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Dataset of segmented nuclei in 
hematoxylin and eosin stained 
histopathology images of ten 
cancer types
Le Hou   2, Rajarsi Gupta1, John S. Van Arnam1, Yuwei Zhang1, Kaustubh Sivalenka2, 
Dimitris Samaras2, Tahsin M. Kurc1 & Joel H. Saltz1 ✉

The distribution and appearance of nuclei are essential markers for the diagnosis and study of cancer. 
Despite the importance of nuclear morphology, there is a lack of large scale, accurate, publicly 
accessible nucleus segmentation data. To address this, we developed an analysis pipeline that segments 
nuclei in whole slide tissue images from multiple cancer types with a quality control process. We have 
generated nucleus segmentation results in 5,060 Whole Slide Tissue images from 10 cancer types in 
The Cancer Genome Atlas. One key component of our work is that we carried out a multi-level quality 
control process (WSI-level and image patch-level), to evaluate the quality of our segmentation results. 
The image patch-level quality control used manual segmentation ground truth data from 1,356 sampled 
image patches. The datasets we publish in this work consist of roughly 5 billion quality controlled nuclei 
from more than 5,060 TCGA WSIs from 10 different TCGA cancer types and 1,356 manually segmented 
TCGA image patches from the same 10 cancer types plus additional 4 cancer types.

Background & Summary
Digital pathology images are obtained via a series of processes: tissue slicing, staining, image capturing and dig-
itization. The resolution of these images is usually at multi-gigapixel level. A single tissue slide typically contains 
around a million nuclei. The appearance, shape, texture, and morphological features of nuclei depend on the 
tissue type excised from an organ, cancer type, cell type, and many other factors. The comprehensive detection, 
segmentation, and classification of nuclei are core analysis steps in many histopathology image analysis tasks1–16. 
Segmentation of nuclei is the first step in extracting interpretable features that provide valuable diagnostic and 
prognostic cancer indicators17–21, and thus is a crucial step for precision medicine22,23. The Cancer Genome Atlas 
(TCGA) program was a decade long, large scale National Cancer Institute led research effort that molecularly 
characterized over 20,000 primary cancer and matched control samples spanning 33 cancer types. Diagnostic 
whole slide images were captured for a large fraction of TCGA patients. Deidentified whole slide images, linked 
to molecular and clinical information are frequently accessed and analyzed publicly available information. TCGA 
whole slide Pathology images have been employed in many Cancer research efforts as well as in many digi-
tal Pathology methodology studies; Cooper et al.24, for instance, describes examples of how TCGA whole slide 
images were used in integrative TCGA studies.

Current efforts to generate publicly accessible nuclear segmentation datasets in Hematoxylin and Eosin (H&E) 
stained whole slide images have been at much smaller scales than our work. Kumar et al.13 collected a dataset of 
nucleus segmentation in seven cancer disease sites. This dataset is used as the MICCAI 2018 MoNuSeg chal-
lenge25 in which the training set contains 30 image patches containing around 22,000 nuclear boundary anno-
tations. The MICCAI 2015 to MICCAI 2018 Segmentation of Nuclei challenge26 training sets contain around 
6,000 nuclear boundary annotations. The extended PanNuke dataset27,28 (currently the largest available dataset) 
contains 205,343 semi-automatically segmented nuclei in 481 patches sampled from 19 tissue types. Other data-
sets29–32 have similar or smaller numbers of segmented nuclei. For these existing datasets, training patches are 
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usually stain-balanced, well digitized, and do not contain rare textures. However, in real world applications, the 
appearance of nuclei can be affected by a number of staining and imaging conditions: extremely high cellular-
ity and nuclear pleomorphism, slightly out-of-focus, folding tissue, imbalanced H&E staining,. Existing exper-
iments33 showed that Convolutional Neural Networks (CNNs) generalize sub-optimally in unseen cancer types 
(cancer types that do not have training data). Therefore, training segmentation CNNs on existing datasets naively 
yields poor segmentation results in WSIs33.

