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A B S T R A C T   

The ability to predict a protein’s three-dimensional conformation represents a crucial starting point for inves
tigating evolutionary connections with other members of the corresponding protein family, examining in
teractions with other proteins, and potentially utilizing this knowledge for the purpose of rational drug design. In 
this work, we evaluated the feasibility of improving AlphaFold2’s three-dimensional protein predictions by 
developing a novel pipeline (AlphaMod) that incorporates AlphaFold2 with MODELLER, a template-based 
modeling program. Additionally, our tool can drive a comprehensive quality assessment of the tertiary protein 
structure by incorporating and comparing a set of different quality assessment tools. The outcomes of selected 
tools are combined into a composite score (BORDASCORE) that exhibits a meaningful correlation with GDT_TS 
and facilitates the selection of optimal models in the absence of a reference structure. To validate AlphaMod’s 
results, we conducted evaluations using two distinct datasets summing up to 72 targets, previously used to 
independently assess AlphaFold2’s performance. The generated models underwent evaluation through two 
methods: i) averaging the GDT_TS scores across all produced structures for a single target sequence, and ii) a 
pairwise comparison of the best structures generated by AlphaFold2 and AlphaMod. The latter, within the un
supervised setups, shows a rising accuracy of approximately 34% over AlphaFold2. While, when considering the 
supervised setup, AlphaMod surpasses AlphaFold2 in 18% of the instances. Finally, there is an 11% corre
spondence in outcomes between the diverse methodologies. Consequently, AlphaMod’s best-predicted tertiary 
structures in several cases exhibited a significant improvement in the accuracy of the predictions with respect to 
the best models obtained by AlphaFold2. This pipeline paves the way for the integration of additional data and 
AI-based algorithms to further improve the reliability of the predictions.   

1. Introduction 

Proteins play a crucial role in various biological processes, and their 
proper fold is essential for the correct functioning of biological systems. 
Understanding the three-dimensional (3D1) structure of a protein holds 
significant importance in elucidating its function, exploring evolu
tionary connections with other members of the same protein family [1], 
investigating interactions with other proteins and/or macromolecules 
both within and outside cells [2], and potentially applying this knowl
edge in diverse fields, including rational drug design [3]. Nevertheless, 
the determination of a protein structure by experimental methods is not 
at all straightforward, and each technique presents challenges that 

significantly increase the time and cost required to resolve structures 
[4]. Hence, until now, only a minute fraction of approximately 0.02% of 
the distinct entries in the UniProtKB database (a globally comprehensive 
and openly accessible resource of protein sequences and associated 
functional information) [5], has been linked to an experimentally 
determined 3D structure available in the wwPDB [6], the primary 
archive for 3D macromolecular structure data. 

In the last decades, several methods were developed to predict the 
protein structures starting from their sequences. These methods can be 
divided into two main approaches. The ”template-based approach” 
needs to identify at least one known structure of a representative 
member of the structural family to which the protein of interest belongs. 
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This structure is used as a template to build a model of the unknown 
structure, first by identifying structurally equivalent residues between 
the target sequence and the template, and then by creating the 3D co
ordinates of the unknown protein structure, following either of two main 
procedures: i. the assembly of rigid bodies, a sort of ”copy-and-paste” of 
the equivalent structural elements’ coordinates extracted from the 
template and mapped onto the target sequence, followed by relaxation 
of the assembly obtained; ii. the extraction of spatial restraints, in which 
the distances among residues in the template that are assumed to be 
spatially equivalent to the aligned residues in the target sequence are 
used as restraints, and the final model is obtained by minimizing the 
violations of all these restraints [7]. The most popular program that 
applies this last protocol is MODELLER [8]. In this program, the spatial 
relationships of distances and angles are expressed as conditional 
probability density functions (PDFs) and can be used directly as spatial 
restraints. The model is obtained by optimizing the objective function by 
employing methods of conjugate gradients and molecular dynamics 
with simulated annealing. 

The second approach to model the unknown structure associated 
with a protein sequence is the “template-free modeling approach”. Most 
of the programs that deal with this approach assemble, with different 
strategies, fragments of known proteins and perform refinement of the 
assembled model in an iterative way [9]. The performances of these 
approaches remained stagnant until a few years ago, when the intro
duction of deep learning methods allowed to impressively improve the 
accuracy of the prediction of even hard targets. This led to the unex
pected ”gigantic leap” of AlphaFold 2 (AF2) [10] at the 14th round of 
CASP, the biennial Critical Assessment of protein Structure Prediction, 
in which the best predictions made by the software developed by 
DeepMind reached a GDT_TS score [11] above 90%, meaning that their 
accuracy reached the level of experimental structures [12]. Less than 6 
months after this terrific result, the authors of AF2 provided to the sci
entific community the predicted structures of more than 300,000 pro
teins, including 98.5% of the human proteome [13] plus the complete 
proteomes of other 20 model organisms [14]. And, one year later, the 
AlphaFold protein structure database (AlphaFoldDB, https://alphafold. 
ebi.ac.uk/), jointly developed by DeepMind and EMBL-EBI was released, 
which contains the structures of over 200 million proteins, i.e., nearly all 
the known sequences contained in the UniProt database at that date 
[15]. 

Subsequently, several research groups have worked on developing 
alternative protein structure predictors based on various deep learning 
approaches. Among these, particularly noteworthy achievements in 
performance have been observed with strategies grounded in natural 
language processing [16,17]. Moreover, the possibility of refining the 
models obtained by AF2 predictions with other approaches has been 
explored, either by using traditional approaches such as molecular dy
namics (MD) simulations, or by using a deep learning framework adding 
estimates of per-residue accuracy and residue-residue distances. The 
analysis of the results suggested that MD-based approaches perform best 
on the smallest targets, but for larger targets the addition of a deep 
learning framework outperforms the traditional, physically based ap
proaches [18]. The motivation behind investigating the integration of 
traditional modeling procedures with deep learning-based strategies lies 
in the pursuit of further enhancing the predictive capabilities of protein 
structure prediction methods. Indeed, recent analyses showed that the 
AI-predicted structures performed constantly worse than experimental 
PDB structures in high-throughput docking experiments [19]. There
fore, while deep learning approaches have shown remarkable ad
vancements in this field, it is essential to explore the potential 
synergistic effects that combining these techniques with more estab
lished methods might offer. Furthermore, the integration with these 
modeling procedures opens new possibilities for handling additional 
structural information that may not be easily integrated within a closed 
system like AF2. 

