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Abstract: Stimulus-responsive microporous solid thin films were successfully fabricated by
simple molecular self-assembly via an amphiphilic block polymer, polystryene–b–polyacrylic acid
(PS–b–PAA). The solid thin films exhibit different surface morphologies in response to external
stimuli, such as environments with different pH values in aqueous solutions. The experiments
have successfully applied atomic force microscope (AFM) technology to observe in-situ surface
morphological changes. There is a reversible evolution of the microstructures in buffer solutions over a
pH range of 2.4–9.2. These observations have been explained by positing that there is no conventional
PAA swelling but that the PAA chains in the micropores stretch and contract with changes in the pH
of the solution environment. The hydrophobicity of the solid thin film surface was transformed into
super-hydrophilicity, as captured by optical contact angle measurements. The stimulus-responsive
dynamics of pore sizes was described by a two-stage mechanism. A promising electrochemical
application of this film is suggested via combination with an electrochemical impedance technique.
This study is aimed at strategies for the functionalization of stimulus-responsive microporous solid
thin films with reversible tunable surface morphologies, and exploring new smart materials with
switch-on/switch-off behavior.

Keywords: microporous thin film; self-assembly; PS–b–PAA; block polymers; stimulus-responsive;
surface analysis

1. Introduction

Stimulus-responsive microstructures are new functional materials for important devices, which
have received significant attention because of a wealth of potential applications, such as sensors,
membranes, micro-actuators, microfluidic devices, drug delivery systems, and other advanced
microdevices [1–3]. Environmentally sensitive polymers have received a great deal of attention
in recent years, and their synthesis and applications have become a major research field in polymer
science [4–6]. Polymeric materials, in particular, can respond to environmentally sensitive stimuli
(such as the solvent, temperature, pH, light, ionic strength, etc.) [7–9] by cooperative conformational
changes of the microstructures [10]. The field of stimulus-responsive materials, and of polymers in
particular, is relatively new, and it has relevance to the field of nano-science or nano-engineering [11–14].
Smart responsive polymer films can spontaneously alter or change their surface properties, such
as wettability, reactivity, or biocompatibility. Some recent developments have been aimed at
strategies for the functionalization of surfaces with stimulus-responsive polymer brushes [15,16].
Some microstructures prepared from weak polyelectrolytes provide versatile surfaces that can respond
to changes in temperature, solvent, pH, and other stimuli, which suggest that weak polyelectrolytes
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are potential “active” components in the microstructure of smart surfaces [17–24]. In the fabrication of
stimulus-responsive microporous thin films, poly(acrylic acid) (PAA) is an excellent candidate with
changes in the external pH and with the different degrees of ionization of the carboxyl groups [25–29].

Microporous polymer membranes (pore size 0.01–20 µm) are widely used in industry, medicine,
pharmacology, and in research on the separation and concentration of particles, colloids, proteins,
enzymes, and cells [30,31]. Since Francois et al. as pioneers fabricated microporous solid thin films by
simple molecular self-assembly [32], the preparation of elaborate functional honeycomb-structured
polymer films based on “breath figure” has attracted many researchers [33–36], and the applications
of hierarchical and functional honeycomb films in separation, biocatalysis, biosensing, templating,
stimuli-responsive surfaces, and adhesive surfaces have been investigated and summarized [37–39].

Monitoring and recording the in-situ transformation of stimulus responsive are still challenges.
Matyjaszewski et al. utilized an atomic force microscopy (AFM) to investigate conformations of a series
of water-soluble loosely grafted PAA brushes under different pH conditions [40]. Escale et al. employed
AFM and optical contact angle (OCA) to demonstrate the hierarchical structures of smart porous
polymer films based on a pH-responsive polystyrene-block-poly(4-vinylpyridine) [41]. Minko et al.
reported pH dependent swelling of cross-linked poly(2-vinylpyridine) membranes and pH influences
on the micropore size [18]. However, their work was not based on in-situ AFM images.

Previously, we have reported facile fabrications of a microporous solid thin film based on
PS–b–PAA self-assembly, an investigation of its tunable surface properties, and their electrochemical
applications [42–45]. In this paper, we demonstrate surface morphology changes of the microporous
solid thin film in response to external pH stimuli by in-situ AFM. Reversible evolution of the
microstructure in aqueous solutions (pH range of 2.4–9.2) was observed. The stimulus-responsive
dynamics of pore size changes was discussed. A promising electrochemical application based on
an electrochemical impedance technique was presented. Our study is aimed at strategies for the
functionalization of stimulus-responsive smart materials with tunable surface morphologies and
their applications.