We aimed to accurately segment nuclei in WSIs of multiple cancer types. For this purpose, we leveraged a 
state-of-the-art nucleus segmentation Convolutional Neural Network (CNN) that our group recently reported33. 
Our approach has two advantages: (1). It generalizes well in cancer types that do not have training data: it 
improves the robustness of the segmentation network by synthesizing training data of every cancer type (2) The 
method is computationally efficient - this was critical given our goal of computing segmentation results for over 
5,000 WSIs. Given our ability to produce large scale synthetic training data, a small U-net CNN34 was able to gen-
erate accurate instance-level segmentation results in around 3 GPU hours per WSI. Computationally expensive 
networks such as the Mask R-CNN35 would achieve similar or worse across-cancer type generalization perfor-
mance but in over 30 GPU hours per WSI. By combining three real training datasets13,26 and a large scale synthetic 
dataset of 500,000 image patches, we train a U-net that has two output heads: one for nuclear center detection 
and one for nuclear material segmentation. We finally applied the watershed method12,36 on detected centers and 
segmentation results, to output instance-level segmentation.

No existing automatic segmentation models give perfect results. Visually assessing segmentation results over 
5,000 WSIs would take more than 200 human hours (more than 2.5 minutes per WSI) which is very time consum-
ing. Instead, we apply the following methods for quality control and data validation:

Patch-level quantitative evaluation
We manually segmented nuclei in 1,356 patches and leveraged this to quantitatively evaluate our 5,000+ WSI seg-
mentation dataset. In particular, we measured the segmentation overlap using Dice scores, and the instance-level 
segmentation/detection quality using Instance-Dice scores26 and the nuclei count correlation scores.

Random segmentation region checking and WSI-level quality control
(1) We sampled 15 patches per WSI, and visually assessed and manually marked patches with what we considered 
to be adequate segmentation results (both precision and recall are at least 75%). (2) We identified WSIs that have 
unusual segmentation statistics (too few/many segmented nuclei), then visually assess segmentation data in them, 
and marked slides that have unacceptable segmentation (less than 80% of the slide both precision and recall are at 
least 75%). In these ways, we categorized WSIs into groups with different segmentation quality levels.

Using the patch-level manual segmentation data in 14 different TCGA cancer types, we quantitatively evalu-
ated segmentation data. We judged 10 of the 14 cancer types to have nuclear segmentation result quality worthy 
of publication and data release. We thus release the following validated data as our contributions:

	 1.	 The automatic nucleus segmentation dataset contains 5,060 segmented slides in 10 TCGA cancer types, 
summarized in Table 1. This represents approximately 5 billion segmented objects. This large scale segmen-
tation data for TCGA slides is very important, since characteristics of nuclei are essential for the diagnosis 
and study of cancer.

	 (a)	 We apply per-WSI level quality control and categorize WSIs into groups with different segmentation 
quality levels. We identified 576 slides with suboptimal segmentation results. We filter out those WSIs 
for further analysis (although we still release the data for completeness).

Abbre. Cancer type
#. slides 
in total

#. slides 
failed QC

BLCA Urothelial carcinoma of the bladder 380 14

BRCA Invasive carcinoma of the breast 1,096 88

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 249 54

GBM Glioblastoma Multiforme 772 40

LUAD Lung adenocarcinoma 540 59

LUSC Lung squamous cell carcinoma 431 35

PAAD Pancreatic adenocarcinoma 190 11

PRAD Prostate adenocarcinoma 387 19

SKCM Skin Cutaneous Melanoma 470 64

UCEC Endometrial Carcinoma of the Uterine Corpua 545 192

Total 5,060 576

Table 1.  The main contribution of our work: nucleus segmentation data in 10 cancer types. We also generated 
results in 4 additional cancer types (COAD: colon adenocarcinoma, READ: rectal adenocarcinoma, STAD: 
stomach adenocarcinoma, UVM: Uveal Melanoma) that are not as good as the 10 cancer types. To validate the 
segmentation data, we collected segmentation ground truth in 1,356 patches. This set of manually segmented 
data is another contribution of our work.

https://doi.org/10.1038/s41597-020-0528-1


3Scientific Data |           (2020) 7:185  | https://doi.org/10.1038/s41597-020-0528-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 (b)	 Based on our patch-level quantitative assessment, compared to manual segmentation, in every cancer 
type, the nucleus segmentation data has an average Dice coefficient of least 77%, and an average 
instance level Dice coefficient26 of at least 62%. These results are similar to the inter-annotator agree-
ment in our experiments.

