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Abstract: The article is the first review encompassing the study and the applications of polyester-
based coatings for the corrosion protection of steel. The impact of corrosion and the challenges
encountered thus far and the solutions encountered in industry are addressed. Then, the use
of polyesters as a promising alternative to current methods, such as phosphating, chromating,
galvanization, and inhibitors, are highlighted. The classifications of polyesters and the network
structure determine the overall applications and performance of the polymer. The review provides
new trends in green chemistry and smart and bio-based polyester-based coatings. Finally, the different
applications of polyesters are covered; specifically, the use of polyesters in surface coatings and for
other industrial uses is discussed.

Keywords: anticorrosion; polyester-based coatings; organic coatings; polymerization; bio-based
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1. Introduction

Steel and iron are the most intensively used metals due to their affordability; however,
they are susceptible to corrosion (rust), which is a global epidemic [1]. Corrosion is
defined as the deterioration of metal from a chemical reaction prompted by environmental
factors [2]. There are different types of corrosion, i.e., galvanic, stress, general, localized,
intergranular, fretting, pitting, crevice, etc. [3]. Preventative methods have been reported,
with unsatisfactory results. A corrosion cell consists of an anode, cathode, and an electrolyte
solution; the electrolyte solution is in contact with the metal. Ionic species form at the
anode and dissolve in the electrolyte solution [4]. Electrons flow from the anode to the
cathode and a current is produced, which is used to determine the rate of corrosion of the
metal. Different electrochemical reactions may occur on the surface of the metal, i.e., metal
deposition, anodic, and cathodic reactions. In metal deposition, a metal is reduced from
either a negatively or positively charged state to a neutral state [5]. An anodic reaction is
when the metal reacts with the electrolyte from its neutral state and releases ions to form a
corrosion current [6]. Lastly, in a cathodic reaction, the ions released through the anodic
reaction are consumed by the cathode [7]. Iron (Fe) is the abundant component in steel,
which is obtained by reduction of ores, such as haematite (Fe2O3), in a blast furnace with
carbon. The reduction is written in simple chemical terms as follows:

2Fe2O3 + 3C→ 4Fe + 3CO2 2.3
(iron ore) (coke) (iron) (↑gas)

High temperatures and energy are used in the process of manufacturing steel. Steel
is unstable when exposed to moisture and oxygen and reverts to its original form in their
presence: In simple chemical terms, the process is represented by;

Fe + O2 + H2O→ Fe2O3.H2O 2.4
(iron) (oxygen) (water) (rust).
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Rust is a hydrated oxide of iron. However, the tendency for metals and metal oxides
to revert to their original form can be explained by the thermodynamics of corrosion,
which concerns the equilibrium state of a chemical system and the energy changes that
occur [8]. Although thermodynamics provides information on the tendency of a reaction to
occur, it provides no data on the rate of reaction or, in chemical terminology, the reaction
kinetics [9]. It is known that steel, if exposed to moisture and oxygen, will rust as shown in
the schematic diagram in Figure 1; however, in practice, the important question is usually
how fast it will rust.
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Figure 1. A depiction of the reaction between a coated steel substrate with a water droplet from the
atmosphere.

In South Africa, it is estimated that the cost of repairs, maintenance, and replacement
of metal structures and equipment affected by corrosion is of the order of 4% of its gross
domestic product (GDP) [10]. GDP is defined as the measure of global economic activity;
it is used to monitor the spending on products and services rendered by consumers [11].
Researchers have had a huge interest in exploring the integration of materials by using new
technology and science. However, corrosion remains a major economic problem [12]. Over
the last years, the list of impacts attributed to corrosion have been extensively discussed.
However, the waste of materials and environmental and economic losses are the funda-
mental effects resulting from corrosion due to their high cost implications and pollution.
These effects contribute to the untimely failure of structures, which result in impairments
to human and safety. Figure 2 indicates the proportion of results that are an impact of
corrosion. Thus, there is a need for more research into and understanding of corrosion
prevention and the development of cost-effective paint systems.