2. Experimental Section

2.1. Materials

The PS–b–PAA (Scheme 1) was obtained from Zhejiang University, China. The blocks of the
copolymer consisted of 90 (x) and 45 (y) monomers for the hydrophobic PS block and the hydrophilic
PAA block, respectively. The molecular weight was found to be 12,500 g/mol with block weights,
PS (9270)-b–PAA (3230). The dispersity (D) with a symmetrical molar mass distribution is 1.05.
Tetrahydrofuran (THF) was obtained from the Chemical Reagent Company of Shanghai (Shanghai,
China). They were used as received without further purification. All the other reagents used were
analytical grade. Deionized water was obtained by purification through a Millipore water system and
was used throughout. All the experiments were conducted at room temperature.

Materials 2016, 9, 478 2 of 11 

 

the fabrication of stimulus-responsive microporous thin films, poly(acrylic acid) (PAA) is an excellent 
candidate with changes in the external pH and with the different degrees of ionization of the carboxyl 
groups [25–29]. 

Microporous polymer membranes (pore size 0.01–20 µm) are widely used in industry, medicine, 
pharmacology, and in research on the separation and concentration of particles, colloids, proteins, 
enzymes, and cells [30,31]. Since Francois et al. as pioneers fabricated microporous solid thin films by 
simple molecular self-assembly [32], the preparation of elaborate functional honeycomb-structured 
polymer films based on “breath figure” has attracted many researchers [33–36], and the applications 
of hierarchical and functional honeycomb films in separation, biocatalysis, biosensing, templating, 
stimuli-responsive surfaces, and adhesive surfaces have been investigated and summarized [37–39]. 

Monitoring and recording the in-situ transformation of stimulus responsive are still challenges. 
Matyjaszewski et al. utilized an atomic force microscopy (AFM) to investigate conformations of a 
series of water-soluble loosely grafted PAA brushes under different pH conditions [40]. Escale et al. 
employed AFM and optical contact angle (OCA) to demonstrate the hierarchical structures of smart 
porous polymer films based on a pH-responsive polystyrene-block-poly(4-vinylpyridine) [41]. 
Minko et al. reported pH dependent swelling of cross-linked poly(2-vinylpyridine) membranes and 
pH influences on the micropore size [18]. However, their work was not based on in-situ AFM images. 

Previously, we have reported facile fabrications of a microporous solid thin film based on  
PS–b–PAA self-assembly, an investigation of its tunable surface properties, and their electrochemical 
applications [42–45]. In this paper, we demonstrate surface morphology changes of the microporous 
solid thin film in response to external pH stimuli by in-situ AFM. Reversible evolution of the 
microstructure in aqueous solutions (pH range of 2.4–9.2) was observed. The stimulus-responsive 
dynamics of pore size changes was discussed. A promising electrochemical application based on an 
electrochemical impedance technique was presented. Our study is aimed at strategies for the 
functionalization of stimulus-responsive smart materials with tunable surface morphologies and 
their applications. 

2. Experimental Section 

2.1. Materials 

The PS–b–PAA (Scheme 1) was obtained from Zhejiang University, China. The blocks of the 
copolymer consisted of 90 (x) and 45 (y) monomers for the hydrophobic PS block and the hydrophilic 
PAA block, respectively. The molecular weight was found to be 12,500 g/mol with block weights, PS 
(9270)-b–PAA (3230). The dispersity (D) with a symmetrical molar mass distribution is 1.05. 
Tetrahydrofuran (THF) was obtained from the Chemical Reagent Company of Shanghai (Shanghai, 
China). They were used as received without further purification. All the other reagents used were 
analytical grade. Deionized water was obtained by purification through a Millipore water system 
and was used throughout. All the experiments were conducted at room temperature. 

 
CH2 CH CHCH2

COOH
x y

 
Scheme 1. Chemical structure of PS–b–PAA. 
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ratio, 3:1) at 80 °C for 2 min, and then rinsed with deionized water and ethanol before film fabrication. 
(Caution: Piranha solution reacts violently with many organic materials and should be handled with 
care). Finally, it was dried with a stream of high purity nitrogen. In a humid atmosphere (the relative 
humidity, which is defined as the percentage obtained by dividing the vapor pressure of water in 
this system by the saturated vapor pressure of pure water, is above 50% and maintains constant 

Scheme 1. Chemical structure of PS–b–PAA.