	 2.	 Manual segmentation labels on 1,356 patches of 256 × 256 pixels (64 × 64 μm2) uniformly distributed in 
14 cancer types. Two pathologists collaborated with three graduate students employed results from Mask 
R-CNN as a base to generate segmentation labels.

Examples of both datasets are shown in Fig. 1.

Methods
We first describe our published nucleus segmentation method in the first subsection “robust nucleus segmenta-
tion”, then describe the new quality control and data validation approaches for this work through the rest of this 
paper.

Robust nucleus segmentation.  To generate accurate segmentation results in multiple cancer types, exist-
ing state-of-the-art segmentation methods require extensive manually annotated training data in each cancer 
type. This is not scalable in practice. To address this problem, we use our existing robust nucleus segmentation 
model which was trained using not only manually annotated training data in several cancer types, but also heter-
ogeneous synthetic training image patches, of every tissue type available in The Cancer Genome Atlas (TCGA). 
This data synthesis method is unsupervised, and is capable of generating millions of training patches which nor-
mally requires thousands of human hours to manually annotate – in this work, we used the data synthesis method 
to generate half a million patches. The workflow of this approach is shown in Fig. 2. We briefly describe our 
approach in this section.

Fig. 1  Samples of our data. (1) Automatic segmentation results on 5,060 WSIs (samples in top row), 
summarized in Table 1. (2) Manual segmentation data on over 1,356 patches (samples in bottom rows). 
Coloring of nuclear masks is for visualization only: it differentiates individual nuclei. We collect a large number 
of patches with labels for validating the segmentation results.
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We first generate possibly realistic nuclear masks as random polygons. Then, we construct an initial synthetic 
patch utilizing textures and colors from real tissue (texture inpainting module in Fig. 2). We then refine the initial 
synthetic patch, to make it more realistic. Along this process, we compute a sample weight of this synthetic patch, 
indicating how realistic it is. Finally, we train a segmentation network using the initially generated nuclear masks, 
refined synthetic patch, and sample weight. In other words, we enumerate possible ground truth structures first 
and then check if a resulting synthetic patch is realistic or not. We decrease its impact in the training loss if it is 
not realistic. Similarly, if a resulting patch is not only very realistic, but also rarely synthesized, then we increase 
its impact in the training loss. Details are described in our technical paper33.

In terms of the network architecture, the GAN’s refiner has 21 convolutional layers and 2 pooling layers. The 
GAN’s refiner discriminator has 15 convolutional layers and 3 pooling layers. As the segmentation CNNs, we use 
a U-net with 8 blocks: 4 down-sampling blocks and 4 up-sampling blocks. Each block has 3 to 6 convolutional 
layers and 1 pooling/deconv layer. We add a skip connection between blocks of the same resolution. In total 
there are 43 convolutional layers (including deconv). Each convolutional layer in the first and last block have 16 
filters. After each pooling layer, we double the number of filters. We train the U-net on three real training data-
sets13,26 and our large scale synthetic dataset of 500,000 patches. The U-net has two output heads: one for nuclear 
center detection and one for nuclear material segmentation. We then apply the watershed method12,36 on detected 
centers and segmentation results, to output instance-level segmentation. During test time, we normalize stains37 
in histopathology images before applying the U-net. We released our code on github.

Comparing to other state-of-the-art segmentation methods.  Comparisons between our approach and other 
state-of-the-art level methods are detailed in our technical paper33. As a summary, on the MICCAI17 to 
MICCAI1826, and Kumar13 datasets, U-net trained with synthetic and real training data achieved state-of-the-art 
level results, even though other comparable baseline methods9,15 use computationally more expensive models. 
For example, Mask R-CNN is 10 times more expensive compared to our U-net. In other words, we improve the 
performance of our segmentation method by adding synthetic training data, instead of increasing the neural net-
work’s capacity, which would make the task of segmenting 5,060 WSIs computationally very expensive.