For these reasons, we integrated AF2 with MODELLER, creating a 

sequential pipeline that we called AlphaMod. Furthermore, we designed 
an evaluation module for the pipeline, which integrates many different 
metrics into a unified scoring system. AlphaMod’s efficacy was evalu
ated through its deployment on a curated test set from the CASP14 
evaluation [20]. Moreover, our test extends to another independent 
protein dataset that was previously analyzed to enhance AF2’s perfor
mance [21]. In both test sets, we evaluated our framework with the 
GDT_TS score serving as the principal metric for result assessment 
against AF2 and MODELLER, alone, and we provided an additional layer 
of analytical insight serving as an instrumental criterion in the selection 
of optimally folded templates. 

In the Methods section (Section 2), we detail the techniques and 
methodologies employed to develop AlphaMod for predicting protein 
structures. The Results and discussion section (Section 3) presents our 
findings and comparisons over two well-known test sets. Furthermore, 
an in-depth analysis of the outcomes is shown. Finally, in the Conclu
sions section (Section 4), we summarize the key takeaways from our 
research and discuss potential future directions. 

2. Methods 

In this section, the Section 2.1, Test sets, details the datasets used for 
evaluating our protein structure prediction tool, AlphaMod. Subse
quently, Section 2.2, Pipeline description, outlines the design, execution 
and performance evaluation of the pipeline used to refine AF2’s results 
with MODELLER, emphasizing a diverse comparison framework 
encompassing various supervised and unsupervised protein scores. 

2.1. Test sets 

AlphaMod underwent rigorous testing across two distinct datasets. 
The initial dataset (referred to as Test set A) was derived from carefully 
selected targets within the CASP14 competition, which initially pre
sented approximately 115 potential target sequences for evaluation. 
However, this number was precluded from full consideration due to 
various factors: certain targets were withdrawn due to impending pub
lication or because their structures consisted solely of a single helix, 
precluding tertiary structure evaluation, while others were dismissed as 
they lacked an accompanying structure within the PDB database. 
Further scrutiny reduced this pool significantly; 35 targets were 
excluded due to the absence of corresponding PDB files, and several 
others exhibited fragmented structures, exemplified by targets like 
T1027-D1 with non-continuous domains, thus failing to meet our 
continuous domain criterion for inclusion. Furthermore, an additional 
23 targets were deemed incompatible with our assessment tools during 
the quality verification process, complicating the structural quality 
evaluation. Consequently, our refined Test set A comprised 47 target 
proteins, encompassing 9 TBM-easy, 13 TBM-hard, 15 FM, and 10 FM/ 
TBM evaluation units (EUs), detailed exhaustively in Supplementary 
File 1, Table 1. Concurrently, a secondary dataset (Test set B) was 
employed, rooted in the single-chain protein analysis conducted by 
Terwilliger and colleagues [21], serving as a comparative platform for 
evaluating AlphaMod’s proficiency against established benchmarks. 

Furthermore, to identify classes of proteins on Test sets A and B, we 
clusterized the different targets at domain level using as criteria the 
percentage of secondary structures, calculated using the DSSP algorithm 
[22] (Supplementary File 1, Tables 2, 3). Through an in-house Perl 
script, it was possible to sum the percentage of secondary structures 
assigned by DSSP into 4 macro-classes: helices (sum of the percentage of 
codes H, G, and I as identified by DSSP), beta structures (percentage of 
code E), irregular structures (sum of the percentage of codes T, S, B) and 
coils (with no structure code assigned by DSSP). In parallel, each target 
was compared to all other targets using the SSAP algorithm [23] with 
parameters—slow-ssap-only and—max-score-to-slow-rerun = 75. The 
similarity matrix was built using the Ward method [24] and the SSAP 
score was used as a parameter to build a dendrogram that was used to 
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represent the structural similarity among the selected targets (Supple
mentary Figs. 1 and 2). 

2.2. Pipeline description 

Our AlphaMod pipeline is composed of 5 sequential steps briefly 
described below and shown in Fig. 1. For more details, please refer to 
Supplementary File 2. 

2.2.1. Step 1: Homolog Information Retrieval Engine (HIRE) 
HIRE’s primary goal is to identify the templates and homologous 

sequences that most accurately represent a specified input protein. This 
is the default AF2’s protocol for searching for homologous sequences 
and templates for the target sequence, which includes JackHMMER v3.3 
[25] on MGnify [26] and UniRef90 [27], followed by HHBlits v3.0-beta 
[28] on Uniclust30 [29] and BFD. Furthermore, the template search was 
done with HHSearch [30] on PDB70. Based on the scores of each search 
engine, AF2 creates two separated files: first, a Multiple Sequence 
Alignment (MSA) file, and second, a pickle file containing up to 20 
templates classified in descending order being the first template the one 
with the highest similarity score compared with the target sequence. The 
following AF2’s modeling step, keeps as reference only the top four 
templates. Sometimes, it is not possible to obtain at least four templates, 
despite this drawback AlphaFold2 is still able to make predictions. 

2.2.2. Step 2: Protein Model Construction Tool (PMCT)—AF2 branch 
PMCT fetches the MSA and pickle files in Step 1 and subsequently 

transfers them to AF2 for protein fold prediction using our local version 
downloaded from AF2 GitHub (AlphaFold v2.2.2, commit ab10514, 
with max_template_date=2020-05-14 and three recycling iterations as 
default). AF2 produces 10 PDB files divided into two groups, 5 relaxed 
and 5 unrelaxed. The objective of the relaxation process is to remove 
stereochemical violations [10] and is done by means of gradient descent 
in the Amber Force field without altering the accuracy measured by 
GDT_TS [11] or lDDT-Cα [31], the pLDDT score integrated in AF2 is used 
to rank relaxed models only. Hence, the naming convention follows an 
ascending order, where the model with the highest pLDDT score is 
denoted as ranked_0, while the model with the lowest pLDDT score is 
labeled as ranked_4. 

2.2.3. Step 3: Structure Model Assessment (SMA) 
In addition to pLDDT, we included QMEANDisCo [32], a composite 

scoring function assessing the major geometrical aspects of protein 
structures, computed on the relaxed models produced by AF2. The 
calculation of QMEANDisCo is performed by a web crawler using ad-hoc 
Python functions. In this context, both pLDDT and QMEANDisCo func
tion as parameters for BORDASCORE evaluation [33] to determine the 
top-two relaxed performing models (See Fig. 1, SMA box). Finally, all the 
computed metrics are inputted to the Metrics Data Collector, also used in 
Step 4 and Step 5 (more information can be seen in Supplementary File 
2). 

