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ABSTRACT: The need for measurements of multiple biomarkers
simultaneously at subnanomolar concentrations asks for the
development of new sensors with high sensitivity, specificity,
precision, and accuracy. Currently, multiplexed sensing in single
molecule sensors increases the complexity of the system in terms of
reagents and sample read-out. In this letter, we propose a novel
approach to multiplex hairpin-based single-DNA molecule sensors,
which overcomes the limitations of the present approaches for
multiplexing. By target-dependent ssDNA hairpin design, we can
create DNA tethers that have distinct tether dynamics upon target
binding. Our numerical model shows that by changing the stem
length of the ssDNA hairpin, significantly different dynamic tether
behavior will be observed. By exploiting the distance-dependent coupling of AuNPs to gold films, we can probe this dynamic
behavior along the z-axis using a simple laser equipped microscope.
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With improvements in understanding of diseases and
their development, healthcare is increasingly interested

in early and simultaneous detection of multiple biomarkers.1

Multiplexing, the analysis of various biomarkers for a single
disease type, has shown improvement in both sensitivity and
selectivity when detecting cancer and infectious diseases.2−4

Disease-specific biomarkers can be collected more easily than
ever by using noninvasive techniques from the upcoming field
of liquid biopsies. However, the typically low concentration
(<nM) of these biomarkers challenges the multiplexable
analytical techniques currently available in clinical chemistry,
increasing the need for novel detection techniques.
Research is pushing toward biosensors with single-molecule

resolution because these offer enhanced sensitivity, specificity,
precision, and accuracy compared to bulk measurement
techniques.5−8 Initial near-field approaches for single molecule
sensors could only detect a maximum of tens of single
molecules simultaneously, which results in low-throughput
detection and a limited concentration window.9 More recently,
massive parallelization of these sensors in combination with
wide-field observation has allowed for measurements of
hundreds if not millions of single detection events of a specific
analyte, improving both detection limit and sample through-
put.5

One downside of these wide-field single molecule techniques
is their typical digital readout (they detect only target presence
or absence), which does not allow differentiation between

different bound targets. Therefore, multiplexing of wide-field
single molecule sensors has required one of several severe
increases in complexity, such as spatial separation of binding
sites for different biomarkers,10,11 washing with multiple
reagents,12 and using targets of dramatically different affinity13

or multichannel (fluorescence) read-out.14 These complica-
tions reduce the application of multiplexed sensors in the
medical world where there is a need for reliable and simple
assays. In this letter, we propose a novel approach to overcome
the current limitations of multiplexed single molecule sensors.
Specifically, we propose that DNA hairpin-sensors, similar to
those described in literature,15−21 besides its excellent
performance in complex media,22 may also be easily multi-
plexed by designing target-specific changes into the hairpins’
structure. Analysis of sensor dynamics then allows easy
determination of which specific sensing element has been
activated.
The proposed sensor (Figure 1) will consist of thousands of

individual sensing elements, each composed of a single ssDNA
hairpin that tethers one gold nanoparticle (AuNP) to a gold
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film (Figure 1A). Upon target binding, the hairpin unfolds,
changing not only the volume accessible to the AuNP but also
the physical properties of the tether. Just like the typical DNA
hairpin sensors described in literature,15−20 our sensor consists
of both ssDNA (originating from the self-complementary part
of the hairpin-stem not involved in target binding), and
double-stranded DNA (dsDNA) (Figure 1A) upon target
binding. However, novelty comes from the multiplexability of
our proposed sensor: by making the length of both ssDNA and
dsDNA target dependent, we induce target-specific differences
in both the physical properties of the tether and the volume
accessible to the AuNP. These differences will be probed by
looking at the dynamic behavior of the AuNP.
Our derivation of tether properties from the observed

dynamics is based on the fundamentals of tethered particle
motion (TPM). TPM describes the motion of microparticles
connected to a substrate by a tether.23 The tether, in this case a
DNA molecule consisting of a ssDNA and dsDNA part and
several linkers, confines the bead to a certain volume of space,
within which Brownian motion determines the particle
position over time. Because the tether properties play an
important role in the movement of the particle, TPM is
typically used to study tether properties like persistence
length24 and looping kinetics.25,26 Furthermore, TPM has been
used to investigate interactions between DNA and proteins