Fig. 2  Overview of our nucleus segmentation model training: we use a texture inpainting module to synthesize 
an initial synthetic pathology image patch with its nuclear mask. We then refine the initial synthetic patch using 
a GAN and compute its sample weight. We finally train a segmentation CNN on this sampled instance. Details 
are in our technical paper33 and source code repository.
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Quality control and data validation approaches overview.  We apply a Quality Control (QC) and 
evaluation process as shown in Fig. 3. This QC process is implemented to evaluate segmentation results at the 
WSI level, as it would be infeasible to perform quality-control on all nuclei individually. We focus our efforts on 
whole slide images from 10 tumor types after our initial qualitative QC led us to eliminate four cancer types. After 
the application of the QC process, there are 5,060 WSIs with acceptable segmentation results. The number of 
segmented nuclei in these WSIs is roughly 5 billion in total.

WSI-level quality control.  We visually assess segmentation quality per WSI, and categorize WSIs into 
groups with different segmentation quality levels. It is very time consuming to go through each WSI: visually 
checking segmentation results in one WSI takes approximately 2.5 minutes; and thus 5,000 WSIs would require 
over 200 hours. Therefore, we sample segmentation data in each WSI-level in two ways:

Random segmentation region checking for quality control and rating.  We check segmentation quality in regions 
of all 5,060 WSIs at random locations. First, we randomly sample 15 patches (each has 256 by 256 pixels in 40X) 
per WSI and mix all patches from all WSIs. This results in approximately 76,000 patches. Then, we go through 
those patches and mark patches with reasonable segmentation results (both precision and recall are at least 75%). 
Finally, we categorize WSIs into four groups, according to the number of patches with bad segmentations, as 
shown in Table 2.

WSI-level qualitative assessment.  The goal of this assessment is to identify and eliminate WSIs with unacceptable 
results. While this QC step involves a subjective method (i.e., visual inspection), it provides a complementary 
mechanism to the other QC steps (see Fig. 3). Unacceptable segmentation data identified in this way are still 
made available for download, but marked as “failed WSI-level visual QC”.

To make sure that we identify most slides with unacceptable segmentation results, we select slides that have 
unusual segmentation statistics for visual assessment. We visually assess segmentation results in these slides and 
mark slides with unacceptable results efficiently for quality control. We define “unusual segmentation statistics” 
as the following:

	 1.	 Too many/few segmented nuclei. WSIs with either too many or too few segmented nuclei are subject to this 
WSI-level visual QC.

	 2.	 Average size of segmented nuclei is too large/small. WSIs with either very small or very large segmented 
nuclei are subject to this WSI-level visual QC.

	 3.	 Variation of the size of segmented nuclei is too large. WSIs with either very low or high nuclear pleomor-
phism are subject to this WSI-level QC.

In particular, we first compute the predicted nuclei count and average/variation of nuclear size, for each seg-
mented slide. Then, slides that have one or more statistical values larger/smaller than -2% of the slides within 
the same cancer type are selected for visual assessment using the caMicroscope web tool38. For a WSI, we rate the 

Fig. 3  Our quality control and data validation pipeline. This QC process is implemented to evaluate 
segmentation results at the WSI level. It would be infeasible to check the segmentation quality of all the nuclei 
individually.

WSI groups
Percentage of patches with bad 
segmentations #. slides

Best 0% 2,346

Good 0.01–6.67% 1,246

Adequate 6.68–13.3% 593

Problematic 13.4–20.0% 302

Unacceptable
>20.0%

573
or failed WSI QC

Table 2.  We categorize WSIs into groups with different segmentation quality levels. Slides identified as having 
unacceptable segmentation results are excluded from analysis in the rest of this work.

https://doi.org/10.1038/s41597-020-0528-1
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segmentation result in the slide as either acceptable or unacceptable. Following the random segmentation region 
checking criterion, it is acceptable if and only if in at least 80% of the slide both precision and recall are at least 
75%. We check whether the segmentation data is above the threshold by visual assessment. Around 500 WSIs 
in total are selected for visual assessment. For each cancer type, if a significant portion of the selected slides has 
unacceptable results, we select another 2% (in total 4%) of slides in each statistic value for visual assessment. In 
this way, 49 more slides were marked having unacceptable segmentations. Slides with results marked as unaccept-
able are excluded from analysis in the rest of this work.

We categorize WSIs into different levels of segmentation quality using random segmentation region checking 
and WSI-level visual assessment results, as summarized in Table 2.