2.2.4. Step 4: Protein Model Construction Tool (PMCT)—MODELLER’s 
branch 

After the assessment of AF2’s models performed by SMA, the PMCT 
produces five new structural predictions by filtering and launching 
MODELLER with the best models. In detail, PMCT-MODELLER’s branch 
can be used with the option 1 (OP1—2best_unsupervised) to make 
predictions using as templates the best two models in agreement with 
BORDASCORE, or the option 2 (OP2—5best_unsupervised) to make 
predictions using as templates all the relaxed models produced by AF2. 
Finally, during the supervised testing phase, PMCT was initialized with 
option 3 (OP3—2best_supervised), which involves prior knowledge of 
Ground Truths of the three-dimensional protein structure taken as 
reference. Therefore, in OP3, we selected the best two models based on 
GDT_TS score. Subsequently, AlphaMod models, along with the 

information gathered by the Metrics Data Collector module are passed 
down to the Comprehensive Model Quality Assessment framework. 

2.2.5. Step 5: Comprehensive Model Quality Assessment (CMQA) 
At this point in the execution of AlphaMod’s pipeline, the Metrics 

Data Collector module has stored on its local cache memory information 
of pLDDT, QMEANDisCo, BORDASCORE and GDT_TS, as explained in 
Step 3. The quality assessment of both AF2 and AlphaMod’s models is 
extended with CMQA. The latter is accomplished with five additional 
metrics including: (1) DOPESCORE (Discrete Optimized Protein Energy) 
[8], which is a statistical potential optimized for model assessment in 
MODELLER, (2) PROSA-Web Z-score [34] that measures the deviation of 
the total energy of the structure with respect to an energy distribution 
derived from random conformations, (3) MOLPROBITY score [35], a 
single number that results from the log-weighted combination of the 
clashscore, percentage of disallowed residues in the Ramachandran plot 
and percentage of bad side-chain rotamers, and (4) the classic evalua
tion of allowed and disallowed residues in the Ramachandran plot by 
means of PROCHECK [36]. PROSA, MOLPROBITY, and PROCHECK 
metrics are calculated with the web crawler, whereas DOPESCORE is 
acquired upon MODELLER’s execution. The fifth and last metric, (5) 
root mean square deviation (RMSD), is calculated only when 
PMCT-Modeller’s Branch is launched with OP3, as the ground truth 
template is required for comparison. Supplementary File 2 contains 
comprehensive details about the parameters employed to compute each 
metric. 

3. Results and discussion 

In this section, we present a comprehensive evaluation of the 
AlphaFold2 (AF2) tool alongside various configurations of AlphaMod 
(OP1, OP2, and OP3) for protein structure prediction. We evaluated the 
performance using a variety of quality assessment metrics, juxtaposed 
against the GDT_TS score. Initially, in Section 3.1, we delve into a 
comparison of average predictions on Test Set A, spotlighting the 
distinct output categories of AF2 and the enhancements brought about 
by integrating MODELLER. Then, we extended the analysis to Test Set B 
(Section 3.2). Section 3.3 extends our exploration to a pair-to-pair 
comparison of Test Set A and Test Set B, showing interesting insights 
and relative strengths of the prediction tools alone and combined in the 
AlphaMod pipeline. In detail, in Section 3.3.1, we provide a pair-to-pair 
comparison of the best models predicted. Concluding with Section 3.3.2, 
a meticulous statistical analysis is undertaken to discern the significance 
of the observed differences between the prediction tools and their 
scoring system. Finally, in Section 3.4, we present the computational 
costs associated with the full running of the AlphaMod pipeline. 

3.1. Results on test set A—comparisons on averaged predictions 

3.1.1. AF2 
As delineated in Methods-Step 2, AF2 yields two categories of out

puts: the "unrelaxed" models, which bypass the relaxation process, and 
the "relaxed" counterparts, which are subjected to AF2’s subsequent 
refinement phase. Notably, the pLDDT score is assigned exclusively to 
the "relaxed" models, which are subsequently ranked based on this 
metric. We proceeded to determine the GDT_TS score for each model 
derived from AF2, with the aggregated results encapsulated in (Sup
plementary File 3, Table 1). The overarching mean GDT_TS score, 
computed across all the conclusive (ranked) models for each EU, stands 
at 81.01 ± 18.25, underscoring the predictor’s robust reliability. Inter
estingly, we noted that several models classified as “unrelaxed” have a 
GDT_TS score higher with respect to the corresponding “ranked” models, 
indicating that the relaxing procedure of AF2 sometimes worsens, rather 
than improving, the results (see for more details Supplementary File 3, 
Table 2). 
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Fig. 1. Scheme of the AlphaMod pipeline. AlphaMod is initialized by the Homolog Information Retrieval Engine (HIRE). The input selector S decides the entry data 
as either a single Fasta File or a group of Fasta Files, finding both the templates and Multiple Sequence Alignment (MSA). The Protein Backbone Construction Tool 
(PBCT), launches AlphaFold2 (AF2), using as input the MSAs and templates, producing 10 predictions as PDBs (5 relaxed and 5 unrelaxed). These predictions are 
analyzed by the Structure Model Assessment module (SMA), first by extracting the pLDDT from AF2, and second, calculating the QMEANDisCo score with a web- 
crawler; pLDDT and QMEANDisCo are used to compute BORDASCORE, all these results are stored in the Metrics Data Collector. Moreover, PBCT passes upon 
MODELLER the user criteria (OP1, OP2 and/or OP3), MODELLER will generate 5 new predictions based on the selected criteria. Each option is executed as follows: 
OP1 fetches the information stored in the Metrics Data Collector and selects the first and second best AF2 relaxed models by means of BORDASCORE. OP2 does not 
need any additional information and uses directly the first ranked predictions obtained from AF2. Finally, in OP3 (the test case when the ground truth is known), 
GDT_TS is calculated, the first and second models with the highest GDT_TS are given to MODELLER. Finally, the Comprehensive Model Quality Assessment module 
(CMQA) sequentially applies a series of unsupervised metrics, namely QMEANDisCo, PROCHECK, PROSA, MOLPROBITY, and DOPESCORE, to both AF2 and 
AlphaMod models. It is essential to highlight that the calculation of supervised metrics, specifically GDT_TS and RMSD, is exclusively enabled when the experimental 
structure is available and option OP3 (TEST MODE) is selected. In addition to the unsupervised metrics, all the previously mentioned supervised and unsupervised 
metrics are stored in the Metrics Data Collector for further analysis and evaluation. 
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3.1.2. MODELLER 
The combination in which MODELLER precedes AF2 in the pipeline 

was also considered during our research. In detail, after the execution of 
HIRE (see Methods-Step 1), the top-four templates were given as input to 
MODELLER. When less than four templates were found, we launched 
MODELLER with the available number of templates. MODELLER failed 
to deliver tertiary structures predictions with quality at least comparable 
to AF2 predictions in terms of GDT_TS. Therefore, this option was 
excluded from our pipeline The full pairwise comparisons using the top- 
ranked structures across different methodologies is shown in Supple
mentary File 3, Table 3. 

