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Abstract: The task of automatically extracting large homogeneous datasets of medical images based
on detailed criteria and/or semantic similarity can be challenging because the acquisition and storage
of medical images in clinical practice is not fully standardised and can be prone to errors, which are
often made unintentionally by medical professionals during manual input. In this paper, we propose
an algorithm for learning cluster-oriented representations of medical images by fusing images with
partially observable DICOM tags. Pairwise relations are modelled by thresholding the Gower distance
measure which is calculated using eight DICOM tags. We trained the models using 30,000 images,
and we tested them using a disjoint test set consisting of 8000 images, gathered retrospectively from
the PACS repository of the Clinical Hospital Centre Rijeka in 2017. We compare our method against
the standard and deep unsupervised clustering algorithms, as well as the popular semi-supervised
algorithms combined with the most commonly used feature descriptors. Our model achieves an
NMI score of 0.584 with respect to the anatomic region, and an NMI score of 0.793 with respect to the
modality. The results suggest that DICOM data can be used to generate pairwise constraints that can
help improve medical images clustering, even when using only a small number of constraints.

Keywords: deep clustering; semi-supervised learning; autoencoder; medical imaging; PACS; DICOM

1. Introduction

In the last few decades, medical imaging became a standard for non-invasive examina-
tion of the patient’s body interior in the clinic. To address the issue of storing and accessing
medical images in a standardised way, PACS (Picture Archiving and Communication
System) technology was developed to provide efficient and convenient data management,
such that would make the images, among other things, easily searchable and retrievable. To
make all medical images easily transferable between PACS repositories of different clinical
centres, simultaneously providing interoperability between various medical devices, DI-
COM (Digital Imaging and Communications in Medicine) standard was developed, defin-
ing a format for storing images along with their related information that can be filled in man-
ually by a medical professional or automatically by a device [1]. DICOM standard is avail-
able on the URL https://www.dicomstandard.org/ (last accessed on 1 October 2021).

Due to the not-so-infrequent changes in medical nomenclature and work routines
that are often unique for specific individuals, as well as workload issues concerning
the everyday engagement of medical professionals, the DICOM tags associated with
medical images can be incomplete, erroneous, or even missing. Because of that, searching
and retrieving similar clinical cases from PACS repositories, using DICOM tags, can be
challenging [2].

Since the information tied to the images is sometimes known, e.g., when specific DI-
COM tag values are available, we hypothesise that constructing pairwise constraints based

Diagnostics 2021, 11, 1920. https://doi.org/10.3390/diagnostics11101920 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-8891-0935
https://orcid.org/0000-0003-4758-7972
https://doi.org/10.3390/diagnostics11101920
https://doi.org/10.3390/diagnostics11101920
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dicomstandard.org/
https://doi.org/10.3390/diagnostics11101920
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11101920?type=check_update&version=2


Diagnostics 2021, 11, 1920 2 of 20

on available meta-information could improve the clustering result over those instances
where the data is only partially available. Thus, we propose a semi-supervised clustering
algorithm that utilises a sizeable collection of unlabelled data, consisting of images only,
and a smaller amount of labelled data, consisting of images coupled with partially complete
DICOM tags. Our algorithm consists of two steps. In the first step, we train a convolutional
autoencoder (CAE) on images, only to obtain initial cluster embeddings which are then
clustered using the k-means algorithm [3] to obtain initial cluster labels, as well as cluster
centres. In the second step, we fine-tune our model using pairwise constraints, which are
calculated from the DICOM tags, coupled with images to obtain a cluster-oriented latent
space, enhancing model performance. The algorithm flowchart is shown in Figure 1.

Figure 1. A flowchart showing the steps in the algorithm training and prediction phases.

The contributions of this paper are as follows:

• We propose a method for exploiting DICOM tag information to construct pairwise
relations using the Gower distance. After the Gower distance is calculated, thresholding
is applied to create must-link and cannot-link pairwise constraints. By using this
distance, we address the issue of missing data as well as the heterogeneity of data
types across features.

• Our method is not limited to data having a single target value. Instead, it can be
used on data where each image can be described using multiple target variables, i.e.,
DICOM tags.

• To introduce pairwise information during training, we propose a cost function where,
along with the classical deep embedded clustering (DEC) loss and the reconstruction
loss, we minimise the Kullback–Leibler (KL) divergence between the distributions of
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instances belonging to the same cluster, while also maximising the KL divergence for
the pairs not belonging to the same cluster.

• We compare our model against the unsupervised convolutional improved deep em-
bedded clustering (IDEC) model and with the semi-supervised algorithms combined
with the popular feature descriptors. Results show that using additional DICOM tags
can improve the clustering performance.

• We show that the model generalises well by observing the two-dimensional t-SNE of
the feature embedding space, calculated over a disjoint test set.

This work is structured as follows. In Section 2, we describe recently published work
concerning the use and applications of DICOM tags as an information source, as well
as current research concerning image clustering. In Section 3, we describe the proposed
algorithm, the experimental setup, and the data used in the experiments. In Section 4, we
describe the results and compare our model against similar models. Finally, in Section 5,
we summarise and give directions for future work.