A glass substrate (1 ˆ 1 cm2) was immersed in a piranha solution (98% H2SO4/30% H2O2, volume
ratio, 3:1) at 80 ˝C for 2 min, and then rinsed with deionized water and ethanol before film fabrication.
(Caution: Piranha solution reacts violently with many organic materials and should be handled with
care). Finally, it was dried with a stream of high purity nitrogen. In a humid atmosphere (the relative
humidity, which is defined as the percentage obtained by dividing the vapor pressure of water in this
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system by the saturated vapor pressure of pure water, is above 50% and maintains constant during the
film preparation), 50 µL of a PS–b–PAA/tetrahydrofuran (THF) solution (10 mg/mL) was cast onto
the surface of the glass with a micro-syringe at the temperature of 25 ˝C.

2.2. Apparatus

SEM images of PS–b–PAA microporous film were obtained with a XL-30E scanning electron
microscope (Philips, Eindhoven, The Netherlands). The electron gun voltage was set at 20 kV, and
the sample surface was sputter coated with gold to achieve a better quality of the secondary electron
images under the electron beam.

AFM images of the films were obtained by a Multi–Mode Nanoscope IIIa scanning probe
microscope (Veeco Company, Plainview, NY, USA) in contact mode using a micro-fabricated silicon
nitride probe (spring constant k = 0.58 N/m). A feedback loop maintains a constant deflection between
the cantilever and the sample to conduct a “set-point” deflection. The data of pore sizes referred to
the apparent diameters observed from the top view of the film. The pore depth data was obtained
from SEM of the cross-section of the microporous film. The surface coverage, pore-pore distance,
and apparent diameter of the as-prepared film were all calculated by Image-pro Plus 6.0 (Media
Cybernetics Company, Silver Spring, New York, NY, USA), and sampling population and distribution
of the reported pore values was also obtained from large scale morphology images.

For AFM imaging in aqueous environments, solid thin films of PS–b–PAA on the glass substrate
were investigated in a fluid cell. pH–responsive PS–b–PAA microporous films of an area were
investigated in-situ in the fluid cell containing the buffered solution. Prior to each measurement, the
films were equilibrated for 40 min at a given pH value. To maintain constant counter-ion type and ionic
strength, sodium phosphate buffer solutions (H3PO4/NaH2PO4/Na2HPO4/Na3PO4) were prepared
with pH values ranging from 2.4 to 9.2 at fixed buffer strength (0.05 M). Before our experiments, the
fluid cell and O-ring were carefully cleaned. To investigate structural evolution as a function of different
pH solutions, films were immersed in a liquid cell containing different pH solutions, and in-situ scans
were performed after 40 min as an interval in the same area. The volume of the fluid cell was so small
(about 50 µL) that an existing liquid can be completely replaced by a new one soon after injection of
the different liquid into the fluid cell. The wettability of the PS–b–PAA microporous solid thin films
was characterized by an Optical Contact Angle 40 instrument (Dataphysics, Filderstadt, Germany),
using the sessile water droplet method. A water droplet size of 4 µL was used for optical contact angle
measurements. Video system: CCD video camera with a resolution of 768 ˆ 576 pixels and up to
50 images per second. All measurements described above were performed at room temperature.

A glassy carbon electrode (GCE, diameter of 3.0 mm) was polished before each casting experiment
with 1, 0.3, and 0.05 µm α-alumina powders, respectively, rinsed thoroughly with deionized water
between each polishing step, sonicated in 1:1 nitric acid, acetone, and deionized water, successively.
Finally, it was dried with a stream of high-purity nitrogen immediately before use. PS–b–PAA was
dissolved in THF at a typical concentration of 10 mg/mL. One drop of the PS–b–PAA/THF solution
was dropped onto the polished GCE surface. Then, the as-prepared GCE was placed in a closed system.
The humidity resulted from water vapor through the air flow. A hygrometer was settled in the closed
system in order to investigate the variation of the humidity. Then, the GCE was rotated at 2000 rpm
for the spin-coating process, which lasted for 10 min. The atmosphere in the closed system was kept
with constant humidity, which was about 60%. The electrochemical impedance spectra (EIS) were
performed on an Autolab electrochemical analyzer (Eco Chemie, Utrecht, The Netherlands) equipped
with a one-compartment three-electrode system which consists of a GCE modified by a PS–b–PAA
thin microporous film as the working electrode, a saturated calomel electrode (SCE) as the reference
electrode, and a platinum electrode as the counter electrode. EIS experiments were measured in the
frequency range of 10´1 to 106 Hz, with an open circuit potential, a single modulated AC potential of
10 mV, and in a solution of 5.0 mM hexacyanoferrate (II)/(III) containing 0.1 M KCl.
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3. Results and Discussion