3.1.3. AlphaMod-OP3 
To assess MODELLER’s potential of improving AF2’s predictions, we 

selected for each EU the two models predicted by AF2 with the highest 
GDT_TS, and launched AlphaMod with OP3 (see Methods, Step 4). We 
averaged the GDT_TS score for the five models obtained by AlphaMod- 
OP3 for each EU, as we did for AF2. The result presented a slight 
improvement (81.61 ± 18.28) with respect to AF2 (Supplementary File 
3, Table 1). By making a pair-to-pair comparison of the average GDT_TS 
scores between AF2 and AlphaMod-OP3, the results indicated that 
AlphaMod-OP3’s models presented a higher average GDT_TS score than 
those obtained by AF2. The highest improvements were obtained for the 
targets T1038-D1 (more than 14 GDT_TS units, see Fig. 2), T1031-D1, 
T1037-D1, T1099-D1 (more than 4 GDT_TS units). These results 
proved that the addition of MODELLER has the potential to improve 

AF2’s predictions, if it is possible to select the two best models from 
which to model with MODELLER. However, all those targets whose 
models created by AF2 obtained a GDT_TS score <50, were not sub
stantially improved by MODELLER. 

3.1.4. AlphaMod-OP2 
When the reference structure of the predicted protein is not avail

able, it is challenging to select the two best models produced by PMCT- 
AF2. An initial approach to face this issue was tested with AlphaMod- 
OP2, in which we used all AF2’s ranked models (five in total) for 
PMCT-MODELLER’s branch execution. Similarly, as with AlphaMod- 
OP3, we calculated the global average GDT_TS on the five models pro
duced by PMCT-MODELLER’s branch (Supplementary File 3, Table 1). It 
is worth noting that the global average GDT_TS score for this procedure 
(80.77 ± 18.62) was slightly lower compared to the previous results 
obtained using AF2 alone. 

3.1.5. AlphaMod-OP1 
In light of AlphaMod-OP2’s results, our focus shifted to a way to 

classify and select the best top two templates like in AlphaMod-OP3 but 
in an unsupervised way, thus without requiring a reference structure 
(ground truth). Consequently, the development of AlphaMod-OP1 
revolved around integrating and possibly improving the assessment 
made by AF2’s pLDDT score and MODELLER’s DOPESCORE [8], by 
shifting on traditional protein 3D-structure quality assessment mea
sures, such as: QMEANDisCo [32], PROSA-Web Z-score [34], 

Fig. 2. Illustration of four predictions of CASP14 Target T1038-D1. On the left side, the best models (i.e. those models with the highest overall GDT_TS score) 
produced with the different procedures: AF2 alone in green, OP1 in orange, OP2 in blue and OP3 in violet. On the right side, from top to bottom: 1st row, plot 
showing the confidence level of AlphaFold2’s prediction (pLDDT) residue by residue, rows 2nd to 5th illustrates a residue-by-residue assessment of the best models 
produced by the different procedures, utilizing the QMEANDisCo metric instead. In detail, 2nd row, AlphaFold2 ranked_0, 3rd row, AlphaMod’s OP3 model 2, 4th 
row, AlphaMod’s OP1 model 1, and 5th row, AlphaMod’s OP2 model 0. The bottom legend shows the number of residues, CASP14 Target T1038-D1 has a total of 
114 residues. 
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MOLPROBITY [35], PROCHECK [36]. This naturally leads to the ques
tion of which among these scores, or what combination thereof, best 
aligns with the representation of the EUs according to the GDT_TS su
pervised counterpart. Firstly, we analyzed the non-linear statistical 
correlation, arranging the predicted models into two groups: one that 
featured predicted models from both AF2 and AlphaMod with the 
highest-ranked GDT_TS and another that evaluated the average GDT_TS 
across each set of predictions (the latter, for the sake of thoroughness, is 
shown in the Supplementary Materials even if does not show relevant 
results (Supplementary File 4, Table 1). Meaningful correlations were 
identified only on pLDDT and QMEANDisCo each exhibiting a robust 
positive correlation with a Rho(p) value exceeding 0.75. Next, the 
Shapiro-Wilk test [37] is applied to confirm the non-normal nature of 
various measures, including GDT_TS, pLDDT, QMEANDisCo, PROSA, 
MOLPROBITY, DOPESCORE and PROCHECK, the p-values are detailed 
in (Supplementary File 4, Table 2). Following this, we implemented a 
normalization technique using robust scaling, which minimizes the 
impact of outliers by adjusting features based on median and inter
quartile ranges. After confirming the non-normality of the distributions, 
we utilized the Wilcoxon test [38], which yielded p-values of 8 × 10-3 

for GDT_TS, 2 × 10-2 for QMEANDisCo, 7 × 10-4 for PROSA, followed by 
consistent values of 0.5 for both MOLPROBITY and DOPESCORE, 
finally, the least significant p-value was found for PROCHECK with a 
p-value of 0.7, (detailed information is available in Supplementary File 
4, Table 3). 

The p-values associated with GDT_TS and QMEANDisCo suggest that 
AlphaMod’s results are statistically significant and can drive AlphaMod- 
OP1 evaluations. The average GDT_TS score recorded with the OP1 
approach was (81.18 + 18.21), demonstrating a marginal enhancement 
compared to the scores achieved using only AF2, with comprehensive 
results detailed in Supplementary File 3, Table 1. A different perspective 
is illustrated at predictions made by AF2 for the whole proteins of targets 
T1024-D0 and T1038-D0, which gave a GDT_TS score significantly 
lower than those made by AlphaMod (Supplementary File 3, Table 4), 
whereas in the case of target T1053 the GDT_TS scores are similar. For 
the whole target T1030-D0, the results of AF2 and AlphaMod were 
similar when examining the average GDT_TS scores. 

