 
obtain the technology to examine the patients’ state objectively and reliably and to estab-
lish or maintain communication with them.

A series of tests with a larger group of participants with varying severity of ABI is 
planned. These tests will permit the investigation of the structure of mental states 
detected by the algorithm in the context of personal differences associated with the abil-
ity to use BCI [19–21]. It would also be worth investigating how the pattern and pres-
ence of rarely observed signal detected correlate with the effectiveness of using BCI 
and if there are participants for whom such a method of monitoring brain activity will 
not work. This kind of person-specific problem is particularly significant in the field of 
brain–computer interfaces, where it is called “BCI illiteracy” [22].

Time-domain data associated with changes in the participants’ mental state during the 
therapeutic session may also deliver vital information for the therapist. We believe that 
the algorithm present in this study may help in the parameterization of the EEG sig-
nal for purposes of classification and evaluation of patients’ state in clinical practice. For 
instance, such parameterized data can be utilized to identify moments when a partici-
pant feels uncomfortable, or he or she is distracted by some external factor. Moreover, 
the occurrence of repetitive patterns of brain activity correlated with types of exer-
cises performed may be a premise for concluding that a participant is actively, mentally 
involved in the process of communication. The ability to focus an eye on certain points 
during the exercise provides a similar kind of premise. The EEG signal analysis method 
may be used for verification of, or for searching for, some physiological reactions of 
participants that can be, in turn, associated with the selection of stimuli provided by a 
therapist. The results are encouraging because, in principle, they show that in the EEG 
and eye-tracker signals, there are specific consciousness-related states discoverable. We 
observe them as outliers in diagrams on the decision space generated by the autoen-
coder. For this reason, the numerical variable that separates particular groups of people 
with the same GCS is the variance of the distance of points from the cluster center that 
the autoencoder generates. The higher the GCS score, the greater the variance in most 
cases. We managed to prove that the results are statistically significant in this context.

Further development of tools for data analysis is also envisaged. Namely, we would 
like to evaluate the performance of various classifiers for the prediction of participants’ 
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state and for detection of events such as the feeling of discomfort and state of being dis-
tracted from the exercise by external factors. Also, more complicated pre-processing of 
eye-tracker data may be implemented. A recurrent neural network may be used to cap-
ture not only the probability distribution of eye gaze placement, but also track the whole 
trajectory of the eye-fixation point due to its time-modeling abilities. Applying the above 
modifications may further improve diagnostic and communication methods for people 
suffering from ABI employing future generation computers.

Methods
Research design

The experiment consisted of 2 stages. First, a hearing test based upon objective ABR 
method was conducted to find out, if participants will be able to understand spoken 
commands from a therapist during a therapeutic session. Next, a series of mental exer-
cises conducted by a therapist took place. During the exercise, a set of activities such as 
looking at the word spoken by a therapist and simultaneously displayed on the computer 
monitor was performed. EEG and EGT signals were recorded during each exercise. The 
result of each session was an anonymized data set consisting of patient data, an EEG 
recording, an EGT recording, and the answers given to questions asked by the therapist.

The second stage of the experiment helped to extract a set of parameters obtained 
from the EEG and EGT signals performed in order to find a correlation of these values 
with the Glasgow Coma Scale (GCS) scores of participants.

Participants

All experiments presented in this paper were carried out in the “EPIMIGREN” Neu-
rorehabilitation Medical Centre in Osielsko, Poland. The data were collected during 
three periods. A total of 33 participants were involved in the study: 10 participants in 
the first series of experiments, 13 in the second series, and 10 participants in the third 
one. Experiments were conducted in periods between 12.12.2016–31.01.2017 (A), 
2017/05/29–2017/07/13 (B), and 2018/01/22–2018/03/15 (C). The average age of the 
participants was 45.5  years. The state of the participants’ consciousness was assessed 
using the GCS subjective evaluation scale. GCS is one of the most popular methods of 
subjective assessing the consciousness of people with brain injuries, consisting of an 
evaluation of eye-opening, the best verbal answer and the best motor reaction caused by 
external stimuli [23, 24]. The participants are awarded several points, from 3 pt (related 
to deep unconsciousness) to 15 pt (reflecting a mild dysfunction). Both the components 
of the score and their sum were used for further analysis. Table 3 presents the demo-
graphic data of the participants and their GCS scores.