3.1. Fabrication of Microporous Solid Thin Films

The surface morphology of the three-dimensional microporous solid thin film formed on the
glass slide is shown in Figure 1. The AFM image of the film is shown in Figure 1A, which shows the
microporous morphology of the film. In addition, the pore surface coverage is about 20%. The average
pore to pore distance of the film was measured to be 0.72 µm with RSD 11%. According to the
AFM image (Figure 1A) and the section curve (Figure 1B), the pore size of the PS–b–PAA porous
polymer films amounts to about 0.24 ˘ 0.08 µm (n = 11, confidence level 95%) according to top view
analysis. For more detailed insight into the geometry, we display an AFM image of a three-dimensional
structure in Figure 1C. A typical SEM image of the PS–b–PAA microporous solid thin film is presented
in Figure 1D. As shown in Figure 1E, the investigation of the depth of the micropore is presented by a
SEM image of the section of the film, in which the pore depth can be observed with 0.7 ˘ 0.1 µm.
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Figure 1. (A) AFM image of PS–b–PAA microporous solid thin film; (B) Cross-section of the PS–b–PAA
microporous solid thin film; (C) Three-dimensional AFM image of PS–b–PAA microporous solid thin
film; (D) SEM image of PS–b–PAA microporous solid thin film; (E) SEM image of the cross section of the
PS–b–PAA microporous solid thin film. The concentration of the PS–b–PAA/THF solution: 10 mg/mL;
the relative humidity: 60%.

3.2. pH Responses of PS–b–PAA Microporous Films with Their Tunable Surface Properties

We examine the influence of the pH value of the aqueous solution on the morphology and the pore
sizes of the film by in-situ AFM. The equilibrium time of the pores at different pH values was tested,
which was shown in Table 1, and the pores at all pH values can achieve equilibrium within 60 min.
Therefore, to ensure equilibrium morphologies, images were obtained after immersion for 60 min.
The AFM topographical images reveal an increase in the pore size that occurred with a decrease in
acidity of the aqueous solution.

Table 1. Equilibrium time of the pore size at different pH values.

pH Value of the Buffer Solution 2.4 3.5 4.6 5.1 6.8 9.2

Time for the Formation of the Pore in Stable Size (s) 1125 1150 1200 1550 1750 1980
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It was revealed that an increase in the pore size occurred with a decrease in acidity in the aqueous
solution. Qualitatively, a top view analysis of the AFM topographical images indicates that the pore
sizes enlarged accordingly with the increasing pH values. The variation tendency of pore sizes and
surface coverages showed a similar tendency, as can be seen in Figure 2A.
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Figure 2. (A) The variation trend of pore size (black line) and surface coverage (blue line) according
to Figure 1D, and the y-axis on the left refers to the pore diameter (µm), while the y-axis on the
right indicates the percentage of pore coverage (%); (B–D) are schematic drawings of the PS–b–PAA
microstructures in pH < 4.0, 4.0 < pH < 6.0, and pH > 6.0, respectively. The phases were assigned to
the PS matrix (orange domain), the PAA domain (green domain), and the stretched PAA chains (red
dotted lines).

It is well-known that asymmetric, amphiphilic block copolymers can self-assemble to form
aggregates in selective solvents [46]. The PS–b–PAA amphiphilic block copolymer can form micelles
with a hydrophilic core (PAA) and a hydrophobic corona (PS) in low polar media such as THF, while
aggregates with the opposite composition are present in solvents with high polarity such as water.
After the solvent evaporates, there is a process of phase inversion where water droplets condense
onto the solution surface. Therefore, each micropore is enclosed by a PAA domain, which has many
carboxylic functional groups (–COOH). Every annular PAA domain is surrounded by a PS matrix [18].
Schematic diagrams of the micropores were constructed in Figure 2B–D. Because the polymer PAA is a
weak polyelectrolyte with a pKa of 4.6 [47], the degree of dissociation of the carboxylic acid groups
depends on the pH value of the aqueous solution. For pH < pKa, PAA chains are slightly stretched
and dispersed by absorbing water in aqueous solutions because of the inability of the carboxylic acid
groups to ionize, since carboxylic acid groups exist as –COOH. However, for pH > pKa, PAA chains
are dramatically stretched and dispersed because most carboxylic acid groups are dissociated, and
electrostatic repulsive forces among ionized carboxylate anions are increased. The degree of stretching
of the PAA chains depends on the degree of ionization of the PAA or the pH value of the medium.
In our experiment, the pH response of PS–b–PAA microporous solid thin films was studied by carrying
out in-situ AFM in a liquid cell containing a 0.05 M sodium phosphate buffer solution.

