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Abstract 

 

Background: The coronavirus disease 2019 (COVID-19) pandemic has affected 

over millions of individuals and caused hundreds of thousands of deaths worldwide. 

It can be difficult to accurately predict mortality among COVID-19 patients 

presenting with a spectrum of complications, hindering the prognostication and 

management of the disease. 

Methods: We applied machine learning techniques to clinical data from a large 

cohort of 5,051 COVID-19 patients treated at the Mount Sinai Health System in New 

York City, the global COVID-19 epicenter, to predict mortality. Predictors were 

designed to classify patients into Deceased or Alive mortality classes and were 

evaluated in terms of the area under the receiver operating characteristic (ROC) 

curve (AUC score).  

Findings: Using a development cohort (n=3,841) and a systematic machine learning 

framework, we identified a COVID-19 mortality predictor that demonstrated high 

accuracy (AUC=0·91) when applied to test sets of retrospective (n= 961) and 

prospective (n=249) patients. This mortality predictor was based on five clinical 

features: age, minimum O2 saturation during encounter, type of patient encounter 

(inpatient vs. various types of outpatient and telehealth encounters), 

hydroxychloroquine use, and maximum body temperature. 
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Interpretation: An accurate and parsimonious COVID-19 mortality predictor based 

on five features may have utility in clinical settings to guide the management and 

prognostication of patients affected by this disease. 

 

Funding: This work was funded by the National Institutes of Health. 

 

 

Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has affected over 3.6 million 

individuals, and caused over 250,000 deaths worldwide as of May 5th, 2020.(1) 

Although the causative SARS-CoV-2 virus primarily targets the respiratory 

system(2, 3), complications in other organ systems, e.g., cardiovascular, neurologic 

and renal, can also contribute to death from the disease. Clinical experience thus far 

has demonstrated significant heterogeneity in the trajectory of SARS-CoV-2 

infection, spanning patients who are asymptomatic to those with mild, moderate, 

and severe disease forms, with a high percentage of patients who do not survive(2, 

3).  Notably, it can be difficult to accurately predict clinical outcomes for patients 

across this spectrum of clinical presentations. This presents an enormous challenge 

to the prognostication and management of COVID-19 patients, especially within 

disease epicenters such as New York City (NYC) that need to triage a high volume of 

patients. Accurate prediction of COVID-19 mortality, and the identification of 

contributing factors would therefore allow for targeted strategies in patients with 

the highest risk of death.  
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Towards this aim, we analyzed clinical data from 5051 patients who had laboratory 

confirmed COVID-19 and were treated within multiple hospitals and locations of the 

Mount Sinai Health System spanning different boroughs of NYC. We used multiple 

machine learning-based classification algorithms(4) to develop models that can 

accurately predict mortality from COVID-19. We also identified clinical features that 

contributed the most to this prediction. An improved understanding of predictive 

factors for COVID-19 is critical to the development of clinical decision support 

systems that can better identify those with higher risk of mortality, and inform 

interventions to reduce the risk of death.      

 

Methods 

Study population 

De-identified electronic medical record (EMR) data from patients diagnosed with 

COVID-19 within the Mount Sinai Hospital System, New York, NY through April 7, 

2020 were included in the study. The Mount Sinai Health System is a network of 5 

hospital campuses and over 400 ambulatory practices spanning the New York 

metropolitan area (Supplementary Table 1). COVID-19 diagnosis was based on 

positive polymerase chain reaction (PCR)-based clinical laboratory testing for the 

SARS-CoV-2 virus.  

 

Data from COVID-19 patients through April 6, 2020 were randomly split into two 

groups of independent subjects comprising 80% of the sample (n=3841) for 

development of the mortality predictor (i.e. development set), and 20% (n=961) to 
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serve as retrospective test set 1. A prospective validation set of independent 

subjects, test set 2, included COVID-19 patients encountered on April 7, 2020 

(n=249). 