2. Related Work

Although the usage of DICOM tags in the categorisation of medical images is rela-
tively unexplored, several papers dealt with this problem. Källman et al. [4] have shown
that DICOM tags are useful in monitoring and optimising the patient radiation exposure
index concerning medical imaging devices. This paper also reported that the acquisition
of metadata can be done in a standardised way, irrespective of the PACS vendor, by con-
structing a workflow for periodical extraction and storing of DICOM images in a separate
database—which can be then searched and processed using structured query language (SQL).
DICOM data are relevant in PACS repositories where the search is carried out by using
textual attributes; however, the format is not suitable for the web-based environment
where most of the images are saved in JPEG (Joint Photographic Experts Group) or GIF
(Graphics Interchange Format) formats [5]. Gueld et al. [6] used DICOM tags to perform
medical image categorisation using four imaging modalities, achieving an error rate of
15.5%. However, we should note that the sample size used in this paper was relatively
small. Manojlović et al. [7] compared the space of DICOM tags with the visual features
of the medical images by clustering DICOM tags separately and observing how close the
clustering results are in the visual embedding space. The presented results suggest there
is a noticeable difference between the mean distance of cluster centres of images with
those having cluster labels assigned by clustering DICOM tags, compared to those that
were assigned randomly permuted cluster labels. Gauriau et al. [8] proposed a method
for automating the identification of brain MRI sequences using metadata from DICOM
tags, reporting the accuracy ranging from 97.4% to 99.96%, on a dataset of approximately
40,000 exams. Avishkar Misra et al. [9] used several DICOM tags to train a C4.5 model,
having the goal of classifying lung regions, i.e., whether the region was apical, middle, or
basal. They reported the lowest accuracy for the middle region (92.5%) and the highest
accuracy for the apical region (96.6%). Although widely accepted by most medical-imaging
systems manufacturers, we should note that the DICOM format does have some disadvan-
tages. Lehmann et al. [10] characterised DICOM tags as roughly structured, ambiguous,
and often optional. As an alternative, the authors proposed a mono-hierarchical multi-axial
classification code format IRMA.

Because DICOM metadata was shown to be useful in several tasks, we hypothesise
that some of the DICOM tags can be exploited for constructing pairwise relations which
will improve the clustering results. Such algorithms that use small amounts of labelled
data fall into the category of semi-supervised clustering algorithms, and there are numer-
ous published papers where the performance of classical clustering algorithms, such as
k-means, are improved using additional information. Two examples of such algorithms
are constrained k-means (COP k-means) [11,12] and pairwise constrained k-means (PC
k-means) [13]. However, when working with high dimensional and complex datasets—
such as images, audio, or video—standard algorithms, e.g., k-means [3] or self-organising
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maps [14], on which the traditional semi-supervised clustering algorithms were based,
perform poorly, mainly due to the inefficiency of the distance metrics used [15]. Sometimes,
the data can even be too complex to be modelled using standard dimensionality reduction
algorithms, such as principal component analysis (PCA) [16] or spectral methods [17]. To
address those issues, researchers commonly use neural-network-based architectures to ob-
tain a more feasible cluster-oriented data representation [15]. One such algorithm, namely
DEC [18], was used in [19] to cluster the images from the PACS repository, outperforming
the k-means algorithm with the most commonly used feature descriptors. There is also a
report on utilising neural networks for generating pairwise constraints to improve cluster-
ing. In Hsu and Kira [20], pairwise constraints were utilised to learn cluster-oriented data
representations by decreasing the KL divergence of the assignment probability for similar
pairs while increasing the KL divergence of dissimilar ones. However, their approach does
not involve using unlabelled data. Ren et al. [21] described a deep semi-supervised algo-
rithm based on decreasing the Euclidean distance between pairs of instances that should be
assigned into the same cluster while increasing the pairwise distance between instances that
should not fall into the same cluster. In Tian et al. [22], a similar semi-supervised algorithm
was proposed to analyse single-cell RNA-seq data, and compared with standard algorithms
such as COP K-means and MPC K-means, showing a significant clustering improvement.
Enguehard et al. [23] proposed a two-part neural network, consisting of a classifier part
and a clustering part. However, in this approach, it is assumed that all labelled instances
contain only one ground-truth label. Based on the assumption that binary classification is
usually simpler than multi-class classification, in Śmieja et al. [24], a two-stage learning
process was proposed. In the first stage, Siamese architecture was utilised to label pairs
of data points to must-link or cannot-link. In the second stage, clustering was performed,
having the highest reported NMI of 0.939 when using 5000 constraints. Zhang et al. [25]
proposed a two-branch model for deep constrained clustering—where the first branch is
used for instance-level losses (e.g., reconstruction loss, instance difficulty loss, or classical
DEC loss), and the second branch is used to calculate pairwise losses. One epoch of the
training of this model is performed firstly by iterating through all batches and updating
the network using instance-level losses, and secondly, the network is updated using the
pairwise constraints. Both Hsu and Kira [20] and Ren et al. [21] served as an inspiration for
the model proposed in this paper. Our work is an extension and improvement of the work
presented in [19], in which an unsupervised deep clustering algorithm was used to cluster
medical images from a PACS repository.

3. Materials and Methods

In this paper, we propose an algorithm for learning semi-supervised clustering models
which utilises two different types of data sources sequentially: (1) a larger number of unla-
belled data consisting of images only, and (2) a smaller number of labelled data, consisting
of medical images having at least one specific DICOM tag, required for constructing pair-
wise constraints. The method comprises several consecutive tasks, which are described as
follows. First, in Section 3.1, we describe the CAE architecture which is trained on images
and is used for calculating the first estimation of image embeddings. Next, in Section 3.2,
we describe the Gower distance, which is used to construct pairwise relations from the
DICOM tags. In this section, we also describe how pairwise relations are created and what
type of relations can occur. Next, in Section 3.3, we describe a semi-supervised algorithm
that utilises pairwise relations, as well as the images, to train the cluster-oriented embed-
dings. Finally, in Sections 3.4 and 3.5, we describe the dataset that is used in this study, as
well as the evaluation steps that were performed to evaluate algorithm performance.