Patch-level manual annotation data.  To quantitatively evaluate and validate the automatic segmentation 
results in each WSI group, we collect segmentation ground truth in 1,356 patches, uniformly distributed in 14 
cancer types. Examples of manual segmentations are shown in Fig. 1. All patches are 256 × 256 pixels in 40X (0.25 
microns per pixel). Since this dataset is large and contains 14 cancer types, we argue that it is a contribution of our 
work as well. To collect this large scale ground truth data, three graduate students, supervised by two pathologists, 
manually corrected automatic segmentation results given by a Mask R-CNN (detailed later in this section). Our 
manual segmentation is imperfect. However, its accuracy is only rarely limited by atypical chromatin patterns or 
representation of the entire nucleus in the plane of section, and rarely encompasses more than a portion of the 
nuclear contour. The imperfection level of manual segmentation results fell roughly within the range of variability 
that one would expect when one compares data from different human annotators - the Dice scores of both cases 
are within the range of 0.75 to 0.80.

Using this patch level segmentation ground truth, we evaluate the quality of our automatic segmentation data 
in each cancer type. We found that our results in 10 out of the 14 cancer types are relatively accurate. We release 
our segmentation data in those 10 cancer types as our main contribution (Table 1).

Fig. 4  Examples of automatic segmentation vs. manual segmentation. First two rows: failure cases. Last two 
rows: randomly selected samples.

https://doi.org/10.1038/s41597-020-0528-1
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Ground truth collection.  We first extract patches of 256 pixels in 40X, randomly (unbiased) and uniformly dis-
tributed in 14 cancer types. We label extracted patches in two ways, described below.

Fast manual segmentation by correcting Mask R-CNN’s segmentation results.  In order to label thousands of 
patches, we minimize human labor by utilizing a Mask R-CNN - human annotators manually correct the Mask 
R-CNN’s segmentation results in each patch, instead of labeling from scratch. Mask R-CNN35 is a state-of-the-art 
level instance level segmentation network which although is not computationally efficient for segmenting over 
thousands of slides, gives reasonable segmentation results. Another advantage of using Mask R-CNN is that it has 
a different architecture compared to the U-net that we use to generate segmentation results. This architectural 
different eliminates possible biases for evaluation. In particular, we use the authors implementation and train a 
Mask R-CNN on the same real + synthetic dataset used for training the U-net. We then apply the trained Mask 
R-CNN on 1,356 patches. Three graduate students then correct the segmentation results by 1). Segmenting unseg-
mented nuclei; 2). Removing false segmentations; 3). Modifying incorrect segmentations. Manual segmentation 
results are reviewed by two pathologists and patches significantly mislabeled are then relabeled. This process is a 
form of crowdsourcing39.

Manual segmentation from scratch.  In order to evaluate the level of approximation in manual segmentation and 
the methodology of correcting Mask R-CNN’s segmentation results, each of the three graduate students manually 
label a common set of 27 patches from scratch (not by correcting the Mask R-CNN’s results). As a result, each 
patch has three manual segmentations, one from each student. Manual segmentation results are also reviewed by 
two pathologists and patches significantly mislabeled are then relabeled. Note that these patches were sampled 
from the same 1,356 patches described before.

Data Records
All data records are included in The Cancer Imaging Archive (TCIA)40.

Automatic nucleus segmentation data.  The algorithm-generated segmentation results. For each cancer 
type, you can find a cancertype_polygon folder, for example, BLCA_polygon. It contains polygon coordinates for 
each segmented nucleus (csv files), for all WSIs of BLCA. These results are obtained by thresholding the grayscale 
results in BLCA_prob folder and separating touching or overlapping nuclei by combining the detection and seg-
mentation results. Each line in a csv file contains information of one nucleus. There are three columns in a csv file:

•	 Area In Pixels Size of the nucleus in terms of the number of pixels.
•	 Physical Size The number of pixels projected to 40X.
•	 Polygon The contour of the nucleus (polygon vertices in [x0:y0:x1:y1:..]).

In addition to cancertype_polygon folders, there are cancertype_meta folders which contain meta-data for 
each WSI. These folders are useless unless you use Microscope to visualize data.