3.2. Results on test set B—comparisons on averaged predictions 

To further validate our AlphaMod methodologies, we opted to 
extend their application to an independent Test Set B. This set comprises 
25 single-domain proteins that were introduced following the CASP14 
evaluation [21]. Notably, of these 25 targets, 12 possess more than 40% 
helical content in their secondary structures, while 17 exhibit over 40% 
irregular structures and coils. Only 3 targets feature more than 40% beta 
structures shown in Supplementary File 1, Table 3. Following the 
methodology applied to Test Set A, we began by generating model 
predictions with AF2, then proceeded with the implementation of the 
various AlphaMod-OPs. The full results of the analysis are shown in 
Supplementary File 3, Table 5. Within this dataset, the models produced 
by OP2 demonstrated an average GDT_TS score that closely matched 
those of AF2. In contrast, OP1 and OP3 improved slightly AF2 results. 
On closer inspection, AlphaMod-OP3 and AlphaMod-OP1 models have 
shown a higher GDT_TS score than AF2 models in 72% and 64% of the 
predicted models, respectively. Only one target obtained with AF2 
showed a GDT_TS score lower than 50 (7MSW, it is formed of >40% 
irregular secondary structures and coils), and it was only slightly 
improved by AlphaMod. The average GDT_TS score for targets 7L6U, 
7LV9, 7LX5 and 7M7B presented a gain higher than 4 units (reaching 13 
units for 7LV9). Once again, apparently the presence of a particular 
secondary structure seems not related to the best performances of the 
predictors (Supplementary File 1, Table 3). Moreover, since Terwilliger 
et al. [21] utilized RMSD for comparisons with reference PDB structures, 
we calculated also the average RMSD of the models predicted with AF2 
for each target and compared it with the average RMSD of the models 

predicted with our unsupervised methodologies OP1 and OP2. Complete 
findings are detailed in Supplementary File 3, Table 6 and summarized 
in Table 1. We completed this task using PHENYX [39], mirroring the 
software used by Terwilliger and colleagues. On average, the RMSD 
determined for all models derived through the OP1 process is less than 
that obtained for all models predicted by AF2. On the other hand, a 
one-to-one comparison reveals that 68% of the targets predicted by OP1 
outperform those predicted by AF2. This result is better than the one 
obtained when evaluating the GDT_TS score, previously mentioned at 
64%. Very interestingly, three targets were predicted very badly by AF2 
(RMSD >10), but in two cases (7KU7 and 7LV9) AlphaMod-OP1 was 
able to rescue the final models to an RMSD value of about 5 Å. The 
comparison between the global average RMSD acquired through our 
AlphaMod procedures and those reported by Terwilliger et al. showed 
that our AlphaMod unsupervised procedures yield models with a lower 
RMSD values when compared to the reference PDB structure (see  
Table 1). We were very surprised to find that some targets predicted by 
Terwilliger et al. had a huge RMSD, while the same targets predicted by 
our AlphaMod procedure had an RMSD in line with that of the other 
targets. Since we do not have the structures predicted by Terwilliger 
et al., we are unable to explain the reason for this huge difference in 
performance. By excluding these outliers, both the Terwilliger’s and our 
AlphaMod procedures demonstrate comparable performance. Never
theless, it is worth noting that AlphaMod’s approach exhibits greater 
robustness, featuring only one outlier compared to Terwilliger’s seven 
outliers within a sample of 25 targets (Supplementary File 3, Table 7). 

3.3. Results on test sets A and B 

3.3.1. Pair-to-pair comparison of best models 
In the preceding section, our discussion was centered on average 

scores. Moving forward, this section presents a comparison across 

Table 1 
Average RMSD for the different types of models obtained (domains only) Test set 
B.  

Targets RMSD 
(Å) Test 
set B 

Average RMSD 
(Å) AF2 
Ranked Models 

Average RMSD 
(Å) AlphaMod 
OP1 

Average RMSD 
(Å) AlphaMod 
OP2 

7BRM 0.7* 5.33 ± 2.20 4.20 ± 0.66 4.37 ± 0.78 
7BXT 0.8* 1.60 ± 0.45 3.70 ± 1.34 2.61 ± 1.31 
7C2K 1.0* 2.13 ± 0.65 1.49 ± 0.05 1.62 ± 0.01 
7EDA 21.6 2.26 ± 1.50 1.78 ± 0.53* 3.43 ± 0.11 
7EV9 0.5* 1.61 ± 0.77 2.43 ± 0.66 1.76 ± 0.50 
7KU7 1.7* 12.52 ± 8.09 4.49 ± 0.69 18.31 ± 0.02 
7KZZ 1.4* 2.50 ± 0.10 2.72 ± 0.44 2.59 ± 0.52 
7L1K 14.6 0.64 ± 0.02* 0.64 ± 0.01* 0.65 ± 0.02 
7L6U 1.3* 2.31 ± 0.41 1.91 ± 0.04 2.34 ± 0.10 
7LC6 10.2 0.82 ± 0.06 0.81 ± 0.02* 0.83 ± 0.06 
7LCI 4.1 4.43 ± 0.34 4.09 ± 0.07* 4.59 ± 0.11 
7LS5 0.4* 1.05 ± 0.04 1.08 ± 0.06 1.12 ± 0.05 
7LSX 23.7 1.36 ± 0.08* 1.42 ± 0.03 1.39 ± 0.03 
7LV9 16.4 10.52 ± 6.64 5.47 ± 0.21* 8.72 ± 1.37 
7LVR 1.0* 1.28 ± 0.05 1.23 ± 0.04 1.21 ± 0.02 
7LX5 5.7 2.37 ± 2.28 1.16 ± 0.09* 1.41 ± 0.20 
7M7B 2.9* 3.56 ± 1.82 3.47 ± 0.52 3.06 ± 0.46 
7M9C 6.0 1.47 ± 0.05 1.49 ± 0.02 1.44 ± 0.03* 
7MBY 19.5 1.54 ± 0.32* 1.66 ± 0.59 1.55 ± 0.41 
7ME0 0.4* 0.77 ± 0.30 0.49 ± 0.02 0.85 ± 0.05 
7MJS 7.0 2.51 ± 0.39 2.21 ± 0.05* 2.26 ± 0.11 
7MLZ 15.5 1.88 ± 0.22 1.71 ± 0.01* 1.74 ± 0.07 
7MSW 17.0 16.55 ± 2.36 15.98 ± 0.11 15.45 ± 0.42* 
7N8I 2.6 0.44 ± 0.01* 0.46 ± 0.02 0.45 ± 0.02 
7RB9 0.4* 1.63 ± 0.05 1.60 ± 0.05 1.63 ± 0.04 
Global 