 

Identification and validation of the predictor  

We implemented a systematic machine learning-based framework to construct the 

mortality predictor from the development set using missing value imputation(5), 

feature selection(6), classification(4) and statistical(7) techniques. The goal of this 

predictor was to classify a COVID-19 patient as likely to survive or die from the 

disease, i.e., “Alive” or “Deceased,” respectively. The identified predictor was then 

validated in test sets 1 and 2 in terms of the Area Under the ROC Curve (AUC 

score)(8). The overall workflow is shown in Figure 1, and detailed methods are 

provided in Supplementary Material. 

 

Role of the funding source 

The funding organizations had no role in the design and conduct of the study; 

collection, management, analysis, and interpretation of the data; preparation, 

review, or approval of the manuscript; and decision to submit the manuscript for 

publication.  

 

Results 

Patient characteristics  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2020. .https://doi.org/10.1101/2020.05.19.20103036doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20103036
http://creativecommons.org/licenses/by-nc-nd/4.0/


The demographic and clinical characteristics of the COVID-19 patients included in 

the development set (n=3841), test set 1 (n=961) and test set 2 (n=249) are shown 

in Table 1.  The majority (55·3%) of patients in the development set were male, 

with an even higher prevalence of male sex among the deceased (61·3%). COVID-19 

patients were mostly Caucasian (25·3%), African American (26·2%) and Latino 

(24·3%), with a minority identifying as Asian (4·2%). Hypertension and diabetes 

were the most common comorbidities (22·6% and 15·8%%, respectively). While a 

small minority were obese (6·0%) or had cancer (5·4%), an even smaller 

percentage had asthma (4·2%), COPD (2·3%), or currently smoked (3·5%). Over a 

third of the patients had been treated with azithromycin and/or 

hydroxychloroquine, consistent with the health system’s treatment practices during 

this time period. 

 Univariate analyses of patient characteristics in the development set (Table 

1) showed that COVID-19 patients who died were significantly older with a mean 

age of 73·4 (SD 12·7) vs. 54·7 (SD 18·7) years in survivors (P<0·001). They were 

more likely to have had their initial encounter at a hospital rather than at an 

outpatient or telehealth setting within our hospital system (P<0·001). Those who 

died had higher body temperature and lower oxygen saturation at initial 

presentation, and their minimum oxygen (O2) saturation over the duration of their 

encounter was also lower (P<0·001 for all). Death from COVID-19 was associated 

with smoking (P=0·05), COPD (P<0·001), hypertension (P<0·001), and diabetes 

(P<0·001).  
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 The characteristics of test sets 1 and 2 were largely similar to those of the 

development set, except for some differences in the relative proportions of race 

(Table 1). While minimum O2 saturation during encounter was consistently lower 

in the deceased vs. alive patients in both test sets, O2 saturation at presentation was 

lower among the deceased in test set 1 only.  COPD, hypertension, and diabetes 

were more prevalent among the deceased in test set 1, but there were no significant 

differences in these comorbidities in test set 2. 

  

Development and validation of the predictor 

Following imputation, there were twenty distinct clinical features with less than 

20% missing values in the development set that improved predictor performance 

(Figure 2A). Compared to the other classification algorithms (LR, RF, SVM), 

XGBoost performed significantly better at this and higher levels of missing values 

(Figure 2A; Friedman-Nemenyi P<0·001). Therefore, we used the imputed version 

of the development set with 20 features and XGBoost, to develop the first COVID-19 

mortality predictor in this study, referred to as the 20F model. 

 

We also tested if a smaller subset of the 20 features could yield an even more 

accurate predictor, since such a subset would be easier to study and implement in a 

clinical setting. Indeed, we found that for the best-performing XGBoost algorithm 

(Friedman-Nemenyi P<0·001), the AUC saturated at as few as five features (Figure 

2B), validating our hypothesis that fewer than 20 features could yield an accurate 

predictor. The five features identified from the development set included the 
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following: minimum oxygen saturation recorded during the encounter, patient’s age, 

type of encounter, maximum body temperature during the encounter, and use of 

hydroxychloroquine during treatment. We trained this second Covid-19 mortality 

predictor, referred to as the 5F model, by applying XGBoost to these 5 features in 

the imputed development set.  

 

Validation of the 20F and 5F models on test set 1 (retrospective data) and test set 2 

(prospective data) both yielded very good performance (AUC>0·9; Figure 3). The 

predictor’s strong performance in both test sets demonstrated that the predictors 

constructed from data on a given day can be reliably applied retrospectively and 

prospectively. 