3.1. Unsupervised Pretraining of a Feature Extractor on Images

The first step in model training is the definition and training of the autoencoder, where
the main goal is to use the encoder part as the core feature extractor, which will later
be fine-tuned using the clustering module. The autoencoder is trained on images only,
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having the goal of reconstructing original medical images. The first problem that had to be
addressed was related to the fact that medical images of different modalities can vary in
size greatly, depending on the performed medical procedure. In Figure 2, two examples of
medical images are shown, such that they greatly vary in dimensions—e.g., one slice of the
head MRI is of dimensions 256× 256, whereas the X-ray of the leg is 1952× 1192. Because
the resized smaller images (e.g., 28× 28, 32× 32, and so on) do not contain a sufficient level
of detail which could make them easily visually distinguishable from one another, while
larger images (e.g., 1024× 1024 or 2048× 2048) would result in overly complex models,
further resulting in increased variation, we decided to resize all the images to dimensions
256× 256. All pixel intensities were normalised to the interval [0, 1]. Having in mind the
scalability issues that would occur when using traditional dense architecture, we opted for
using a CAE instead [26,27]. A CAE is a neural network trained in an unsupervised manner,
having the goal of reconstructing the original image, and whose architecture consists of
convolutional layers (instead of dense layers). It consists of the encoder part, which takes
an input image and maps it to a latent space, and a decoder part which uses the latent
space and tries to reconstruct the original image from it.

As can be seen in Figure 3, our autoencoder consists of the encoder part and a decoder
part, both connected through a dense layer, which is later used as a feature extractor. During
our tests, we tried to reduce the dimensionality of the dense layer as much as possible while
preserving a small reconstruction error. Our tests have shown that a 100-dimensional dense
layer attains satisfying reconstruction results while noticeably reducing the dimensionality
from the previous layer. The encoder consists of five layers, where every layer consists of
a 3× 3 convolutional layer followed by a 2× 2 max-pooling layer. Layers 1 and 2 have
32 convolutional filters each, whereas layers 3, 4, and 5 have 64 filters each. The decoder
follows a symmetric five-layer layout, where each layer consists of a bilinear upsampling
layer, followed by a convolutional layer. In contrast, using the transposed convolutional
layer in architecture, the proposed decoder architecture avoids checkerboard patterns [28],
thus having a better reconstruction error during training. All layers use the ReLu activation
function (a = max(0, z)), except the last layer which utilises a sigmoid activation function
(a = 1

1+e−z ∈ [0, 1]). We use mean-squared error (MSE) as the loss function, and Adam as
the optimiser, using the learning rate of 0.001. We train the model in batches of size 50.
All hyperparameters, involving also model architecture, were defined purely by trial and
error on validation data, using the values reported in related work for orientation. For
example, our empirical tests suggest that increasing the number of filters (per layer) does
not improve the model reconstruction error.

3.2. Using Gower Distance to Define Pairwise Constraints

Because DICOM tags consist of numerical as well as categorical data, using Euclidean or
cosine distance as a method of estimating similarity between tags is not directly applicable.
Therefore, we apply a distance measure proposed by Gower [29]. The similarity index is
calculated using the following expression:

Sij =
p

∑
k=1

sk(xik, xjk)δk(xik, xjk)/
p

∑
k=1

δk(xik, xjk), (1)

where p is the total number of features, and sk is the similarity score between k-th feature
of the data instances i and j. Because there exists a possibility that a specific feature is not
observed in specific instances, δ factor is calculated in the following way: it equals 0 if the
factors are not comparable, and is 1 otherwise. This solves the problem of missing values
in the data.
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Figure 2. Example medical images. Original dimensions, expressed using the number of pixels, are
indicated on each axis.

For categorical features, the similarity score between the k-th categorical feature of
data instances i and j is calculated using the expression:

sk(xik, xjk) =

{
1 xik = xjk,
0 otherwise,

(2)

and, for numerical features, the similarity score is calculated using the expression:
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sk(xik, xjk) =
|xik − xjk|

Rk
, (3)

where Rk denotes the range for the k-th feature, i.e., Rk = maxi xik −mini xik. Finally,
the Gower distance between two data instances, i and j, is calculated using the follow-
ing expression:

Gower(xi, xj) =
√

1− Sij. (4)

Figure 3. Architecture of the proposed convolutional autoencoder, which is later fine-tuned using
pairwise constraints.

Using the expression (4), we can calculate pairwise distances between the metainfor-
mation of instances, where it exists. Furthermore, it is reasonable to assume that similar
images also have a lower Gower distance. By putting thresholds on the distance matrix,
it is possible to calculate pairwise relations that can be utilised to improve the image
clustering performance:

mij =

{
1 Gower(xi, xj) < ε,
0 otherwise,

(5)

cij =

{
1 Gower(xi, xj) > φ,
0 otherwise.