average 
RMSD 

7.06 
± 7.74 

3.32 ± 4.43 2.71 ± 3.05* 3.42 ± 4.37 

Results in bold represent pair-to-pair models obtained with either AlphaMod 
procedure with a RMSD lower than the one obtained by AF2 alone. Results with 
* represent, for each target, the best result in terms of RMSD. 
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AlphaMod’s OP methodologies and AF2, with a focus on the top-two 
best models predicted (in terms of GDT_TS). The selection of these 
premier models for OP1 is based on the BORDASCORE criterion, as 
outlined in the Method Section—Steps 3 and 4 (Supplementary File 5, 
Table 1). The obtained structures are listed in Table 2 together with their 
results for each methodology, further information is provided in Sup
plementary File 5, Table 2. The focus is on the average differences in 
GDT_TS scores and the variability of these scores when juxtaposed with 
the best methods predictions. Out of 72 predictions, AF2 emerges as the 
best method in approximately 38% of cases, a very low margin 
compared to OP1, OP2, and OP3, which excel in 21%, 13%, and 18% of 
cases, respectively. Qualitatively, at the differences in terms of GDT_TS, 
there are some instances when AF2 shows an uptick in performance, 
particularly in contrast with OP2, where there is an average increase of 
0.11 points. Conversely, when juxtaposed with the other AlphaMod 
methods, its performance worsens. Interestingly, upon the exclusion of 

outliers, the performance decline is less pronounced, especially in the 
AF2 versus OP3 comparison. This indicates that these outliers signifi
cantly skew the general findings. In the OP1 versus AF2 setup, there are 
15 targets considered, with an average improvement of 1.60 in the 
GDT_TS scores when OP1 leads. However, this improvement reduces to 
0.67 when outliers are removed, indicating a substantial impact due to 
extreme cases. The standard deviation in OP1, in this setup, is 1.13, 
which tightens to 0.47 without outliers, further highlighting the influ
ence of these extreme values. AF2 shows a standard deviation of 0.97 
with outliers, and 0.69 without them. For OP2 versus AF2, out of 9 
targets, there is an even more pronounced average improvement of 2.05 
in GDT_TS scores (see Supplementary File 5, Table 3). From the above 
results, the most notable improvements are achieved on T1030-D0, 
7KZZ-D1 and 7KU7-D1, with an increase on GDT_TS score of 14.65, 
6.73 and 4.26 units, respectively (see Supplementary File 5, Table 4). 
This outcome shows particular significance as it underscores 

Table 2 
Pairwise comparison of the top-ranked predicted targets across different methodologies including: AF2, OP1, OP2 and OP3.  