Measures

Ground truth data related to the state of consciousness of participants were acquired 
from the expert therapist in the form of GCS scores (in terms of both the partial scores 
and their sums). The Pearson correlation coefficient was employed to compare GCS and 
parameters obtained from the unsupervised machine-learning, namely, to the analysis of 
EEG and EGT signals as it is presented in detail in a subsequent part of the paper.
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Procedure

We introduced a multi-stage method in our study for multimodal monitoring of ABI 
participants’ performance employing human–computer interaction. First, the hearing 
abilities of the participants were tested using auditory brainstem response measure-
ments. This stage allowed for the selection of participants whose hearing abilities were 
good enough to enable them to understand the verbal commands of the therapist during 
the mental exercise session. The detailed results obtained for 23 people in the course 
of the experiments are presented in our paper. Also, 32 participants took part in exer-
cise sessions with the therapist employing a multimedia computer equipped with a gaze 
tracker and an EEG helmet. The exercises were based upon simple tasks performed 
using an eye-tracker controller. The participants were encouraged to look at the image 

Table 3  Basic information about participants and their GCS assessment results

Subject ID Age range Cause Interval 
post-ictus 
(months)

Best eye 
response

Best 
motor 
response

Best 
verbal 
response

GCS

01 51–60 Sudden cardiac arrest 17 2 3 1 6

02 41–50 Traffic accident 21 3 3 1 7

03 21–30 Sudden cardiac arrest 17 3 2 2 7

04 21–30 Traffic accident 24 4 3 1 8

05 51–60 Fall down the stairs 26 2 3 3 8

06 41–50 Sudden cardiac arrest 10 4 3 2 9

07 51–60 Sudden cardiac arrest 12 4 4 1 9

08 21–30 Traffic accident 37 4 4 2 10

09 51–60 Sudden cardiac arrest 22 4 4 2 10

10 41–50 Fall from a ladder 9 4 4 3 11

11 61–70 Sudden cardiac arrest 10 2 2 1 5

12 41–50 Stroke 1 2 2 1 5

13 51–60 Fall down the stairs 18 2 3 1 6

14 41–50 Traffic accident 44 2 3 2 7

15 51–60 Sudden cardiac arrest 22 2 3 2 7

16 21–30 Sudden cardiac arrest 22 3 2 2 7

17 21–30 Traffic accident 31 4 2 1 7

18 31–40 Sudden cardiac arrest 5 4 1 2 7

19 41–50 Traffic accident 26 3 3 2 8

20 61–70 Stroke 7 3 3 2 8

21 61–70 Traffic accident 13 3 3 1 7

22 21–30 Traffic accident 43 4 4 2 10

23 51–60 Stroke 27 4 4 2 10

24 51–60 Sudden cardiac arrest 29 2 2 1 5

25 61–70 Stroke 14 4 3 1 8

26 31–40 Sudden cardiac arrest 12 4 2 1 7

27 51–60 Sudden cardiac arrest 24 4 1 1 6

28 51–60 Sudden cardiac arrest 35 4 4 2 10

29 21–30 Sudden cardiac arrest 29 3 3 2 8

30 41–50 Traffic accident 33 4 3 1 8

31 61–70 Sudden cardiac arrest 8 4 3 1 8

32 11–20 Sudden cardiac arrest 51 3 3 1 7

33 31–40 Traffic accident 31 4 2 1 7
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displayed on the computer monitor specified by the therapist or to fill a gap in a sentence 
with one of three words provided. The brain activity of participants was monitored in 
the course of each session. The data gathered from the eye tracker and the EEG headset 
were analyzed using a multimodal autoencoder neural network, which is an unsuper-
vised machine learning algorithm use, i.e. for the task of assessing separability of classes 
in the datasets or learning parameterization techniques which are tailored to a particu-
lar problem. We decided to employ a so-called multimodal autoencoder which in addi-
tion to the parameterization and clustering of data in the decision space is capable of 
learning the method to perform a fusion of information gathered from multiple modali-
ties which in case of our study are signals from EEG and EGT [25, 26]. There are many 
recent examples of the use of autoencoders for such a purpose, i.e. in the field of robotics 
[27–29].

An advantage of multimodal autoencoders is that they can produce a vector of param-
eters based on the fusion of data originating from two or more different modalities. 
The way this fusion is performed is found and optimized during the training of the 
autoencoder.