(6)

Following the expressions (5) and (6), it is important to note that there are three types
of relations between pairs of instances. The first two are must-link and cannot-link relations.
The third type of relation is unknown, and there are two reasons why it can occur. The first
type of unknown relations can happen if during the comparison, the DICOM tags of at least
one data instance are not known, whereas in the second case, Gower distance is neither high
nor low, so we cannot be certain if the pair of data instances should fall in the same cluster.
We delineate two square matrices for the labelled pairwise relations, M and C, which will
be used for defining the additional pairwise loss:

M =

m11 m12 . . .
...

. . .
mN1 mNN

, (7)

C =

 c11 c12 . . .
...

. . .
cN1 cNN

. (8)
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Finally, we should note that the similarity sk can be additionally weighted. However,
because there is no unique weighting solution that can improve the clustering perfor-
mance [30] and it can sometimes even aggravate the clustering performance [31], we weigh
all the variables uniformly.

Next, we describe a semi-supervised algorithm that utilises pairwise relations, as well
as images, for training the cluster-oriented embeddings.

3.3. Semi-Supervised Clustering with Pairwise Constraints

When it comes to data analysis, pattern matching or machine learning, clustering is
a task of grouping similar data instances based on some predefined similarity measure.
In the case where neural networks are used to perform clustering, the loss functions of
almost all reported algorithms have the common goal of minimising the weighted sum of
the clustering loss (Lclustering) and the reconstruction loss (Lreconstruction):

Lunsupervised = αLclustering + βLreconstruction, α, β ≥ 0. (9)

One of the most popular algorithms from this family of algorithms is the deep embed-
ded clustering (DEC) algorithm [18]. The main idea of DEC is to minimise clustering loss
which is defined as the Kullback–Leibler divergence (KL) between the soft assignments q,
and an auxiliary distribution p, as is shown in:

Lclustering = KL(P||Q) =
N

∑
i

K

∑
j

pij log
pij

qij
, (10)

where N is the number of data points, and K is the predefined number of clusters. Soft
assignment qi is the similarity between the embedding zi and the cluster centre µj, which is
calculated using Student’s t-distribution:

qij =
(1 +

∥∥zi − µj
∥∥2
)−1

∑j′(1 +
∥∥∥zi − µj′

∥∥∥2
)−1

, (11)

while the auxiliary distribution is calculated using the p distribution:

pij =
q2

ij/ ∑i qij

∑j′ qij′2 / ∑i qij′
. (12)

To improve the clustering results even further, Guo et al. [32] proposed the improved
DEC (IDEC) model, where MSE is added to the original DEC loss. In this equation, xi is the
i-th datapoint, while x̂i is the decoder output of the i-th datapoint:

Lreconstruction =
n

∑
i=1
‖xi − x̂i‖2

2. (13)

Although the DEC and IDEC algorithms can achieve state-of-the-art results for some
datasets, such as MNIST [33] or REUTERS-10k [34], when it comes to clustering medical
images, they fail to attain noticeably better clustering results compared to the standard
clustering algorithms, such as k-means. However, their performance can be improved
by adding additional information, along with image data, that can be used to construct
pairwise constraints.

We propose adding a pairwise loss which is similar to the loss defined in [20], where
the main goal is to decrease the KL divergence between soft cluster assignment distributions
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for pairs of instances that should belong to the same cluster and increase it for pairs of
instances that should fall into different clusters, defined by:

Lpairwise =
1
n

n

∑
i=1

n

∑
j=1

mijKL(qj||qi) +
1
n

n

∑
i=1

n

∑
j=1

cij max(0, margin−KL(qj||qi)). (14)

The main reason for choosing such a loss function instead of a regular, contrastive
loss [35] with Euclidean distance lies in the fact that the chosen loss function cannot be
directly applied to qi because it is a probability distribution, and even if it were applied
directly, the embeddings zi would not have any impact in optimising the cluster centroids
µ for the data where pairwise constraints are known.

Combining the Equations (9) and (14) with the reconstruction loss, we get the follow-
ing loss function:

L = αLclustering + βLreconstuction + γLpairwise (15)

The architecture of the proposed model is illustrated in Figure 4. As it can be seen
in the figure, the fully-connected layer that is connecting the encoder with the decoder
part of the neural network is later used as a feature extractor, whereas the clustering layer,
which is also connected to the already mentioned layer, is used to generate a probability
distribution for an instance, assigning it to a specific cluster.

Minimisation of the loss function L is done using stochastic gradient descent and
back-propagation. During back-propagation, we update the encoder weights We, decoder
weights Wd, as well as the cluster centres µi. The updates are made using the following
expressions:

µj = µj −
λ

m

m

∑
i=1

(α
∂Lclustering

∂µj
+ γ

∂Lpairwise

∂µj
), (16)

We = We −
λ

m

m

∑
i=1

(α
∂Lclustering

∂We
+ β

∂Lreconstruction
∂We

+ γ
∂Lpairwise

∂We
), (17)

Wd = Wd −
λ

m

m

∑
i=1

(β
∂Lreconstruction

∂Wd
), (18)

where λ is the learning rate, and m is the number of data instances in a mini-batch. To
calculate the encoder weights We, firstly the gradients ∂L/∂zi are calculated and are then
passed down to the network to calculate the ∂L/∂We.