Target AF2 AFM- 
OP1 

AFM- 
OP2 

AFM- 
OP3 

Target AF2 AFM- 
OP1 

AFM- 
OP2 

AFM- 
OP3 

Target AF2 AFM- 
OP1 

AFM- 
OP2 

AFM- 
OP3 

GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS GDT_TS 

7BRM- 
D1 

83.82 86.24* 81.49 84.69 7RB9-D1 85.59 85.46 85.39 85.12 T1042- 
D1 

61.32 59.78 59.78 60.60 

7BXT- 
D1 

93.99 90.38 94.71 90.63 T1024- 
D0 

85.68 87.02 65.73 87.02 T1043- 
D1 

25.51 25.84 25.34 27.70 

7C2K- 
D1 

93.70 93.29 91.14 93.48 T1024- 
D1 

90.29 89.90 90.16 89.90 T1045s1- 
D1 

95.62 96.10 96.27 96.59 

7EDA- 
D1 

98.36 92.01 90.00 95.07 T1024- 
D2 

91.18 91.30 91.30 91.79 T1045s2- 
D1 

93.83 92.02 92.62 93.37 

7EV9- 
D1 

97.00 89.69 90.60 89.69 T1025- 
D1 

98.35 98.15 98.25 98.35 T1046s1- 
D1 

97.57 96.87 97.22 97.92 

7KU7- 
D1 

79.63 80.46 83.89* 80.56 T1026- 
D1 

92.64 92.81 92.98 92.47 T1046s2- 
D1 

98.76 98.58 98.40 98.76 

7KZZ- 
D1 

71.90 75.89 78.63* 75.89 T1028- 
D1 

92.98 93.15 92.38 93.15 T1047s1- 
D1 

47.87 46.68 46.45 47.99 

7L1K- 
D1 

97.83 97.83 97.67 97.83 T1029- 
D1 

46.20 46.20 45.40 46.20 T1047s2- 
D1 

89.12 88.61 87.08 87.58 

7L6U- 
D1 

91.35 90.22 86.38 90.22 T1030- 
D0 

53.48 68.13* 67.12 62.64 T1047s2- 
D3 

50.43 50.22 49.78 50.22 

7LC6- 
D1 

97.49 97.31 97.27 97.18 T1030- 
D1 

71.10 68.34 69.64 70.94 T1049- 
D1 

93.28 92.91 92.72 92.91 

7LCI- 
D1 

67.83 67.70 61.87 69.54* T1030- 
D2 

89.50 85.92 82.14 85.29 T1053- 
D0 

88.72 87.76 88.24 88.28 

7LS5- 
D1 

96.52 96.31 95.80 96.21 T1031- 
D1 

94.47 94.47 90.00 94.74 T1053- 
D1 

89.01 89.01 89.26 89.26 

7LSX- 
D1 

94.72 93.80 93.90 94.92 T1032- 
D1 

65.59 65.29 65.00 64.85 T1053- 
D2 

84.65 82.46 82.31 85.96 

7LV9- 
D1 

73.47 69.64 57.40 69.64 T1033- 
D1 

52.75 42.00 50.00 46.00 T1054- 
D1 

89.34 88.99 88.46 88.99 

7LVR- 
D1 

94.29 94.12 94.00 94.29 T1034- 
D1 

95.51 95.19 95.35 95.35 T1055- 
D1 

87.91 88.73 87.91 88.73 

7LX5- 
D1 

93.91 93.66 92.64 94.04 T1035- 
D1 

87.75 88.24 87.01 88.24 T1056- 
D1 

97.48 95.71 95.41 96.01 

7M7B- 
D1 

90.12 90.36 89.41 90.36 T1036s1- 
D1 

83.17 74.80 63.20 74.80 T1065s1- 
D1 

92.86 93.07 93.91 93.07 

7M9C- 
D1 

88.28 86.92 87.69 87.98 T1037- 
D1 

84.71 84.03 86.32* 86.08 T1065s2- 
D1 

97.96 98.47 98.21 98.47 

7MBY- 
D1 

90.96 92.06 91.18 91.91 T1038- 
D0 

86.84 85.13 41.84 87.24 T1074- 
D1 

93.18 93.37 91.67 92.42 

7ME0- 
D1 

99.28 99.28 96.55 99.28 T1038- 
D1 

85.53 81.36 82.89 86.40 T1076- 
D1 

98.98 99.12 99.07 99.12 

7MJS- 
D1 

88.53 88.16 88.35 88.53 T1038- 
D2 

91.78 90.79 90.46 91.12 T1078- 
D1 

94.96 94.96 94.57 94.38 

7MLZ- 
D1 

82.49 83.12 82.36 83.12 T1039- 
D1 

85.25 83.70 80.59 82.92 T1082- 
D1 

91.67 90.33 90.33 90.33 

7MSW- 
D1 

45.01 44.58 41.94 46.15 T1040- 
D1 

56.54 55.96 55.58 57.12 T1090- 
D1 

89.53 89.53 88.87 89.79 

7N8I- 
D1 

98.83 98.83 98.83 99.07 T1041- 
D1 

84.71 85.54 85.12 85.12 T1099- 
D1 

79.35 80.76 82.16 80.62 

Results in bold represent pair-to-pair models obtained with either AlphaMod procedure with a GDT_TS score higher than the one obtained by AF2 alone. Results with * 
represent, for each target, a notable quality increase in terms of GDT_TS score. Results in italic represent pair-to-pair models obtained with either AlphaMod procedure 
with a GDT_TS score equal to those obtained by AF2 alone. 
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AlphaMod’s potential protein quality enhancement. We investigated 
whether the success or failure of the different modeling procedures was 
related to the content in secondary structures of our dataset, to find if 
this procedure is sensitive towards these structural features. 20 of the 
targets belonging to our CASP14 dataset contain mainly helices as sec
ondary structures (>40% of the total structures), whereas only 6 targets 
contain > 40% of beta structures; the targets particularly rich in irreg
ular structures and coils (>40% of the total secondary structures) are 22 
(Supplementary File 1, Table 2). Looking at the data, it seems that no 
relationship exists between the correctness of the predictions and the 
composition of the proteins in terms of secondary structures. Among 
those targets whose GDT_TS increases most with the addition of MOD
ELLER after the AF2 predictions, T1038-D1 is formed mainly by beta and 
irregular structures, T1031-D1 by irregular structures, T1037-D1 and 
T1099-D1 mainly by helices. Those targets for which both AF2 and 
AlphaMod failed to reach a GDT_TS score of at least 50 generally 
contain, as expected, a high quantity of irregular structures and coils 
(T1029-D1, T1043-D1, T1047s1-D1, 7MSW-D1). Finally, in 11% of 
cases, the best models from both AF2 and AlphaMod present an equal 

GDT_TS score, rendering it challenging to determine a clear best- 
performing method. This underscores the fact that no single method 
consistently outperforms the others. When these insights are juxtaposed 
with the earlier analysis, a complex picture emerges. AF2, while often 
the frontrunner, does not maintain unchallenged dominance. OP1, OP2, 
and OP3, exhibit situational efficacy, sometimes rivaling or even sur
passing AF2. The instances of a tie are particularly revealing, suggesting 
scenarios where the methods reach a performance plateau, making them 
indistinguishable in terms of efficacy. This variability in performance 
across the board reinforces the idea that predictive success is highly 
contextual. The data, rather than pointing towards an universally su
perior method, emphasizes the situational effectiveness of each. In 
essence, the quest for the best model is less about absolutes and more 
about understanding the conditional dynamics that play to the strengths 
of each method. 

3.3.2. Statistical analysis 
Analogous to the procedure outlined in Section 3.1.4, a linear cor

relation analysis has been executed and is visually presented in Fig. 3. In 

Fig. 3. Correlation between best scores of supervised metric GDT_TS and unsupervised metrics: pLDDT, QMEANDisCo, MOLPROBITY, PROSA, DOPESCORE and 
PROCHECK. AF2 is represented in red and AFM-OP1 in blue. Panel A: relationship between GDT_TS and AF2’s pLDDT, (p-value=0.01, Rho(ρ) = 0.78). Panel B: 
relationship GDT_TS and QMEAN, AF2: (p-value=0.02, Rho(ρ) = 0.76), AFM-OP1: (p-value=0.02, Rho(ρ)= 0.79). Panel C: relationship GDT_TS and PROSA, AF2: (p- 
value=0.02, Rho(ρ) = − 0.15), AFM-OP1: (p-value=0.01, Rho(ρ) = − 0.18). Panel D: relationship GDT_TS and PROCHECK, AF2: (p-value=0.01, Rho(ρ) = 0.23), 
AFM-OP1: (p-value=0.01, Rho(ρ) = 0.01). Panel E: relationship GDT_TS and DOPESCORE, AF2: (p-value=0.03, Rho(ρ) = − 0.09), AFM-OP1: (p-value=0.03, Rho 
(ρ) = − 0.09). Panel F: relationship GDT_TS and PROCHECK, AF2: (p-value=0.02, Rho(ρ) = − 0.41), AFM-OP1: (p-value=0.02, Rho(ρ) = − 0.27). 
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this case, we focus only on the top-performing models. Particularly, 
meaningful p-values (<0.02) and correlations Rho(p) > 0.78 were 
found only on pLDDT and QMEANDisCo. However, despite this linear 
correlation, a more significant non-linear relationship between GDT_TS 
and QMEANDisCo is found. A permutation test involving the QMEAN
DisCo score in connection with GDT_TS was designed to evaluate the 
statistical hypothesis about the relevance of the relationship between 
GDT_TS and QMEANDisCo (scoring bivariates). More precisely, we 
investigated whether their original bivariate distribution significantly 
deviates from what would be expected by chance as evidenced by the 
random permutation of the scoring bivariates in the AF2 model and the 
AlphaMod models in their various configurations: OP1, OP2, and OP3. 
To achieve this, we selected the best top-two ranked GDT_TS and its 
QMEANDisCo over Test Set A and B associated as bivariate Beta distri
butions, incorporating variable parameters α_1 and α_2. These parame
ters were selected recursively via a grid search method that iterates from 
0.1 to 2.0 by 0.1 steps, with the constraint that the sum of α_1 and α_2 
equals to one. The scores associated with each model are treated as 
distinct statistical distributions, we utilized the symmetrical Kullback- 
Leibler (KL) divergence [40] to evaluate the statistical separation be
tween them. This method allows us to quantify the divergence between 
the probability distributions of AF2 and each OP configuration (OP1, 
OP2, and OP3). The KL divergence is particularly suitable for this pur
pose as it measures the difference between two probability distributions, 
providing a statistical basis for comparison. The core of this analysis lies 
in the calculation of p-values, which serve as indicators of the statistical 
significance of the observed differences. Specifically, these p-values 
assess whether the disparities in the distributions are substantial enough 
to not be attributed to random chance. Our findings present p-values for 
the comparisons between AF2 and each OP configuration, with the 
values being 0.021, 0.019, 0.019, and 0.022 for AF2, OP1, OP2, and 
OP3, respectively (detailed results are available in Supplementary File 4, 
Table 4). For a fair comparison in the permutation tests the seed is fixed. 
These figures suggest that the differences observed are statistically sig
nificant, particularly for the comparisons involving OP1 and OP2, 
underscoring the importance of the configurations in the models’ 
performance. 