such as polymerases27 and lac repressors,28 as these
interactions induce changes in DNA flexibility. While these
studies use TPM to probe unknown properties of the tether,
we propose the reverse: using TPM to discriminate between
different tethers of known properties, with each distinct tether
type matching a specific ssDNA target molecule. To do this,
we will perform simulations of the dynamic behavior of tethers
consisting of different ssDNA lengths, followed by varying
lengths of dsDNA. In real experiments, we could match
observed TPM dynamic behavior with the behavior obtained
via calibration or the simulation experiments as presented in
this letter.
Because we focus on the detection of DNA sequences in

liquid biopsies, the typical DNA target fragment length is <100
base pairs (bp),29,30 which correspond to a length of ∼30 nm.
This requires a relatively short total hairpin length, which
limits localization precision. In current TPM experiments,
read-out precision is limited by the spatial localization
precision of typical optical microscopes when resolving
conformational bead changes, which is typically ∼10 nm.
This results in the use of >200 bp dsDNA tethers in most
TPM experiments to allow precise tracking of the movement of
the bead.31,32 Here we propose to overcome the localization
issue for short tethers by using plasmonic sensing, in which the
distance-dependent plasmonic coupling of AuNPs to gold films

Figure 1. Schematic representation of multiplexed TPM-based sensing. (A) ssDNA molecule bound to the gold film and AuNP. Because of a self-
complementary part, a stem structure will be formed that results in a so-called hairpin. Upon target binding, part of the self-complementary DNA
nucleotides will bind to the target (in red), unzipping the hairpin, and resulting in a ssDNA (in blue) tether followed by a dsDNA tether. (B)
Schematic representation of a sensing element prior to and after target-binding with different ssDNA lengths. The changes in the z-axis over time
increase after target binding and are dependent on the length of original ssDNA stem, which adds to the total tether length. (C) Detailed schematic
overview of a single sensing element bound to a target DNA sequence.

Figure 2. Schematic of the developed model consisting of the Monte Carlo simulations, Brownian dynamics simulations, and MNP-BEM
simulations, that together result in the simulated detector signal.
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is exploited to precisely determine particle position. Plasmonic
sensing is based on the resonant scattering of a sub-100 nm
AuNP, which has a resonance peak in the green region of the
optical spectrum when free in a buffer.33 When the same AuNP
is placed near a gold film, the gold film acts as a mirror, and
allows the AuNP to interact with its mirror image, resulting in
a red-shift, comparable to the spectral shift observed for AuNP
dimers.34,35 The degree of red-shift of the AuNP scattering
spectrum is strongly distance dependent, with the largest first
derivative over the range of 0−50 nm, which makes this system
extremely suitable to probe the changes along the z-axis of our
tethered AuNP.36,37

To prove that multiplexing is indeed possible with such a
sensor, we numerically predict the differences in tether
composition needed to perform plasmonic multiplexed
nucleotide binding assays with ssDNA hairpin tethers. A
model was developed which considers both tether properties
and Brownian AuNP movement in a sequential fashion,
coupled to electromagnetic simulations to simulate the
detected optical signal over time for different tethers
(Supporting Information methods 1, 2, and 3). In short, the
simulations consist of three separate steps that together form
our model (Figure 2). It all starts with defining the parameters,
such as the length of the ssDNA (10, 20, or 30 nucleotides
(nt)) left after target binding, length of dsDNA after target
binding (50−70 bp with a 2 bp step size), and AuNP size (80,