Because the matrices M and C are sparse, and the largest possible number of pairwise
constraints inside the dataset can be n(n− 1)/2, where n is the number of data instances
in the training set, the probability of two instances having a pairwise constraint falling
in the same mini-batch is rather small when using uniform random sampling. Therefore,
to compensate, we implemented our batch sampler to make sure that every mini-batch
contains at least one must-link and one cannot-link constraint. We implemented our model
using the PyTorch framework [36]. Our experiments were performed on a computer
consisting of two Intel® Xeon® Processors E5-2620 v4 CPUs, 128 GB of RAM and having
three GeForce RTX 2080 Ti graphic cards. Although even one graphics card was sufficient
for training the model, we used all three cards simultaneously to train multiple models
in parallel, which shortened the time to find the most promising hyperparameter values
(Section 3.5).
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Figure 4. The architecture of the proposed semi-supervised algorithm for learning cluster-oriented representations.

To better illustrate how model training is performed, detailed pseudocode is shown in
Algorithm 1.

Algorithm 1 Semi-supervised model-training algorithm utilising DICOM tags and images
Require: Dataset {x}n

i=1 (images coupled with DICOM tags, where available), number
of clusters K, weights for the loss function (α, β, γ), ε and φ for Gower distance used to
calculate must-link and cannot-link pairwise relations, tol threshold for stopping the training,
batch_size, margin.

1: Train CAE on images, only to obtain the initial image embeddings {zi}n
i=1

2: Perform k-means on the latent space Z to obtain the initial cluster estimation, as well
as the cluster centres

3: Calculate pairwise relations using Gower distance, considering the thresholds ε and φ
4: for epoch ∈ {0, 1, ..., num_epochs} do
5: if epoch%update_interval == 0 then
6: Compute pij according to Equation (12)
7: Save old clustering assignments cold ⇐ {c}n

i=1
8: Update clustering assignments ci ⇐ argmax

j
qi

9: if (∑n
i cold 6= c)/tol then

10: stop training
11: end if
12: end if
13: for mini_batch ∈ {0, 1, ..., num_mini_batches} do
14: Update network parameters θ, as well as the cluster centres {µ}K

i=1 according to
Equations (17)–(18)

15: end for
16: end for
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3.4. Dataset

To demonstrate the performance of the proposed semi-supervised method in which
we used a small amount of supervised data to construct pairwise relations, we use a
clinical dataset originating from the Clinical Hospital Centre (CHC) Rijeka. The original
dataset consists of approximately 30 million images of regular exams (images and DICOM
tags), acquired through standard clinical practice at the CHC Rijeka, between 2010 and
2017. From these, approximately 14 million images contain at least one DICOM tag.
Because the data stored in the relational database was not informative enough to have any
relevance for image clustering, we only analysed the DICOM tags associated directly with
specific images.

Images were retrieved and stored on a GPU workstation in the possession of the
Faculty of Engineering in Rijeka (RITEH), along with additional information from the
relational database, connecting the images to specific exams. Because querying and re-
trieving the needed information (images and/or DICOM data) from the file system was
computationally challenging, the first step we made was to separate the DICOM tags and
store them in a separate database, one which would be more manageable. This resulted in
a 40 GB database that we could load into the workstation RAM, which in turn enabled us
to perform any kind of descriptive analysis much faster.

Furthermore, because training the models on the entire collection of images could
require days, we randomly sampled two disjoint data subsets reflecting the distribution of
the DICOM tags in the whole dataset: a training subset consisting of 30,000 images, and a
test subset consisting of 8000 images. Because there are approximately 4000 possible DI-
COM tags, and most of them are not present even once in our dataset, we chose to use only
the following tags: Modality (Mod), BodyPartExamined (BPE), PatientPosition, MRAcquisition-
Type, ImageOrientationPatient, Manufacturer, ExposureTime, and Exposure. These tags were
selected because they introduce basic information that is required to differentiate between
two medical images and are explainable even without consulting the radiology experts.
All tags except ImagePositionPatient, ExposureTime, and Exposure are categorical. The tag
ImagePositionPatient consists of 6 values representing two normalised three-dimensional
vectors that are used to describe the orientation of the patient with respect to the reference
coordinate system. We should note that the Mod tag is fully present in both the training
and the test set. This can be explained by the fact that it is filled in automatically by the
device that performs the imaging procedure. However, BPE is only partially available—it
is missing mainly for the X-ray imaging modality. During our analysis, we noticed that
the StudyDescription tag, which is edited manually by a physician and is relatively short in
size per record, can be used in combination with the BPE tag to reconstruct more accurate
information concerning the examined anatomical region (AR), often missing in the BPE
tag. By searching the keywords concerning the BPE tag from the DICOM documenta-
tion (http://dicom.nema.org/medical/dicom/current/output/chtml/part16/chapter_L.
html#chapter_L (last accessed on 1 October 2021)), we were able to reconstruct all the miss-
ing information about the examined anatomical regions. However, because we wanted to
test how our algorithm performs on raw DICOM tags, we used this extracted information
only during the validation process.

Concerning images, our dataset consists of the following imaging modalities: CT
(computed tomography), XA (X-ray angiography), NM (nuclear medicine), RF (radio
fluoroscopy), MR (magnetic resonance), and CR (computed radiography). All used images
are two-dimensional; slices composing 3D modalities were treated as independent. There
are 23 different AR labels in the dataset. Although the modalities are equally distributed in
the dataset, the same does not hold for the AR labels.