Unsupervised machine learning and data exploration algorithms were already used to 
evaluate the emotional states of participants [30–32], as a diagnostic decision support 
mechanism in the process of epilepsy treatment [33], to provide a way of controlling 
various devices by disabled people [34], and as a basis for stroke rehabilitation [35]. Esti-
mation of brain states and activities based on data obtained from biosignal monitoring 
devices is a challenging concept if people with communication disorders are considered. 
The estimation of mental activities of the participants together with information related 
to their performance in the mental exercise sessions may provide a valuable source of 
information for the therapist deciding on further treatment. Similar mental activities 
may be defined for instance, in terms of a content of a particular set of values derived 
from EEG headset used for the monitoring of participant activity. Such an approach may 
address the problem of evaluating mental activities or mental abilities of people with 
neurological disorders or those after brain injuries. The monitoring of mental activity 
can even enhance communication with them by using brain–computer interface (BCI) 
devices [36]. Also, the interaction of such people with a computer often requires the 
usage of some form of BCI such as an eye tracker. Such an interface also becomes a good 
tool for monitoring the state of such person by analysis of the way it is used for com-
munication with the computer. It may also provide a potential method to compare the 
GCS score of a patient with the outcomes of assessment made on the base of his or her 
performance during computer-based mental exercises. In turn, such a measure may be 
used as a means for tracking patients’ progress, which could be helpful for a therapist, 
especially if GCS is not used or was replaced by other measures [37].

Hearing tests

The first step in the evaluation of a participant with ABI was to verify hearing ability. 
The ability to hear, and therefore to receive and understand commands, suggestions, 
and guidelines, is a prerequisite for stimulation using spoken commands. In the present 
study, auditory evoked potentials (ABR—auditory brainstem response) were chosen for 
assessing hearing abilities of participants, since this method of assessment has numerous 
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advantages: it is non-invasive, painless, and does not involve any complex preparation 
[38, 39]. The Echodia Elios device was used for ABR measurements, which is portable 
(Fig. 6), its parameters can be set with a touchscreen, and the results are saved in the 
built-in database [40].

The measurement parameters were as follows:

•	 stimulus: a click;
•	 number of stimuli (for each level and each ear): 1000;
•	 number of clicks per second: 17;
•	 stimulus levels (first series): 60, 40, 25, 10  dB nHL (nHL—normal adult hearing 

level);
•	 stimulus levels (second series): 90, 80, 70, 60, 50, 40, 30 dB nHL.

In the second series, the stimulus level range was broadened in order to assess the par-
ticipants’ hearing ability more accurately. A louder stimulus induces stronger responses, 
which should facilitate the process of the fifth wave detection. The 10-dB nHL level was 
skipped since the values of the recorded responses were a very low and subjective analy-
sis of the plot might, therefore, have suffered due to severe inaccuracies and, as a conse-
quence, responses obtained for this stimulus during the first series of the study were also 
omitted.

The device automatically rejected answers to stimuli affected by artifacts coming from 
participants’ muscular activity (in that case, the stimulus was automatically repeated). 
Therefore, the time of any particular measurement varied between 10 and 18  min, 
depending on the number of rejected answers detected by the device.

The analysis of recorded ABR can be used to evaluate the participants’ auditory 
pathway. This feature of the ABR was especially important for the current research. 
The ABR morphology of all the participants revealed malfunctions in the auditory 

Fig. 6  Device for ABR measurement showing a the electrode mounted on the right mastoid and in-the-ear 
headset; b the left-side electrodes and device units (visible on desktop) [40]. The data collected can easily be 
imported to a personal computer for analysis
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pathway. The shape of the responses, amplitudes, and latencies of waves significantly 
differed from those observed in healthy participants. Figure  7 illustrates the differ-
ences between responses observed in a healthy participant and a participant with ABI 
(participant 07).

It was particularly difficult to determine the exact position of the fifth wave in the 
brainstem response received, thus the final results may suffer from some inaccuracies 
caused by the subjective analysis of the plot. This issue applies particularly to the low-
est stimulus intensity (10 dB nHL) since the values of responses recorded were very 
low in that case. Nevertheless, some important observations can be made based on 
the results obtained. The latencies of the 5th wave (Tables 4 and 5) were significantly 
longer than those observed in healthy participants.