 

Features predictive of mortality 

Similar to the features that the 5F model was based on, we identified the five most 

predictive features for the other classification algorithms we tested (Figure 4A). 

While there was variability among these features due to the inherent differences 

among the algorithms, the age of the patient, and their minimum oxygen saturation 

level during the clinical encounter (O2SAT_min) were consistent across the 

algorithms. The values of O2SAT_min and age were indeed significantly different 

between the Deceased and Alive classes (Table 1, Figures 4B and 4C respectively; 

T-test P<0.001 for both features), affirming their predictive power. Supplementary 

Figure 1 shows that the top five features are consistent across all three runs of the 

feature selection and predictor development process. 
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Discussion 

In this study, machine learning algorithms were applied to clinical and demographic 

data from 3841 COVID-19 patients from a major New York metropolitan area health 

system to identify and test a mortality predictor that demonstrated high accuracy 

(AUC=0·91) when applied to test sets of retrospective (n= 961) and prospective 

(n=249) patient data. This mortality predictor was based on five clinical features: 

age, minimum O2 saturation, type of patient encounter (inpatient vs. outpatient and 

telehealth encounters), hydroxychloroquine use, and maximum body temperature. 

Given the heterogeneity in clinical presentation and course observed among COVID-

19 patients,(2, 3) factors that contribute most to mortality are not always readily 

apparent, rendering care and management of COVID-19 patients difficult in settings 

of finite health care resources. Our data-driven findings may help clinicians better 

recognize and prioritize the care of patients at greatest risk of death. 

 

A major strength of this study is that it was based on recent data from thousands of 

COVID-19 patients encountered within a global disease epicenter (NYC), resulting in 

findings that are highly relevant to the current pandemic. The results are based on 

rigorous machine learning analyses powered by a robust sample of patients with 

laboratory-confirmed COVID and demonstrate the potential of these methods to 

identify factors predicting mortality within clinical settings. Application of machine 

learning enabled the identification of predictors based on the XGBoost algorithm(9), 

where the clinical features contributed to mortality in a non-linear fashion. These 
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predictors performed with high accuracy (AUC=0·91-0·95) in two independent 

validation sets of COVID-19 patients. Furthermore, the 5F model based on only the 

five features listed above performed almost as well as the 20F model based on all 

the features. This indicates that accurate mortality predictions can be obtained from 

a more parsimonious model, facilitating more efficient implementation in clinical 

environments.   

 

Age and minimum oxygen saturation during encounter (O2SAT_min) were the most 

predictive features not only for the XGBoost algorithm, but for all four mortality 

classifiers tested (Figure 4), emphasizing these features’ epidemiological and 

clinical relevance. Since the beginnings of this pandemic, older age has been 

recognized as a risk factor(10, 11). In New York State, patients 60 years and over 

represent nearly 85% of all deaths due to COVID-19(12), and similarly high rates of 

mortality among those of advanced age have been noted in other COVID-19 hotspots 

across the United States(13). In addition, the fundamental clinical presentation of 

COVID-19 patients across the pandemic has been respiratory symptoms associated 

with hypoxia, often leading to subsequent respiratory failure and requiring 

ventilator support and/or extracorporeal membrane oxygenation(14). This study’s 

finding that a patient’s minimum oxygen saturation (O2SAT_min) value during 

hospitalization was the strongest predictive feature of mortality (Figure 4) is in line 

with global epidemiologic observations that respiratory failure is the most common 

feature of critical illness and death in COVID-10 patients(15, 16). 
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In addition to age and oxygen saturation, other features in the mortality predictor 

are also consistent with clinical observations accumulated from the pandemic 

experience to date. For example, the maximum body temperature achieved during 

hospitalization (TEMP_max) was a top-ranked feature common to the XGBoost and 

random forest-based mortality predictors (Figure 4A). While fever is a common 

symptom and sign of COVID-19,(2, 17, 18) patients may not always present with 

elevated temperatures, and fever frequently develops later during the course of 

hospitalization(2, 19). Consistent with this, these mortality predictors identified 