3.5. Model Evaluation and Experimental Setup

When it comes to the performance analysis of the proposed method, several factors
need to be taken into consideration. Firstly, it is necessary to investigate how specific
hyperparameters affect clustering performance. These include the number of clusters K

http://dicom.nema.org/medical/dicom/current/output/chtml/part16/chapter_L.html##chapter_L
http://dicom.nema.org/medical/dicom/current/output/chtml/part16/chapter_L.html##chapter_L
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and the weights for the clustering loss function itself, where we balance between preferring
labelled or unlabelled data. Next, when reasonably good hyperparameter values were
found, we tested and compared our model to the deep unsupervised CAE and IDEC
models, as well as other, standard clustering algorithms such as unsupervised k-means,
semi-supervised COP k-means, and PC k-means. Furthermore, to visualise the embeddings
in the two-dimensional space, we applied t-SNE [37] to the test dataset on CAE, IDEC, and
the proposed model. Finally, we tested how the proposed algorithm behaves concerning
the ratio of unlabelled and labelled data inside the training data.

First, we searched for an adequate value of the number of clusters and the hyperparam-
eter values shaping the loss function, with regard to the NMI score. We inspected the model
performance for the following values of the number of clusters K = {5, 10, 15, 20, 25, 30, 35}.
Furthermore, because there are three weights that can be adjusted in the loss function
(α, β, γ), repeated training of multiple combinations of hyperparameter values would
be time-consuming. To reduce the number of hyperparameters under consideration, we
chose α = 0.1 and β = 1, as already used in [32,38]. We performed the search using the
following values of γ = {0, 0.1, 1, 10, 100}, which indicates the level of importance assigned
to labelled data. Values and ranges of γ and K were selected intuitively. Same as for
unsupervised CAE pretraining, Adam was chosen as the optimiser, using a learning rate of
0.001 and the mini-batch size of 50. Margin from the Equation (14) was set to be 1; we also
tested model performance using other margin values (e.g., 2); however, this did not result
in a noticeable improvement. Each training was performed through 100 full-batch epochs.
Moreover, because we noticed that the results depend on the initial k-means estimation
of the clusters, for every combination of the training parameters we repeated our training
procedure 10 times and considered the mean values for choosing the optimal values.

After establishing the solid values of K and γ, we explored how the proposed model
behaves on different sizes of pairwise constraints sets, as well as the ratio of labelled data
instances from which the pairwise constraints can be sampled.

During the test, we utilised several validation methods to track the algorithm perfor-
mance. To monitor the cluster structure, we used silhouette score [39]. Silhouette score is an
internal evaluation method that shows how well the data points are clustered, taking into
consideration cluster tightness and the separation between clusters. It is calculated using
the following expression:

s(i) =
b(i)− a(i)

max{a(i), b(i)} , (19)

where a(i) is the mean distance between i-th instance and all other instances falling into the
same cluster, and b(i) is the smallest mean distance from i-th instance to all the instances
not falling into the same cluster:

a(i) =
1

|Ci| − 1 ∑
j∈Ci ,i 6=j

d(i, j), (20)

b(i) = min
k 6=i

1
|Ck| ∑

j∈Ck

d(i, j), (21)

where d(i, j) is the distance between the instances i and j, and |Ci| is the number of instances
falling into cluster i.

Although the silhouette score is a good method for assessing cluster structure, it still
does not tell us anything about the semantic structure of the elements inside the clusters.
Therefore, we also used the normalised mutual information (NMI) and the homogeneity score
(HS) [40] as external measures to verify if the elements inside the clusters are semantically
similar. NMI is calculated using the following expression:

NMI(y, c) =
I(y, c)

1
2 [H(y) + H(c)]

, (22)
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where y represents ground truth labels, c represents cluster labels, I(y, c) represents the
mutual information, and H is the entropy. Finally, we used HS, falling in the range
[0, 1], for showing the homogeneity of labels falling in specific clusters: 1 tied to perfectly
homogeneous clusters and 0 tied to completely random clusters are present inside the
specific cluster, the score being calculated using the following expression:

HS(y, c) = 1− H(C|K)
H(C)

, (23)

where H(c|k) is calculated using the expressions:

H(C|K) = −
|K|

∑
k=1

|C|

∑
c=1

ack
N

log
ack

∑
|C|
c=1 ack

, (24)

H(C) = −
|C|

∑
c=1

∑
|K|
k=1 ack

n
log

∑
|K|
k=1 ack

n
. (25)

In Equations (23)–(25), K is the number of clusters, C is the number of labels and ack is
the number of data instances belonging to the k-th cluster while being of class c.

Although the HS cannot be used for the evaluation and comparison of the clustering
results by itself, if it is combined with other methods, it can be useful for additionally
analysing the clustering results. Moreover, it is important to note that in our specific
case, occurrences of similar data instances scattered across multiple clusters, i.e., multiple
clusters delineating the same label, were not regarded as detrimental.

To test the clustering performance, we chose the information concerning the anatomi-
cal region from the StudyDescription tag and the Mod tag as class labels that will be used in
calculating NMI and HS. We decided not to use other categorical tags for model evaluation
because their domains (i.e., their ranges of possible unique values) are much smaller and
are hence easier to cluster.

4. Results

As described in Section 3, we performed two experiments to find optimal parameters
K and γ by observing how they affect the NMI of the already mentioned DICOM tags.
These experiments were performed using 2000 pairwise relations. Furthermore, when
generating the pairwise relations, we defined that only the pairs having the Gower distance
of 0.1 or lower are considered to be must-link (i.e., ε < 0.1), whereas cannot-link pairs are
calculated if two data instances have a Gower distance higher than 0.5 (i.e., φ > 0.5). In the
first experiment, using trial and error, we observed that the model performs well using the
parameter γ = 10. Using this value of γ, we ran the first experiment to observe how the
number of clusters will affect the clustering performance. In the second experiment, we
observed for a specific number of clusters K = 25 how the model performs by varying the
value of γ.