However, with decreasing stimulus intensity, latencies elongated systematically 
(Fig.  8). The above effect was also observed in healthy participants. To conclude, the 
results of the participants with ABI showed significant abnormalities in the auditory 

Fig. 7  ABR results in a comparison of a healthy person and b participant 07. Grey rectangles indicate 
reference latencies of the 5th wave

Table 4  Latencies of the 5th wave for subjects 01–10

c.i. denotes click intensity (dB HL)

Subject ID Latency (ms)—right ear Latency (ms)—left ear

c.i. 60 40 25 60 40 25

01 5.25 6.63 7.09 5.34 6.75 8.28

02 6.72 8.06 8.44 6.41 6.97 8.03

03 5.31 7.56 8.38 5.50 7.63 8.00

04 5.88 7.34 8.56 5.81 7.59 8.91

05 6.72 8.66 8.88 – 8.88 9.72

06 6.16 6.34 7.72 5.63 6.63 7.19

07 7.34 7.28 8.59 6.41 7.31 9.19

08 6.22 6.59 8.69 7.25 7.91 9.66

09 6.03 7.31 8.19 6.09 7.19 8.09

10 6.63 8.00 9.78 6.66 8.03 9.78
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pathway, but they did not seem to exclude the possibility of verbal communication with 
the participants.

Assessment of participants’ performance through classification of mental activities

To discover if participants were able to be mentally involved in activities initiated by the 
therapist, a set of activities was conceived. They are associated either to solving sim-
ple puzzles like filling a gap in a sentence with one of three possible words shown on 
the computer screen or to answering questions asked by the therapist by gazing at the 
correct answer on the screen, i.e., “yes” or “no” or through selecting displayed objects. 
The fixation of eye-gaze lasting for longer than 2 s was interpreted as an act of choos-
ing the indicated option. All the activities were performed using the eye-tracker device 
by Tobii EyeX [41]. According to the eye-tracker device technical specification, fixation 
point coordinates are recorded with more than 60 samples/s. The device was mounted 
at the bottom of the computer monitor and then used for collecting information related 
to the areas of the screen that drew the attention of the participant. The participant was 
located at about 60  cm distance (head to screen surface). The multimodal system for 
experimenting is depicted in Fig. 9.

The setup consists of an EEG headset (placed on the head of the participant), eye 
tracker, monitor, and video cameras for capturing the overall course of the experiment. 
The system was controlled by a computer equipped with the developed software for pro-
viding stimuli and performing data acquisition (the words displayed are in Polish).

Emotiv INSIGHT and Emotiv EPOC EEG headsets [42–44] were used for acquiring 
data related to the brain activity of participants while they performed specified tasks. 
The INSIGHT headset [43] consisted of five signal electrodes, AF3, AF4, P7, P8, Pz, and 
a single reference electrode; the sensors were dry-type. The EPOC EEG headset allowed 
us to gather data from 14 electrodes, AF3, AF4, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F4, F8 (following standardized electrode marks). The above device was equipped 
with saline-based electrodes. Data were transmitted via a wireless connection to a PC 

Table 5  Latencies of the 5th wave for subjects 11–23, c.i. denotes click intensity [dB HL]