Note: (1) In Box.com, the number of files under each folder shown in the “size” column is approximate; (2) 
Whether a slide has Unacceptable segmentation result or not is listed in the “list of histopathology slides” data 
described later. To further recognize WSIs with Best/good/Adequate/Problematic segmentations, one can use the 
“random segmentation region checking result” data described later.

List of histopathology slides.  The list of 5,060 WSIs and summarized quality control results. This is a csv 
file with the following columns:

•	 Cancer Type Cancer type of the WSI.
•	 WSI-ID The case ID of the WSI, in TCGA naming convention.
•	 QC Result The summarized quality control result (passed or failed).

WSI groups
#. patch 
labels Dice

Instance-
Dice

Nuclei count

Correlat. MAE%

Best 446 0.797 0.687 0.947 15.2%

Good 242 0.789 0.660 0.930 16.1%

Adequate 128 0.774 0.636 0.915 17.6%

Problematic 52 0.788 0.625 0.879 20.5%

Unacceptable 103 0.690 0.545 0.718 33.8%

Excluding unacceptable 868 0.790 0.667 0.932 16.2%

Table 3.  Quantitative assessment of the quality of nucleus segmentation, across 10 cancer types. The definition 
of WSI groups are given in Table 2. We exclude unacceptable segmentation results from analysis work in the rest 
of this paper.

https://doi.org/10.1038/s41597-020-0528-1
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We do not redistribute the actual WSIs. These gigapixel histopathology slides can be downloaded from the 
publicly available The Cancer Genome Atlas (TCGA) repository41. For example, to download Urothelial carci-
noma of the bladder (BLCA) slides, a user can:

1. Visit portal.gdc.cancer.gov/projects/TCGA-BLCA
2. Click on the “Files” link in the “Diagnostic Slide” row.
3. Click on the “Add All Files to Cart” bottom.
4. Go to your cart, and download all cart items.

Fig. 5  Top: Dice and MAE% results of all patches. Bottom: Predicted nuclei count (derived from automatic 
segmentation) vs. Ground truth nuclei count (derived from manual segmentation). Pearson correlation = 0.932, 
p-value < 1.0 × 10−308.

https://doi.org/10.1038/s41597-020-0528-1
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WSI quality control result.  The list of slides selected for quality control by visual assessment and the 
detailed quality control result. This is a csv file with the following new columns (we do not list columns that are 
already explained before):

•	 Num Nuclei Sample The number of segmented nuclei in this WSI.
•	 Size Of Nuclei-Average The average size of nuclei.
•	 Size Of Nuclei-Stddev The standard deviation of the size of nuclei.
•	 Note The reason of selecting this WSI for visual assessment.
•	 Segmentation Unacceptable Or Not 0: acceptable; ? or 1: unacceptable.
•	 Visual Assessment Comment Verbal comments on this WSI.

Random segmentation region checking result.  The detailed result of random segmentation region 
checking for each WSI. This is a csv file with the following new columns:

•	 Num Of Unacceptable Seg Regions The number of unacceptable regions.
•	 Num Of Sampled Regions The total number of visually assessed regions.

Manual segmentation data.  The png images of manual segmentation data. Contains original H&E stained 
histopathology image patches, and instance-level segmentation masks. Additional information is in the readme.
txt file of this data.

Technical Validation
We visually assess segmentation results in randomly sampled Whole Slide Images (WSIs) and also quantitatively 
analysis segmentation quality using patch-level segmentation labels.

WSI-level qualitative evaluation.  Qualitative evaluation on all segmented WSIs is impractical. We ran-
domly select 328 WSIs uniformly from 10 cancer types - at least 32 WSIs per cancer type to evaluate qualitatively. 
We use the same evaluation criterion used in the quality control process. Segmentation results in each slide is 
categorized as either acceptable or unacceptable. It is acceptable if and only if in at least 80% of the slide both 
precision and recall are at least 75%.

Out of the 328 randomly selected WSIs, 15 were marked as having unacceptable results. This concludes that 
our segmentation results on vast majority of WSIs are acceptable. We show examples of segmentation results in 
relatively large histopathology image tiles in Fig. 1.