TEMP_max, rather than body temperature at presentation, as a top classifying 

feature.  Similarly, health care encounter type (inpatient vs. outpatient and 

telehealth), was identified as a top-performing XGBoost mortality predictor, 

reflecting the fact that COVID-19 patients with more severe symptoms are more 

likely to have their initial encounter in the hospital rather than at an outpatient 

setting as their first point of contact. Finally, the identification of 

hydroxycholoroquine therapy as a top mortality predictor reflects a practice pattern 

specific to encounters within our hospital system based on institutional guidelines 

provided during a time of limited and evolving knowledge about COVID-19 

treatment(20, 21). Specifically, patients in our hospital system with moderate or 

severe disease were often placed on hydroxycholoroquine in the absence of overt 

contraindications to this therapy.   

 

Several other studies have also investigated factors affecting mortality from COVID-

19. Some studies conducted statistical association analyses of individual patient 
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characteristics and risk factors with mortality, albeit on small cohorts (<200 

patients)(22-25). Another small cohort study used linear feature selection and 

predictor development methods to identify severe COVID-19 cases, achieving an 

AUC of 0·853 in a validation cohort(26). Some other studies have started leveraging 

clinical data from larger cohorts of several hundred patients to predict mortality 

and other COVID-19 outcomes(27). A relative strength of this study is that it 

employed a very  large patient cohort and systematic combinations of machine 

learning methods to yield a more accurate and informative mortality predictor. 

 

Machine learning-based methods are designed to sift through large amounts of 

structured and/or unstructured data to discover actionable knowledge without bias 

from biomedical hypothesis.(4, 28) In this study, we utilized this power of machine 

learning, especially those for feature selection(6) and classification7, to develop 

accurate and parsimonious predictors of mortality from COVID-19 from structured 

clinical and demographic data. In particular, we found that the XGBoost(9) produced 

the best-performing predictors in all our analyses. XGBoost is a sophisticated 

prediction algorithm that builds an ensemble of decision trees by iteratively 

focusing on harder to predict subsets of the training data. Due to its systematic 

optimization-based design, this algorithm has shown superior performance 

predictive modeling applications involving structured data(29, 30), which is 

consistent with our observations.  

 

Limitations of the study 
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Although our datasets likely are the largest that have been used to predict COVID-19 

mortality, the clinical features available to us were limited to those routinely 

collected during hospital encounters. Although we were able to develop accurate 

predictors from these limited data using our machine learning framework, it should 

be possible to develop even better predictors using a richer set of features.  A key 

limitation of clinical indices included in the datasets include the uniformity of 

Electronic Medical Record (EMR)-derived data. For example, while minimum 

oxygen saturation during the health encounter was identified as a significant 

predictor for mortality, limitations inherent in the interpretation of this data must 

be noted, such as the unavailability of the amount of supplemental oxygen being 

administered at the time of recording and acquisition-related limitations, such as 

readings below the threshold of accuracy of the monitoring device (e.g. less than 

70%).  Nonetheless, we found a clearly lower distribution of minimum oxygen 

saturations in those patients who died from COVID-19 compared to those who 

survived, highlighting this clinical feature as central to predicting morality for 

infected patients. 

 

Conclusion 

Applying machine learning approaches to data from a large cohort of COVID-19 

patients resulted in the identification of accurate and parsimonious predictors of 

mortality. These data-driven findings may help clinicians better recognize and 

prioritize the care of patients at greatest risk of death. 
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Figure legends 

 

Figure 1: Workflow for data management and COVID-19 mortality predictor 

development. Data were obtained from the Mount Sinai Data Warehouse (MSDW). 

After pre-processing, COVID-19-positive patients' data (n=4802) were randomly 

divided in an 80:20 ratio into a predictor development (n=3841) and an 

independent retrospective validation dataset (test set 1; n=961). For predictor 

training and selection, the development set was further randomly split into a 60% 

training dataset (n=2880) and a 20% holdout dataset (n=961). Four classification 

algorithms (logistic regression (LR), random forest (RF), support vector machine 

(SVM) and eXtreme Gradient Boosting (XGBoost)) were evaluated. The final 

predictive model was validated on test set 1 and another independent prospective 

validation set (test set 2; n=249). The complete details of the computational 

methods used can be found in Supplementary Material.  