3.4. Computational cost 

In assessing the computational costs tied to our methodology, we 
separately monitored the runtimes for AF2 and MODELLER. AF2 typi
cally takes an average of 4 h to generate predictions for each of the 
chosen 72 targets. Conversely, MODELLER’s predictions take an average 
of around 45 s per target when run on MARCONI100 in Bologna (IT). 
However, on a more budget-constrained machine equipped with a CPU- 
I7 and an Nvidia GPU GTX1070, the runtime roughly doubles. Overall, 
the introduction of AlphaMod does not significantly increase the time 
complexity compared to AF2, as detailed in Supplementary File 4, 
Table 5. 

4. Conclusions 

While AF2 has achieved remarkable accuracy in predicting protein 
structure, our study has highlighted the potential for further improve
ment. We have demonstrated that, in principle, by combining this 
cutting-edge deep learning tool with traditional modeling strategies, it is 
possible to achieve a substantial improvement in the quality of a pro
tein’s tertiary structure, especially in terms of GDT_TS. Only where AF2 
fails to achieve high quality results on average and top-two best com
parisons over these targets: T1029-D1, T1043-D1, T1047s1-D1, 7MSW- 
D1, our AlphaMod procedures cannot significantly improve prediction 
accuracy. 

Furthermore, as described in Section 2 and Supplementary File 4, 
Tables 1–4, large-scale protein predictions can be effectively applied, 
thanks to the automation integrated into the AlphaMod pipeline, 

spanning from data retrieval to automatic processing. Finally, our 
pipeline provides a unified platform for comprehensive protein struc
tural quality assessment, encompassing several metrics. This addresses 
the current challenge where these tools are dispersed across multiple 
service providers. AlphaMod, on the other hand, offers an integrated 
solution by centralizing all these quality assessment tools within a sin
gle, easily accessible platform. 

The current pipeline is only the first brick for the development of a 
tool that will also handle heterogeneous information, in addition to 
sequence-related features, to perform better predictions for selected 
subsets of proteins, with non-common structural features. According to 
our research, the addition of supplementary data has the potential to 
improve the predictive accuracy in most of the predicted models. 

Moreover, in future research it would be of great interest to study the 
feasibility of jointly using Supplementary data and AI-based integration 
models to improve predictions in situations where AF2’s performance 
level is below 50%. 
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Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, 
Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, 
Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold protein structure 
database: massively expanding the structural coverage of protein-sequence space 
with high-accuracy models. Nucleic Acids Res 2022;50(D1):D439–44. 

[16] Chowdhury R, Bouatta N, Biswas S, Floristean C, Kharkar A, Roy K, Rochereau C, 
Ahdritz G, Zhang J, Church GM, Sorger PK, AlQuraishi M. Single-sequence protein 
structure prediction using a language model and deep learning. Nat Biotechnol 
2022;40(11):1617–23. 

[17] Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, 
Shmueli Y, Dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A. 
Evolutionary-scale prediction of atomic-level protein structure with a language 
model. Science 2023;379(6637):1123–30. 

[18] Simpkin AJ, Sánchez Rodríguez F, Mesdaghi S, Kryshtafovych A, Rigden DJ. 
Evaluation of model refinement in CASP14. Proteins 2021;89(12):1852–69. 

[19] Scardino V, Di Filippo JI, Cavasotto CN. How good are AlphaFold models for 
docking-based virtual screening? iScience 2022;26(1):105920. 

[20] Kinch LN, Schaeffer RD, Kryshtafovych A, Grishin NV. Target classification in the 
14th round of the critical assessment of protein structure prediction (CASP14). 
Proteins 2021;89:1618–32. 

[21] Terwilliger TC, Poon BK, Afonine PV, Schlicksup CJ, Croll TI, Millán C, 
Richardson JS, Read RJ, Adams PD. Improved AlphaFold modeling with implicit 
experimental information. Nat Methods 2022;19:1376–82. 

[22] Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition 
of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577–637. 

[23] Orengo CA, Taylor WR. SSAP: sequential structure alignment program for protein 
structure comparison. Methods Enzym 1996;266:617–35. 

[24] Ward Jr JH. Hierarchical grouping to optimize an objective function. J Am Stat 
Assoc 1963;58:236–44. 

[25] Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and 
iterative HMM search procedure. BMC Bioinforma 2010;11:431. 

[26] Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, 
Crusoe MR, Kale V, Potter SC, Richardson LJ, Sakharova E, Scheremetjew M, 
Korobeynikov A, Shlemov A, Kunyavskaya O, Lapidus A, Finn RD. MGnify: the 
microbiome analysis resource in 2020. Nucleic Acids Res 2020 8;48(D1):D570–8. 

[27] Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. UniProt Consortium. UniRef 
clusters: a comprehensive and scalable alternative for improving sequence 
similarity searches. Bioinformatics 2015;31(6):926–32. 
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