Subject ID Latency (ms)—right ear Latency (ms)—left ear

c.i. 90 80 70 60 50 40 30 90 80 70 60 50 40 30

11 5.34 5.56 5.78 6.44 6.44 6.56 7.28 4.91 5.5 5.88 6.31 6.81 – –

12 6,00 6.25 6.63 7.38 7.59 8.28 8.19 – 7.09 6.34 – – – –

13 5.06 4.88 5.03 5.16 6.34 7.22 8.09 5.41 5.28 6.38 6.19 7.28 – –

14 6.63 6.72 6.81 6.81 7.06 7.06 7.22 5.16 5.47 5.66 5.91 6.16 7.19 7.44

15 4.81 5.66 5.47 5.75 6.25 6.94 7.16 5.41 6.06 5.97 6.44 7.19 7.75 8.22

16 5.69 5.59 6.28 6.41 6.91 8.5 – 6.16 6.22 6.66 6.72 – – –

17 5.22 5.59 5.69 5.47 6.22 7.41 – 5.06 5.47 6.53 6.97 – – –

18 5.00 5.72 6.13 – 6.88 – 7.53 4.91 5.28 5.5 6.13 6.81 7.09 –

19 5.63 5.81 6.16 6.31 7.56 7.75 – 5.69 5.56 5.81 – – 6.91 –

20 5.84 5.47 6.19 6.66 7.28 7.66 9.09 5.34 6,00 6.19 6.59 6.75 7.94 –

21 5.81 6.13 6.22 6.94 7.91 8.16 – 6.28 6.84 7.34 8.28 8.72 9.69 –

22 5.09 5.53 6.00 6.03 6.28 6.72 7.25 5.59 5.53 5.97 6.38 6.41 6.56 6.75

23 5.88 5.84 6.03 6.59 7.09 7.16 7.59 5.56 5.69 6.09 6.41 6.72 7.22 8.03
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Fig. 8  Latencies of the 5th wave from all participants plotted against stimulus intensity, a participants 1–10, 
b participants 11–23

Fig. 9  The multimodal stand used for performing mental exercises and experiments with participants 
suffering from traumatic brain injuries. The system programmer tests its operational readiness
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equipped with a USB receiver dongle. The sampling frequency of output signals was 
equal to 128 Hz. The software provided by the headset manufacturer was employed to 
get samples of each electrode signal, whereas a self-developed software stored them to 
.csv file for the usage at further stages of the analysis.

An automatic system for providing various types of tasks and for collecting feedback 
from the therapist was prepared. A detailed description of each activity, together with its 
identification number, is listed in Table 6. The ID numbers of activities were employed 
for the analysis in subsequent parts of this paper to indicate a set of activities performed 
by a participant in each session described.

The activity of the participant was monitored using an eye-tracker device and cam-
eras. The therapist who had control throughout the session could also report various 
events that occurred during each performed activity by clicking on appropriate buttons 
displayed on the control screen of the application. Events were automatically logged in 
the data file produced by the eye tracker and linked to the record of the current posi-
tion of the fixation point. Such events could be tracked later on in the post-processing 
stage and visualized as annotations on the processed EEG signals. The eye tracker has to 
be calibrated before the experiment. For majority participants with ABI, it is very hard 
or even impossible to perform calibration of the device through the process consists of 
fixating the eye gaze on selected points in the corners of the screen lasting about 4 s. In 
turn, the necessity to follow calibration points by gaze often makes it impossible for par-
ticipants to perform the calibration. Therefore, the therapist had to plan where the par-
ticipant will be positioned during the experiment in order to calibrate the device while 
occupying the same place as the person engaged in the experiment. Events that could 
be reported in this way were: beginning and ending of an identified exercise, somebody 
entering the room during the session, the pain felt by the participant, or movement of 
the participant, among others.

A set of results gathered from 85 therapeutic sessions was collected. Data from elec-
trodes of the headset were stored in the .csv and .edf file formats. The data consisted of 
EEG records associated with the brain activity of participants, data from the eye-tracker 
device, and logs of events reported by the therapist. Both 5-channel and 14-channel data 
were taken into consideration during the post-processing and machine learning-based 
analysis stage.

Table 6  ID numbers and  types of  activities performed by  subjects with  the  use of  eye 
tracker

Activity ID Description of the activity

1 Typing on the virtual keyboard

2 Putting down letters in words associated with 
displayed images

3 Rewriting a word presented on the screen

4 Selecting a word spoken by a therapist

5 Selecting of a sentence spoken by a therapist

6 Matching missing words to gaps in the sentences

7 Selecting images specified by a therapist

8 Answering yes/no through displayed panel
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Such an approach to signal acquisition permitted to analyze data obtained from both 
headsets with a single algorithm. One of the problems which were spotted in the initial 
stage of research is differences in the quality of signals obtained from individual partici-
pants. The quality varied depending on the shape of the head of the participant taking 
part in the experiment and on skin conductivity. Problems with skin contact were espe-
cially prominent in the 5-electrode headset. The main problem was noise occurrence 
caused by the lack of perfect contact between electrode and participants’ skin. Example 
of a signal containing only spike-like artifacts occurring due to a sudden loss of contact 
between the skin an the electrode is depicted in Fig. 10. An example of a signal degraded 
by noise is shown in Fig. 11.