In Table 1, clustering performance with respect to the number of clusters K given
γ = 10 is shown. As can be observed in the table, clustering performance for the AR is
increasing up to the size of 10 clusters; further increases in the number of clusters fail to
make a difference in terms of the applied evaluation methods. Furthermore, the results
suggest that the model having 25 clusters achieved the best performance in the clustering
of the AR.
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Table 1. Clustering performance obtained for varying numbers of clusters K on train/test data with respect to the two
selected labels (Mod and AR), using the following loss-function weights: α = 0.1, β = 1 and γ = 10. The best result in
each column is printed in boldface. Silhouette score is not shown in this table because it does not depend on the number
of clusters.

Number of
Clusters

Train NMI
AR

Train HS
AR

Train NMI
Mod

Train HS
Mod

Test NMI
AR

Test HS
AR

Test NMI
Mod

Test HS
Mod

5 0.397 0.317 0.743 0.702 0.386 0.308 0.744 0.703
10 0.518 0.516 0.826 0.887 0.516 0.504 0.828 0.890
15 0.525 0.516 0.811 0.910 0.529 0.510 0.805 0.904
20 0.545 0.536 0.797 0.898 0.541 0.533 0.792 0.898
25 0.565 0.546 0.793 0.911 0.584 0.587 0.793 0.911
30 0.511 0.514 0.782 0.897 0.505 0.508 0.778 0.892
35 0.544 0.537 0.754 0.914 0.528 0.527 0.752 0.913

In Table 2, we show how model performance changes with respect to the value of γ,
using K = 25 clusters. During this test, we also noticed that the standard unsupervised
loss has a greater impact on increasing the silhouette score, whereas adding more weight
to the pairwise loss (increasing the value γ) increases NMI and HS. As can be seen in
Table 2, for γ = 10, we achieved the best clustering result on AR, whereas for γ = 100, we
get the best clustering result on the Mod tag. However, utilising such high γ values fails
to reflect positively on the silhouette score, which indicates that the clustering structure is
weaker, meaning that either the different clusters are closer to one another, or the instances
inside a specific cluster are more distant from each other. Therefore, we can conclude that
the unsupervised loss ensures that the clusters are tight and well separated; however, it
does not ensure that the data inside the clusters will be semantically similar. On the other
hand, the pairwise loss has an impact on making the clusters more semantically similar.
Additionally, to visualise the embedding space of the test set, we used t-SNE to reduce the
dimensionality of the embedding space into two dimensions. The visualisations are shown
in Figure 5. We can observe that the proposed model results in greater-sized clusters and a
more homogeneous embedding space compared to the remaining feature descriptors. One
such example can be seen when comparing the embedding space of the proposed model
with the CAE where the proposed model better separates CT and MR modalities.

Table 2. Performance of the proposed model with respect to the value of γ, where K = 25 clusters. The remaining
loss-function weights are fixed to the following values: α = 0.1 and β = 1. The best result in each column is printed
in boldface.

γ
Silhouette
Score

Train
NMI AR

Train HS
AR

Train NMI
Mod

Train HS
Mod

Test NMI
AR

Test HS
AR

Test NMI
Mod

Test HS
Mod

0 0.726 0.487 0.533 0.636 0.823 0.473 0.544 0.637 0.755
0.1 0.715 0.496 0.545 0.656 0.834 0.479 0.525 0.657 0.843
1 0.650 0.516 0.554 0.679 0.867 0.501 0.539 0.674 0.861
10 0.638 0.586 0.563 0.799 0.912 0.584 0.587 0.793 0.911
100 0.350 0.543 0.545 0.806 0.917 0.536 0.531 0.801 0.913
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(a) (b)
Figure 5. t-SNE visualisation of the embedding space. Each row depicts the embedding space of one
of the modelling approaches used in the experiments, with respect to the: (a) Mod tag, and (b) AR
information.

Next, we compare our model against several unsupervised and supervised learning
algorithms, combined with several feature descriptors. Both a histogram of oriented
gradients (HOG) and local binary pattern (LBP) were selected as commonly used feature
descriptors in the analysis of medical images [41,42]. CAE was selected as the first stage
in algorithm training to observe how the algorithm performance changes in different
training phases. Both DEC and IDEC were selected as an unsupervised predecessor of
the proposed algorithm. For HOG, 8× 8 cells with 2× 2 cells per block were selected as
parameters, while for LBP the radius was set to 1, the number of neighbouring points
was set to 8, and 16× 16 cells were used. Constrained k-means (COP k-means) [11,12]
and pairwise constrained k-means (PC k-means) [13] were selected as semi-supervised
clustering algorithms to enhance the clustering performance of the previously described
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feature descriptors. Table 3 suggests that our model noticeably outperforms all other
models. We should note that the unsupervised convolutional IDEC was trained with the
same α and β hyperparameter values, as well as the same initial CAE weights, and using
the initial cluster assignments. We should also note that the convolutional IDEC also
outperforms both k-means and the semi-supervised COP k-means and PC k-means with
respect to the Mod tag.