 

Figure 2: Results from missing value imputation and feature selection during 

predictor training and selection. (A) We attempted to find the optimal level of 

missing values in the range of 0% to 60% that could be imputed and lead to more 

accurate predictors. For this, we took incremental steps of 5% in missing value 

levels, and used mean and mode imputation for continuous and categorical features 

respectively. At each level, four candidate classifiers (LR, RF, SVM and XGBoost) were 

trained and evaluated on the corresponding holdout set in terms of the area under 

the receiver operating characteristic (ROC) curve (AUC score) as the metric. This 

process was repeated 100 times and the average AUCs for each candidate classifier 
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and missing value level are shown here, along with error bars denoted by vertical 

arrows. (B) Using a setup analogous to (A), and the Recursive Feature Elimination 

(RFE) algorithm, we evaluated the performance of the four classification algorithms 

with different number of features selected from the full set of twenty. The average 

AUC scores from 100 runs of this process are shown here, along with error bars 

denoted by vertical arrows. The details of the computational methods underlying 

these analyses are provided in Supplementary Material.  LR = logistic regression; 

RF = random forest; SVM = support vector machine. 

 

Figure 3: Performance of the final mortality predictors on two validation sets. 

Based on the results in Figure 2, we constructed two predictors: (1) Training 

XGBoost, the best performer in Figure 2(A), on 20 features with at most 20% 

missing values (20F model), and (2) Training XGBoost, the best performer in Figure 

2(B), on the optimal 5 features at which the performance saturated (5F model). Both 

these predictors were evaluated on the (A) retrospective Test set 1 (n=961) and the 

(B) prospective Test set 2 (n=249).  Evaluation results are shown here in terms of 

the ROC curves obtained, as well as their area under the curve (AUC) scores. The 

95% confidence intervals of the AUC scores are shown in square brackets. 

 

Figure 4: Top predictive features selected for the four classification algorithms 

tested. (A) Top five predictive features identified using the RFE algorithm for the 

four classification algorithms across three independent sets of hundred runs each of 

the predictor training and selection process described in Figures 1 and 2, and 
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Supplementary Material. The values in parentheses indicate the number of times 

the feature was selected as top ranked.  Also shown are violin plots representing the 

distributions of the values of the (B) O2SAT_min and (C) age features that were 

selected as top predictive features for all the four algorithms. The plot in (B) shows 

that the median value of O2SAT_min for the deceased group (79) was significantly 

lower (T-test � � 0.001) than that for the live group (92). Similarly, the plot in (C) 

shows that the median age in the deceased group (75) is significantly higher (T-test 

� � 0.001) than that in the alive group (56).  
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Tables 

Table 1: Characteristics of patients in the development and test sets.  

  Development Set
%

 Test set 1
%

 Test set 2
%

 

Feature 

Total 

(3841) 

Deceased 

(313) 

Alive 

(3528) P* 

Total 

(961) 

Deceased  

(78) 

Alive 

(883) P* 

Total 

(249) 

Deceased 

(25) 

Alive 

(224) P* 

AGE, 

mean 

(SD), 

years 

56.2 

(19.0) 73.4 (12.7) 

54.7 

(18.7) <0.001 

56.2 

(18.5) 

72.9 

(13.2) 

54.7 

(18.2) <0.001 

56.0 

(18.4) 

69.3 

(11.6) 

54.5 

(18.4) <0.001 

SEX, no. 

(%), male 

2125 

(55.3) 192 (61.3 ) 

1933 

(54.8) 0.09 

534 

(55.6) 48 (61.5) 

486 

(55.0) 0.34 

139 

(55.8) 16 (64.0) 

123 

(54.9) 0.67 

RACE, no. 