78, and 82 nm to account for polydispersity of the AuNPs
used). In the first step of the model, the tether-dependent
position distributions of the particles are determined using a
Monte Carlo simulation method. The output of this model is a
probability map of the particle positions. The second step
involves the use of inverse Boltzmann statistics, where the
probability distribution of the AuNP positions is converted to a
potential energy map.36,38 The potential energy map then
forms the input to Brownian Dynamics simulations of the
AuNP, where the potential energy results in a position-
dependent force on the AuNP. From the Brownian Dynamics
simulations, we obtain a time series of the AuNP position
along the z-axis,36,39 which then together with the plasmonic
model results in the simulated detector signal. For plasmonic
response calculations, electromagnetic boundary element
method (BEM) simulations were performed to calculate the
distance-dependent scattering and absorption of AuNPs
(Supporting Information, Method 4). With the BEM
simulations, the z-axis dependent scattering cross section of
the particle can be obtained. From the positional time series
obtained by the Brownian motion simulations, the probe
wavelength dependent scattering cross section over time
(σscat(t,λprobe)) is then calculated, which, together with setup
dependent factors, results in a time-variant number of photons
detected by the setup. A more elaborate explanation of the

Figure 3. Comparison between average positions (A,B) and average mean square fluctuations (C,D) as discriminators for different tether
properties. All results in this figure are generated for a 50 bp dsDNA strand with either a 10, 20, and 30 nt ssDNA and a simulated signal with an
integration time of 50 μs. (A) Position probability map for a tether consisting of a 50 bp dsDNA strand and a 10 nt ssDNA strand. (B) Plotted
distribution of the detector signal for different lengths of ssDNA. (C) Mean square fluctuation plot for increasing time step for different ssDNA
strand lengths. (D) Distribution of mean square fluctuation values found for different ssDNA strand lengths..
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model and its considerations can be found in the Supporting
Information.
Our model results in “raw” time traces, and we started with

calculating the traces for an optical signal integration time of
50 μs, chosen to filter out false motion of the particle due to
shot-noise or thermal expansion and/or contraction of the
microscope.25,40−43 The probability density function (PDF) of
the total optical output was subsequently calculated (Figure
3A), and it was found that the average of the photon counts
did not significantly differ for 50 bp DNA tethers with three
different lengths of ssDNA (10, 20, 30 nt) (Figure 3B). For all
other tested hairpin compositions (with varying ssDNA and
dsDNA length), the same result was found (Figure S10). This
indicates that the difference in possible positions introduced by
different hairpin properties is averaged out by the many
positions shared among the different tethered AuNPs.
Differences in total photon count can thus not be used to
distinguish between different tethers.
In contrast to the average photon count, the tether-

dependent particle dynamics do show a significant difference
between different tether lengths. The mean square fluctuation
(MSF) is a measure of the deviation of the plasmonic signal
with respect to a reference signal over time. It is commonly
used to express the spatial extent of random motion and can be
used to determine whether a particle is moving solely by
diffusion or is experiencing additional forces. In this case, the
additional force originates from the tether, which limits the
diffusion of the AuNP compared to free diffusion, in a tether-
dependent fashion (Figure 3C). We took the mean over 500
points of the maximum of the MSF curve and plotted the
distribution of the values for the same tether with 50 bp
dsDNA and 10, 20, and 30 nt lengths of ssDNA, as was tested
in Figure 3B. The predicted MSFs in Figure 3D significantly
differ (F(10,90) = 18.681, p = 0.00), demonstrating that the
particles dynamics rather than average position will allow target
discrimination. To study the effect of multiple tether lengths,
we calculated the average MSF for DNA tethers with a size of
50−70 bp dsDNA and either 10, 20, or 30 nt of ssDNA. An
(almost) linear relationship between the length of the dsDNA
and the MSF can be found and the individual tether properties
can clearly be distinguished (Figure 4). With a univariate
analysis in SPSS followed by a post-HOC Tukey’s multiple
comparison test, we could determine whether the MSF of each
ssDNA−dsDNA combination was significantly different from

the other combinations. From this, we could conclude that a
maximum of four ssDNA−dsDNA combinations could be
distinguished simultaneously, which means that with the
proposed sensing method four different target sequences
could be measured on a single sensing surface (Supporting
Information, Figure S13).
The above demonstrates that a hairpin-based plasmonic

sensor can be used to perform multiplexed ssDNA sensing by
determining the tethered particle MSF along the z-axis.
Variations in both the ssDNA length (10−30 nt) and the
total tether length (60−100 nts) result in significantly different
results as confirmed by ANOVA statistical testing. For 80 nm
AuNPs, a single wavelength can be used to probe the z-axis
MSF.
The results presented in Figure 4 do not consider some real-