We decided to leave also the signals containing visible artifacts in the dataset, as the 
next step of the processing would involve the use of unsupervised machine learning 
algorithms—a multimodal autoencoder. One of the features of such an algorithm is its 
ability to find a general model for even a noisy data output. Our dataset also consisted 
of a large number of epochs which do not contain any artifacts (especially ones utilizing 

Fig. 10  Example of the signal acquired from a single electrode (AF3) of the 5-electrode EEG headset with 
electrodes having good contact with the subject’s skin

Fig. 11  Example of signal gathered from a single electrode (AF3) of the 5-electrode EEG headset with 
electrodes having bad contact with the subject’s skin
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14 saline-based electrodes). Also, presence of noise is one more reason to process the 
data with the autoencoder algorithm, as its bottleneck-type structure forces it to seek 
the best, simple model of data that is received during the training. Noise reduction is 
one of common applications of autoencoders [45, 46].

Post‑processing of EEG signals

Computations were performed using software written in Python programming lan-
guage extended by several scientific calculation libraries, including SciPy [47], NumPy 
[48], Keras [49], and TensorFlow [50]. The input signal obtained from the EEG head-
set consisted of 5 or 14 electrodes, depending on the type of headset used for the data 
acquisition. The common electrodes between both headsets are AF3, AF4, P7, and P8. 
Therefore, to unify the format of all signal sets—in place of all signals which were not 
gathered by a headset, a placeholder signal consisting of a sequence of zeros was intro-
duced. After this step, each set of EEG signals consisted of 15 channels, and it contained 
either 10 or 1 placeholder signals.

The next step was to split EEG signals into epochs. No overlap was employed for this 
part of processing. Information about the time of beginning and ending of each frame 
was also kept to allow synchronization of EEG signal epochs with analogous epochs of 
signals gathered from the eye tracker. The whole dataset after pre-processing stage con-
sisted of 9436 epochs of EEG and eye-tracker signals. Each of them lasted 12 s, therefore 
all the epochs are equivalent to 31.5 h of continuous data acquisition. After splitting the 
signals into epochs, for each channel of EEG in each epoch, a spectrogram was calcu-
lated. The size of FFT employed for this task was 256, the overlapping factor of 0.9 was 
employed. As a windowing function, a Tukey window with a shape parameter of 0.25 
was used. It is a default window used in the SciPy library procedure employed for the 
task of this calculation. Each spectrogram was standardized according to the formula 
(2):

where S
(

f , t
)

 denotes a spectrogram which is a function frequency f  and time t . The 
mean value of the spectrogram averaged over time and frequency is denoted by S

(

f , t
)

 , 
and standard deviation of the spectrogram is denoted by std

(

S
(

f , t
))

 . An example of 
spectrogram calculated for one of EEG epochs is depicted in Fig. 12.

Post‑processing of eye‑tracker data

Another tool used for monitoring the behavior of the participants was the eye tracker. 
Results obtained from this device are a series of data points containing 3 coordinates, 
namely: x and y coordinates of eye-fixation point at the given moment, plus the time 
index. Eye-tracker signal was initially split into epochs in such a manner, that it always 
corresponded to one of the frames of EEG signals. Each of these epochs was then further 
processed by the post-processing algorithm. Data contained by each of eye-tracker sig-
nal epochs may be visualized by plotting the trajectory of eye-fixation point movement. 
However, the form of visualization is illegible if long trajectories are plotted. Therefore, 
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the data were processed in such a way that for each pixel of the computer screen, a fre-
quency of eyepoint fixation occurrence at this point was calculated. The matrix of such 
values may be treated as an estimate of the probability that the participant was looking 
at a certain pixel. The matrix may be displayed in a graphical form. This type of visualiza-
tion is called heatmap. To derive parameters from the 2D graphical representation of the 
eye-gaze position, projections of the heatmap on the x-axis and y-axis of the coordinate 
system were calculated. Illustration of the process and the procedure of displaying the 
heatmap is shown in Fig. 13.

As eye-tracker signal in such a form is represented simply by a two-dimensional 
matrix, it is a convenient form of data to be used as an input for the convolutional neural 
network, which consisted of an autoencoder network employed in our study. Example of 
heatmap calculated from the data obtained during the experiment is depicted in Fig. 14.