(%)       0.66       0.01       0.008 

   White 

1008 

(26.2) 93 (29.7) 

915 

(25.9)   

247 

(25.7) 20 (25.6) 

227 

(25.7)   

68 

(27.3) 2 (8.0) 

66 

(29.5)   

   African 

American 

973 

(25.3) 83 (26.5 ) 

890 

(25.2)   

242 

(25.2) 18 (23.1) 

224 

(25.4)   

63 

(25.3) 10 (40.0) 

53 

(23.7)   

   Asian 

162 

(4.2) 11 (3.51) 

151 

(4.3)   

38 

(4.0) 8 (10.3) 

30 

(3.4)   

8 

(3.2) 0 (0.0) 

8 

(3.6)   

   Latino 

932 

(24.3) 74 (23.6) 

858 

(24.3)   

227 

(23.6) 12 (15.4) 

215 

(24.4)   

57 

(22.9) 5 (20.0) 

52 

(23.2)   

   Other 

528 

(13.8) 39 (12.5) 

489 

(13.9)   

158 

(16.4) 17 (21.8) 

141 

(16.0)   

22 

(8.8) 6 (24.0) 

16 

(7.1)   

ENCOUNT

ER_TYPE 

inpatient 

vs. other, 

no. (%) 

3011 

(78.4) 307 (98.1) 

2704 

(76.6) <0.001 

749 

(78.0) 77 (98.7) 

672 

(76.1) <0.001 

197 

(79.1) 25 (100.0) 

172 

(76.8) 0.01 

Temperat

ure during 

encounter

, mean 

(SD), 

degrees 

Fahrenhei

t 

99.2 

(2.5) 98.8 (3.9) 

99.2 

(2.3) 0.10 

99.1 

(1.6) 99.0 (1.9) 

99.2 

(1.6) 0.41 

99.2 

(1.7) 98.7 (2.4) 

99.2 

(1.6) 0.33 

TEMP_MA

X during 

encounter

, mean 

(SD), 

degrees 

Fahrenhei

t 

100.3 

(1.9) 101.1 (2.6) 

100.3 

(1.8) <0.001 

100.3  

(2.1) 

101.1 

(1.9) 

100.2 

(2.1) <0.001 

100.3 

(1.7) 

101.0 

(1.7) 

100.3 

(1.7) 0.06 
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Table 1 (contd.): Characteristics of patients in the development and test sets. 

  Development Set
%

 Test set 1
%

 Test set 2
%

 

Feature 

Total 

(3841) 

Deceased 

(313) 

Alive 

(3528) P* 

Total 

(961) 

Deceased  

(78) 

Alive 

(883) P* 

Total 

(249) 

Deceased 

(25) 

Alive 

(224) P* 

SYSTOLIC_

BP at 

presentati

on, mean 

(SD), mm 

Hg 

131.7 

(22.7) 

128.8 

(30.0) 

132 

(21.8) 0.08 

132.7 

(22.0) 

133.3 

(29.2) 

132.7 

(21.0) 0.85 

129.9 

(20.4) 

131.0 

(30.7) 

129.8 

(18.6) 0.84 

DIASTOLIC

_BP at 

presentati

on, mean 

(SD), mm 

Hg 

75.7 

(13.6) 71.0 (16.6) 

76.2 

(13.2) <0.001 

76.4 

(13.6) 

73.8 

(19.4) 

76.7 

+D8:I

8(12.

8) 0.21 

75.2 

(13.2) 

73.6 

(17.2) 

75.4 

(12.6) 0.62 

O2_SAT at 

presentati

on, mean 

(SD), 

percent 

95.2 

(6.2) 90.8 (11.9) 

95.6 

(5.0) <0.001 

95.2 

(6.4) 

91.4 

(10.8) 

95.6 

(5.5) <0.001 

95.4 

(4.6) 93.5 (6.6) 

95.6 

(4.1) 0.13 

O2SAT_MI

N during 

encounter

, mean 

(SD), 

percent 

89.4 

(14.5) 69.3 (26.3) 

91.6 

(10.4) <0.001 

90.2 

(12.7) 

71.3 

(22.9) 

92.2 

(8.9) <0.001 

90.1 

(12.5) 

76.9 

(21.5) 

92.0 

(9.3) 0.002 

SMOKING, 

no. (%)       0.05       0.11       0.87 

   Current 

134 

(3.5) 13 (4.2) 

121 

(3.4)   

41 

(4.3) 3 (3.9) 

38 

(4.3)   

7 (2.8 

) 1 (4.0) 