Table 3. Performance of the proposed model against unsupervised k-means, unsupervised convo-
lutional IDEC, semi-supervised COP k-means, and PC k-means, using several feature descriptors.
For semi-supervised models, 2000 constraints were used. The proposed model is trained using the
following hyperparameter values: α = 0.1, β = 1 and γ = 10. The results shown represent the mean
obtained from 10 independent iteration runs. Best results are emphasised.

Feature
Descriptor Algorithm Test NMI

AR
Test HS
AR

Test NMI
Modality

Test HS
Modality

PCA
K-means 0.394 0.342 0.482 0.633
COP K-means 0.405 0.473 0.496 0.643
PC K-means 0.406 0.486 0.496 0.645

CAE
K-means 0.441 0.523 0.566 0.745
COP K-means 0.463 0.545 0.581 0.771
PC K-means 0.449 0.541 0.576 0.773

HOG
K-means 0.394 0.451 0.526 0.659
COP K-means 0.433 0.452 0.561 0.677
PC K-means 0.409 0.464 0.534 0.673

LBP
K-means 0.289 0.291 0.369 0.478
COP K-means 0.293 0.351 0.374 0.490
PC K-means 0.299 0.356 0.371 0.491

Convolutional IDEC 0.473 0.544 0.637 0.755

Proposed model 0.584 0.587 0.793 0.911

To analyse how the proposed model behaves on different sizes of pairwise constraints
sets, as well as the ratio of supervised data instances from which the pairwise constraints
can be sampled, we tested our model on 500, 1000, 2000, 5000, 10,000, and 20,000 constraints.
The results are shown in Figure 6. We can observe that having only 500 pairwise constraints
brings a noticeable improvement in the clustering results. Moreover, as the number of
pairwise constraints increases, the number of instances from which the data can be sampled
has a greater impact on increasing the clustering performance. It is important to note that
for very small numbers of pairwise constraints (e.g., less than 2000), COP k-means coupled
with CAE shows better performance at clustering the AR.
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Figure 6. Clustering results on the train and test subsets with respect to the percentage of labelled
instances used and the number of constraints introduced.

5. Discussion

In this paper, we propose an algorithm for semi-supervised clustering of medical
images using both images as well as (partially complete) DICOM tag metadata from a
fraction of the available data.

We show that DICOM data can be used to generate pairwise constraints that can
help increase the clustering performance of medical images, even when using only a small
number of constraints (e.g., 500 constraints). We can conclude that the proposed model
architecture can generalise well, as we demonstrated by evaluating model performance
on test data using several evaluation methods. We also confirm by visual inspection that
it groups visually similar images, even when having only partially observable DICOM
metainformation.

We also show that the algorithm performs worse for AR in comparison with Mod.
Because different ARs inside a single modality are much more similar to one another,
compared to images of different modalities, we hypothesise that the existing DICOM tags
could be enriched with additional tags or with some additional source of information
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(e.g., textual diagnosis) in the future to increase the clustering accuracy. Moreover, data
imbalance is also not taken into consideration, which could result with minority class data
points not being clustered together, especially if there are insufficient pairwise constraints
that define relations for such instances. Finally, with the increase of images containing
DICOM tags, the number of pairwise constraints grows quadratically, increasing resource
requirements for the training environment. This problem could be reduced by using special
structures for sparse matrices or by defining criteria for selecting only specific pairwise
constraints and removing the trivial ones.

There are several possible practical applications of the proposed model. Firstly, it
could be used as a foundation for building CBMIR systems, which can help both medical
professionals, as well as computer scientists, to perform various data mining tasks on large
repositories of medical images that are extracted from PACSs. In addition, it could be used
to impute the missing metadata or fix erroneous DICOM tags by leveraging the clustering
labels, which are the model output together with the existing DICOM tags. Finally, it is
important to note that all the applications mentioned above can be done using the proposed
model with only a fraction of partially-labelled data (e.g., 2500 labelled out of the 30,000
instances total used for model training).

Although the results presented in our study look promising, we believe that model
performance can be further improved by exploring several future research directions. First,
alternative network architectures, such as generative adversarial networks (GANs) [43] or
variational autoencoders (VAEs) [44], should be explored, which would require designing
suitable approaches for incorporating the information contained in the DICOM tags into
these models. Furthermore, it might be beneficial to experiment with alternative cost
functions, especially with the part of the cost function that utilises pairwise distances,
e.g., using the classical contrastive loss by optimising the Euclidean distance. Additionally,
possible improvements could be achieved by examining different DICOM tags weighting
strategies. Finally, it would be interesting to evaluate model performance to fill in the
missing DICOM tag values, as well as detecting errors in the observed DICOM tag values.
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Abbreviations
The following abbreviations are used in this manuscript:

PACS Picture Archiving and Communication System
DICOM Digital Imaging and Communications in Medicine
CAE Convolutional autoencoder
MSE Mean squared error
DEC Deep embedded clustering
IDEC Improved deep embedded clustering
PC k-means Pairwise constrained k-means
KL Kullback–Leibler
NMI Normalised mutual information
HS Homogeneity score
PCA Principal component analysis
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HOG Histogram of oriented gradients
LBP Local binary pattern
CHC Clinical Hospital Centre
Mod Modality
BPE Body Part Examined
AR Anatomic region
CT Computed tomography
XA X-ray angiography
NM Nuclear medicine
RF Radio fluoroscopy
MR Magnetic resonance
CR Computed radiography
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