At low pH (pH < 4.0), PAA chains are partially stretched and dispersed by absorbing water in
aqueous solutions, while the compact skeleton structure is composed of un-dispersed PAA chains and
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PS matrix (Figure 2A). As the pH value increases, more dissociated PAA chains stretch and disperse
in aqueous solutions, resulting in a decrease in the compact structure of PAA chains (Figure 2B).
Consequently, the force between a stretched PAA chain and the tip of the AFM is so small that it
is beyond the resolution limit of our technique and thus would not be detectable by AFM. As the
PAA chains stretch and disperse, the pore sizes are observed to increase, albeit not conventionally,
and significantly swell in PAA areas according to the AFM images with the flat surfaces of these
films in different external environments. At high pH, the carboxylic acid groups were almost entirely
converted to carboxylate anions, so the PAA chains were stretched considerably, and the PAA chains
were all dispersed in aqueous solutions, as displayed in Figure 2C. For pH > 11.0, we were not able to
obtain reliable data because of imaging problems. Ludwigs et al. also found a similar phenomenon in
the poly(styrene)–block–poly(2–vinylpyridine)–block–poly(methacrylic acid) triblock terpolymer [18].
This phenomenon is responsible for the dissolution of entire PS–b–PAA microporous films in pH > 11.0
buffer solutions.

To test whether the pH response is reversible, the pore sizes of a selected sample were monitored
as the pH was sequentially varied from 2.4 to 9.2 (circles) and then returned to 2.4 (triangles).
The experimental results indicated there was a reversible pH response of the PS–b–PAA microporous
solid thin film in 0.05 M sodium phosphate buffer solutions. Therefore, the pH-responsive microporous
solid thin film retained a molecular memory and reverted back to a similar level as in the initial stage.

Surface wetting properties rely on the surface structure of stimulus-responsive PS–b–PAA
microporous solid thin films. Figure 3 presents the switchable wettability behavior, with an
exceptionally large change in contact angle (CA), from nearly hydrophobic (CA of about 93˝, as
shown in Figure 3a), to super-hydrophilic (CA of near 5˝, Figure 3b). The CA is consistent with that of
PS [48] because PS covers the surface structure of PS–b–PAA microporous solid thin films in the initial
stage. When the micropore film was immersed in water, the carboxylic acid groups can be partially
dissociated and present more as hydrophilic carboxylate anions (–COO´). The hydrophilic PAA chains
dramatically stretch outward and gradually cover the film surface, leading to the decoration with
a continuous PAA wetting layer. The subsequent decrease of CA to a minimum value after 10 s is
reasonable, given the formation of the charged brush-like hydrophilic –COO´ layer, which has the
highest affinity for the aqueous phase. This change in conformation may be essential for the large
change of CA. It seems reasonable to conclude that more hydrophilic –COO´ likely enhance the
hydrophilic properties and hence result in the observed decrease in CA.
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Figure 3. Contact angles of water on stimulus-responsive PS–b–PAA microporous films as a function
of time. Insets are water droplet profiles on the stimulus-responsive PS–b–PAA microporous films in
different stages: (a) represents a typical droplet profile in the initial stage, whereas (b) is a representative
profile with PAA chains covering the surface stage.
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3.3. PS–b–PAA Microporous Solid Thin Film Stimulus-Responsive Dynamics

To determine whether the stimulus-responsive behavior in buffer solutions is kinetic in origin, we
investigated the time-responsive behavior of the selected solid thin film in pH = 4.6 buffer solution.
Figure 4 shows that the pore size of the film grows quickly from 0.27 ˘ 0.05 to 0.42 ˘ 0.07 µm between
120 s and 1200 s. After 1200 s, the pore size grows much more slowly and levels off at a constant value
of 0.42 ˘ 0.08 µm. The stimulus-responsive dynamics of the pore size is consistent with the two-stage
mechanism described below.
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To understand PAA stimuli-response, a two-stage model is used to describe the pH
stimuli-responsive dynamics of the pore size, referred to as the pH stimuli-responsive swelling kinetics
of amphiphilic block copolymers [1,47]. The dynamics is governed initially by the water rapid diffusion
into the PAA micro-domains, and then by a slow relaxation of the polymer chains [18]. The initial
stage dynamic stimuli-responsive behavior of the pore size is described by Equation (1) [1,47,49] and
in Table 2:

Dt “ D0 ` k1tn. (1)

Table 2. The meaning of the variables in Equations (1) and (2).