Analysis of EEG and eye‑tracker signals with the multimodal autoencoder neural network

The algorithm of the multimodal autoencoder used to analyze the data from the experi-
ment took as an input the pairs of signal epochs obtained from the EEG and EGT acqui-
sition devices. Each pair of post-processed epochs is processed by the neural network, 
and the effect of this processing is a vector of 32 floating-point numbers which can be 
treated as a vector of parameters assigned to each pair of the epoch by the neural net-
work. The particular way of assignment of those vectors is found up by the autoencoder 
algorithm itself during its training. Schematically, the process of the postprocessing of 
those signals may be depicted as in Fig. 15.

Methods of data analysis with embeddings calculated with use of neural networks 
or other techniques of were proven to be useful in many applications such as text 
or image processing [51, 52]. There are also examples of such techniques applied 
to medical data [53, 54]. Auto-extracted features of medical signals were processed 
with use of methods such as PCA, which may be applied as a tool for visualization of 

Fig. 12  Example of spectrogram calculated for the epoch obtained from the T8 electrode of the 5-electrode 
headset
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high-dimensional feature vectors calculated by neural networks. The more detailed 
analysis may be performed with use of standard statistical methods such statistic 
tests. The approach based upon statistics is more precise in this case because it can be 
performed without dimensionality reduction, which is caused by use of PCA. In our 

Fig. 13  Example of calculation of a heatmap for a given matrix of values

Fig. 14  Example of spectrogram calculated for the epoch obtained from the T8 electrode of the 5-electrode 
headset
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work we use PCA only for the purpose of visualization. Calculation associated with 
statistical analysis is performed on data derived from high-dimensional feature vec-
tors (embeddings) generated by employed neural networks.

In the case of our experiment, data from neural network inputs are processed by 
consecutive layers of the network. After certain amounts of layers, intermediate 
results of calculations made for EEG and EGT signals are merged and from that point 
processed together to produce a single vector of parameters consisting of 32 floating-
point numbers.

The decoder part of the autoencoder usually has an inversed structure when com-
pared to the encoder, as it performs the inverse operation on the vector of parameters 
generated by the encoder. The goal during the training of the autoencoder is to mini-
mize the error measured between the input of the encoder and the reconstructed ver-
sions of the input obtained from the decoder. In such a way, the autoencoder learns 
to encode information about the input on the limited number of parameters of which 
the result vector of parameters consists. The architecture of the encoder and decoder 
parts of the neural network employed in our study is depicted in Figs. 16 and 17. They 
also provide details of layers used, their activation functions, and numbers of feature 
maps in each layer of the convolutional subnetworks.

Fig. 15  Schematic depiction of EGT and EGT signals post-processing and formation of data frames analyzed 
by the autoencoder neural network

Fig. 16  Example of spectrogram calculated for the epoch obtained from the T8 electrode of the 5-electrode 
headset
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The EEG signal representation is provided to the network as a 5-channel or 14-channel 
input layer of a convolutional neural network. The exact number of channels depends on 
whether the input dataset is one obtained with the use of 5-channel or 14-channel EEG 
headset. The EGT input is a single-channel input layer of the convolutional network. The 
whole dataset used for training and further analysis of vectors of parameters generated 
by the autoencoder consisted of 5006 pairs of EEG and EGT signal epochs in case of 
dataset related to the 5-electrode headset and 3000 pairs in case of one related to the 
14-electrode headset.

In each case, the training set consisted of 90% of examples and validation set consisted 
of 10% of all examples. The advantage of employing the autoencoder algorithm is the 
fact that it can process heterogeneous data as an input. This is a kind of data we have in 
our study because they were acquired with the use of two different headsets. The autoen-
coder is also capable of learning the way of fusion of information obtained from the EEG 
and EGT modalities and encode it in a single vector of parameters. Stochastic gradient 
descent was used as a training algorithm, the ADAM learning rate optimization method 
was employed. The base learning rate for the ADAM optimizer was set to 10−4 , the rest 
of the parameters were set to their defaults in the Keras library implementation. The 
mean squared error was used as a loss function for the optimization algorithm. The total 
value of the loss was the weighted sum of losses calculated for the two separate outputs 
of the autoencoder. The weight of the loss of a loss component related to EEG output 
was equal to 1, the weight of loss component related to EGT was set to 100. The batch 
size was equal to 128. The algorithm was trained for 200 iterations, each of them lasted 
for 9 s. Therefore, the total duration of the training was approximately equal to 1 h. The 
training was performed on Titan RTX graphics card.

Fig. 17  Example of spectrogram calculated for the epoch obtained from the T8 electrode of the 5-electrode 
headset
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