life measurement issues. In the next part of this letter, we will
consider three main issues one could face while exploiting our
sensing method and will propose practical solutions.
Concerning the sensor development, it is important to know
how many hairpins are needed in total to allow multiplexed
sensing. The number of available AuNPs, together with the
reaction kinetics of the target ssDNA with the hairpin-DNA,
the target sequence concentration, the number of different
targets one wants to sense, and the measurement time then
determine the amount of sensing events that will be
measured.44 The lower bound for the number of sensing
events will depend strongly on the analyte of interest, but with
statistics we can set a minimum, based on a 10% statistical
error, of 100 sensing events per analyte. For an hour of
measuring at 1 nM concentration and a kon of 100 μM,45,46 this
requires 2800 hairpins per target sequence. Because of the
strong scattering properties of 80 nm AuNPs, a low
microscope magnification is possible and up to 1000−5000
AuNPs could be followed simultaneously using a CMOS
detector depending on the resolution of the detector and the
needed integration time, where the point spread function of an
80 nm AuNP on average covers 870 nm2.47,48 Taking the new
generation of affordable high speed cameras into consideration,
and the integration time of around 50 μs, this means that
between 300 and 1000 AuNPs can be sensed49 Therefore,
multiplexed sensing of many different target sequences requires
the further development of ultrahigh resolution detectors with
low magnification objectives supporting high frame rates, or a
more simple solution such as moving the sensor surface along
the detector to image a larger sensor surface.
For all calculations and simulations presented in this letter,

we assumed AuNPs to be monodispersed with an 80 nm
diameter. However, all commercially available AuNPs are
polydisperse. Because we observe the variations over time of
the gap size dependent plasmonic coupling of individual
particles, this could cause issues when distinguishing whether
changes in detector signal are due to particle or tether
variations,50,51 as the scattered intensity of a AuNP is
proportional to the square of the AuNP static polarizability.
Therefore, larger particles have a higher scattering intensity
and a different relation between gap size and scattering
intensity at a specific wavelength. We can conveniently
overcome this issue by introducing a calibration step prior to
target binding by imaging the hairpin-AuNPs. In Supporting
Information, Method 6, we show that in the hairpin state the
measured scattering intensity is mainly determined by the
AuNP size as the AuNP does not have a large accessible

Figure 4.Mean square fluctuation of the maximum detector signal for
different tether properties where n = 3 individual simulations for each
data point. Error bars represent the mean ± sd, where n = 3 (three
independent simulations).
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volume. This allows easy self-calibration of the system to
extract the AuNP size.
The last practical issue we would like to discuss is that short

target sequences found in liquid biopsies vary considerably in
size depending on the isolation method, patient, and origin of
the biopsy. We therefore performed a simple check on the
influence of the size of the target DNA on the dynamic
fluctuations of the AuNP after target binding and found that
indeed this effect was significant (F(2,8) = 14.450, p = 0.005),
Supporting Information, method 7). However, if we ignore the
ssDNA length and look only at total tether length (sum of
ssDNA and dsDNA length = the original hairpin length), we
see a significant difference between the tether lengths
(F(20,98) = 28.699, p = 0.000)). Thus, if we measure
ssDNA targets fragments of different lengths, we can still
significantly distinguish the different tether lengths and use this
for multiplexed sensing. For target lengths that exceed the
length of the complementary part of the hairpin, we did not
perform any simulations. Here, we anticipate two factors
playing a role: long ssDNA target strands can inhibit the
degrees of freedom of the AuNP relative to short DNA
fragments, but as the persistence length of ssDNA is low (∼2
nm (ref 52), it will be flexible and probably not significantly
inhibit the movement of the particle compared to the drag
force the particle is experiencing close to the surface.
In conclusion, the proposed sensing method allows robust

monitoring of biomolecules with the possibility of simulta-
neous multiplexed gene detection with high specificity using
plasmonic AuNPs that offer single-molecule read-out at a
simple, laser-equipped, microscope.
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