Name Meaning of Variable

Dt pore size at time t
D0 pore size in the dry state before react with water
D8 pore size at infinitely-great time
k1 a characteristic constant that depends on the local environment of the penetrant
t the reaction time
n scaling exponent that describes the type of diffusion into the polymer
B a scaling constant
k2 the relaxation constant

The most important variable in Equation (1), n, is the scaling exponent that describes the type of
diffusion into the polymer, which is definitely not the meaning of the enlargement percentage of the
pore size. Equation (1) is valid only when the enlargement fraction of the pore size is less than 0.60.
For the various value n, n < 0.5 implies Fickian diffusion; 0.5 < n < 1.0 indicates anomalous diffusion;
n = 1.0 describes case II transport; n > 1.0 indicates that the transport mechanism is super case II [1,47].
The solid line in Figure 4 is fit to the data using n = 1.4, suggesting that the rapid diffusion into the PAA
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micro-domains by adsorbing water follows super case II. For the enlargement fraction of pore size
greater than 60%, the stimuli-responsive process is assumed to be dominated by molecular relaxation.
The last stage sorption process is fit with Equation (2) [1,47,49]:

Dt

D8
“ 1 ´ Bep´k2tq. (2)

The dotted line in Figure 4 is fit using k2 = 0.003 s´1. The two-stage model has
successfully interpreted the stimuli-responsive dynamics of PS–b–PAA microporous solid thin film.
Stimuli response will be further supported by in-situ AFM in the following sections.

3.4. The pH Effect on Electrochemical Responses of the Microporous Solid Thin Film

Previously, we successfully fabricated microelectrode ensembles by modifying the microporous
solid thin films at conventional disc electrodes [43,44] and found CTAB irreversible effects on
electrochemical responses of the microporous film [50]. Electrochemical impedance spectroscopy
is an important analytical tool for investigating the interface properties of modified electrode surface,
which includes a semicircle and a straight line. The pore size of the semicircle at higher frequencies
is corresponding to electron transfer resistance (Rct). Figure 5 shows electrochemical impedance
responses of the GCE modified by the microporous thin film in hexacyanoferrate (II)/(III) solutions
with different pH values. This experimental result indicated that Rct dropped dramatically with the
increase of pH value in the solution, implying that the electron-transfer enhabced and micropores were
enlarged in the high pH-value solution so as to enlarge the electrode area. This further evidences the
change of the pore sizes of the thin microporous solid film after interactions with different acidic or
basic aqueous solutions.
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K3[Fe(CN)6]/K4[Fe(CN)6] and 0.1 M KCl with different pH values. A GCE modified by PS–b–PAA thin
microporous film was as a work electrode, a saturated calomel electrode served was as the reference
electrode and a platinum plate served was as the auxiliary electrode. The frequency range is from 10´1

to 106 Hz with a signal amplitude of 10 mV.

4. Conclusions

We fabricated stimulus-responsive microporous films by PS–b–PAA molecular self-assembly.
These solid thin films exhibit different surface morphologies in response to external environmental
stimuli, here involving different pH values. The reversible evolution of the microstructure in aqueous
solutions over a pH range of 2.4–9.2 was investigated by in-situ AFM. These findings demonstrate
that PAA blocks play a significant role in the amplification of stimulus-responsive behavior, and this
concept is expected also to be valid for other types of weak polyelectrolytes. These observations have
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been explained by positing that there is no conventional PAA swelling, but the PAA chains in the
micropores stretch and contract with changes in the pH of the solution environment. The successful
application of the AFM technology enabling the explication of the in-situ tunable “switch-on/switch
off” surface properties of the PS–b–PAA microporous solid thin film polymer in aqueous solutions of
varying pH now affords us the exciting prospect of applying this microporous solid thin film to new
technologies such as membrane separation, optical filters, photoelectric equipment, micro-reactors,
micro-sensors, and cell culture substrates.
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