Patch-level quantitative evaluation.  We use manually annotated patches for quantitative evaluation. 
Note that we only use 971 patches in 10 cancer types, out of the 1,356 manually segmented patches in 14 cancer 
types. We only use manual segmentation in the center 226 × 226 pixels in each patch (as opposed to the entire 
256 × 256 pixel patch), since segmentation close to the boundary is ambiguous due to incomplete data.

Evaluation metric.  We use the Dice coefficient for measuring the quality of class-level (nuclear material or not) seg-
mentation. Dice is ill-defined in patches that do not have any ground truth or predicted segmentation. To address this 
problem, the final Dice score is the average of per-patch Dice scores, weighted by the number of nuclei (ground truth 
nuclei count + predicted nuclei count) in each patch. To jointly measure the quality of segmentation and the quality of 
separating individual nuclei, we use the Instance-Dice score which is also used in the MICCAI nucleus segmentation 
challenge26. In addition, we compute the Pearson correlation and Mean Absolute Error Ratio (MAE%) between the 
number of nuclei segmented by U-net (defined as p), against the number of nuclei segmented by human annotators 
(defined as t). The MAE% is computed below:

Cancer 
Type

#. patch 
labels Dice

Instance-
Dice

Nuclei count

Correlat. MAE%

BLCA 95 0.779 0.668 0.941 20.5%

BRCA 89 0.798 0.649 0.922 19.6%

CESC 79 0.818 0.677 0.947 13.4%

GBM 86 0.809 0.723 0.938 14.4%

LUAD 88 0.772 0.641 0.896 17.4%

LUSC 97 0.789 0.665 0.924 16.1%

PAAD 91 0.785 0.679 0.933 15.8%

PRAD 96 0.799 0.670 0.940 14.7%

SKCM 86 0.774 0.675 0.933 17.1%

UCEC 61 0.778 0.629 0.900 14.6%

Table 4.  Quantitative assessment of the quality of nucleus segmentation, in each of the 10 cancer types. The 
p-value of Pearson correlation for every cancer type is smaller than 7.0 × 10−23.
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=
-p t
t

MAE% , (1)

When we compute MAE% on a set of patches, we first compute the average of |p − t| and t across all patches, 
then compute their ratio. We show examples of segmentation data with their evaluation results in Fig. 4.

Generated segmentation results vs. corrected Mask R-CNN’s results.  We compare the automatic segmentation 
results with the manual segmentations obtained from correcting Mask R-CNN’s results. The overall accuracy of 
generated segmentation results is shown in Table 3. A scatter chart (Fig. 5) shows the accuracy of the predicted 
nuclei count. We also show per-cancer type evaluation results in Table 4.

Evaluating level of approximation in manual segmentation.  We evaluate the level of approximation in manual 
segmentation by comparing each annotator’s segmentation result with each other. We apply the evaluation met-
rics between each pair of students, shown in Table 5. One observation that in many cases, it is uncertain whether 
an object in histopathology images is a nucleus or not. This also contributes to the segmentation disagreement 
between human annotators.

Labeling from scratch vs. correcting Mask R-CNN’s results.  Finally, we evaluate how the labeling from scratch vs. 
correcting Mask R-CNN’s results differ. For the 27 patches that were labeled from scratch, there are also the Mask 
R-CNN’s corrected results. Evaluation results are in Table 6.

Usage Notes
We use CC0 (no copyright reserved) for our data.

Due to implementation and memory limitations, automatic nucleus segmentation results were generated and 
stored in 4,000 by 4,000 pixel tiles, as supposed to the entire WSI. Thus, nuclei across multiple tiles are split into 
different tiles. Additionally, we do not segment nuclei in tiles whose width or height is less than 2,000 pixels (this 
might happen on the edge of a WSI). All validation results include these by-design errors.

Code availability
Source code is available at on github. It contains the following repositories:

training-data-synthesis Code for generating synthetic training data for nucleus segmentation model training.
training-data-real-patch-extraction Code for converting the format of real training data.
segmentation-of-nuclei Code for training a nucleus segmentation model on patches generated by the 

above-mentioned repositories, and applying a trained model on WSIs.
Detailed descriptions are in the README files in the Github repository. We also provide a Dockerfile in 

Github, containing a trained model for easy deployment.
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