6 

(3.7)   

   Never 

1960 

(51.0) 148 (47.3) 

1812 

(51.4)   

497 

(51.7) 40 (51.3) 

457 

(51.8)   

137 

(55.0) 15 (60.0) 

122 

(54.5)   

   Past 

625 

(16.3) 69 (22.0) 

556 

(15.8)   

143 

(14.9) 21 (26.9) 

122 

(13.8)   

36 

(14.5) 5 (20.0) 

31 

(13.8)   

   Passive 2 (0.1) 0 (0.0) 2 (0.1)   

1 

(0.10) 0 (0.0) 

1 

(0.1)   

0 

(0.0) 0 (0.0) 

0 

(0.0)   

ASTHMA, 

no. (%) 

160 

(4.2) 15 (4.8) 

145 

(4.1) 0.67 

43 

(4.5) 4 (5.1) 

39 

(4.4) >0.99 

10 

(4.0) 4 (16.0) 

6 

(2.7) 0.007 

COPD, no. 

(%) 

89 

(2.3) 19 (6.0) 

70 

(2.0) <0.001 

19 

(2.0) 4 (5.1) 

15 

(1.7) <0.001 

4 

(1.6) 1 (4.0) 

3 

(1.34) 0.87 

HYPERTEN

SION, no. 

(%) 

869 

(22.6) 132 (43.2) 

737 

(20.9) <0.001 

224 

(23.3) 29 (37.2) 

195 

(22.1) 0.004 

65 

(26.1) 11 (44.0) 

54 

(24.1) 0.06 

OBESITY, 

no. (%) 

229 

(6.0) 23 (7.4) 

206 

(5.8) 0.34 

73 

(7.6) 8 (10.3) 

65 

(7.4) 0.48 

23 

(9.2) 2 (8.0) 

21 

(9.4) 0.89 
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Table 1 (contd.): Characteristics of patients in the development and test sets. 

% Number of patients in each class in the corresponding set is shown in parentheses 

below the name of the class. 

* P(-values) from student’s t-test for continuous features and chi-square test for 

categorical features. 

 

 

 

 

  Development Set
%

 Test set 1
%

 Test set 2
%

 

Feature 

Total 

(3841) 

Deceased 

(313) 

Alive 

(3528) P* 

Total 

(961) 

Deceased  

(78) 

Alive 

(883) P* 

Total 

(249) 

Deceased 

(25) 

Alive 

(224) P* 

DIABETES, 

no. (%) 

608 

(15.8) 90 (28.7) 

518 

(14.7) <0.001 

173 

(18.0) 25 (32.0) 

148 

(16.8) 0.001 

56 

(22.5) 10 (40.0) 

46 

(20.5) 0.05 

HIV, no. 

(%) 

62 

(1.6) 6 (1.9) 

56 

(1.6) 0.83 

16 

(1.7) 0 (0.0) 

16 

(1.8) 0.46 

2 

(0.8) 0 (0.0) 

2 

(0.9) 0.48 

CANCER, 

no. (%) 

209 

(5.4) 24 (7.7) 

185 

(5.2) 0.09 

49 

(5.1) 5 (6.4) 

44 

(5.0) 0.76 

15 

(6.0) 2 (8.0) 

13 

(5.8) >0.99 

TOCILUZU

MAB, no. 

(%) 

88 

(2.3) 22( 7.0) 

66 

(1.9) <0.001 

18 

(1.9) 5 (6.4) 

13 

(1.5) 0.01 

4 

(1.6) 2 (8.0) 

2 

(0.9) 0.07 

HYDROXY

CHLOROQ

UINE, no. 

(%) 

1382 

(36.0) 116 (37.1) 

1185 

(33.6) 0.23 

333 

(34.7) 29 (37.2) 

284 

(32.2) 0.44 

87 

(34.9) 12 (48.0) 

74 

(33.0) 0.20 

AZITHRO

MYCIN, 

no. (%) 

1352 

(35.2) 107 (34.2) 

1146 

(32.5) 0.58 

338 

(35.2) 24 (30.8) 

284 

(32.2) 0.90 

85 

(34.1) 8 (32.0) 

68 

(30.4) 0.95 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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