Organic coating is the most common method used to inhibit or protect metal against
corrosive mediums. However, there are environmental issues with the use of most coating
systems, including epoxies, acrylic, polyurethanes, etc. Precautionary measures have been
reported to have poor outcomes [13]. Surface coatings are modified films that form a barrier
of protection between the film and the substrate. Reinforced polymers have enhanced
properties when compared to their unmodified form; they can survive severe environments.
However, the short-term protection offered by organic coatings is still costly, requiring the
constant replacement of infrastructure as well as re-painting surfaces, hence there is a need
for enduring alternatives. The current methods include galvanization of metals with zinc,
phosphating, inhibitors, chromium-containing compounds (CCCs), and cathodic protection
(Cp). The acidity level of rain influences the zinc corrosion rate in the outdoor environment
for metallic coatings [14]. Phosphating processes are labor-intensive and render the work
environment hazardous [15]. Cp results in poor adhesion properties while CCCs carry
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environmental and health concerns [16]. There still are drawbacks to the current coating
systems. With the advances in technology bringing indispensable anticorrosion materials,
coated metal-based materials have found wide applications in every aspect of life and all
industries [17]. In brief, polyester-based coatings have attracted interest in recent years due
to their affordability, good chemical resistance, low physical absorption, and stability [18].
Hasniraaiman et al. [19] investigated the effect of graphene dispersion in a polyester
resin using mechanical stirring and sonication method for corrosion protection on carbon
plate. The mixing technique is of great importance with carbon-conducting materials
such as graphene. It was reported that a sonication method is better for the dispersion of
graphene and influences the corrosion protection [20]. The ultra-sonication forces improve
the exfoliation of the graphene sheets, resulting in superior corrosion protection. Many
disadvantages remain for the current coating systems, which has led to the use of surface
coatings. Bahlakeh et al. [21] studied the effect of a polyester and melamine coating based
on neodymium oxide using experimental and molecular dynamics simulation, as seen
in Figure 3 below. The researchers investigated the adhesion and anticorrosion efficacy
when applied to steel substrates. The results showed increased adhesion strength, while
the accelerated salt spray test and electrochemical techniques revealed good corrosion
protection comparable to iron oxides. This study has proved that the use of harmful raw
materials such as chromium is no longer the only option in obtaining coatings with strong
surface properties and corrosion protection efficacy.
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Figure 2. The impact of corrosion.

Polyesters are synthetic resins formed by an esterification chemical reaction with
some occurring naturally [22]. In addition, there are different orientations of polyesters
and, hence, different classifications. The classifications aid in determining the processing,
curing kinetics, and overall applications of the resin [23]. Saturated, unsaturated polyesters
(UPs) and alkyd resins are the main classifications of polyesters; however, vinyl esters
are also classified as polyesters since they have a di-ester group. Vinyl esters are based
on the combination of an epoxy resin with an unsaturated polymer; they have excellent
properties when compared to saturated, unsaturated-type polyesters and alkyd resins [24].
The excellent properties include resistance to solvents, chemical and atmospheric attacks,
as well as superior physical properties and corrosion protection [25].
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However, the use of polyesters for corrosion protection has been neglected due to the
high cost relative to the other polyesters as well as the short shelf life [26]. In this regard,
the modification of polyesters with nanomaterials has been of interest to significantly
improve the properties of surface coatings [27]. Developments of non-toxic polyester-based
coatings have the potential to address a wide range of pollution problems, such as air
pollution and water pollution, generated during the production of conventional polyester
coatings [28]. The anticorrosion properties of polyester resin modified by nanocomposites
intended for steel are of interest. The goal is to produce a bio-based polyester coating with
minimal cost by implementing natural products as well as modifying with nanomaterials.
The few review articles in the literature about polyesters investigate the synthesis and
applications from a different point of view. There is particular emphasis on the curing
kinetics [29–32], bio-based polyesters derived from renewable resources [33–35], and the
thermal decomposition of polyesters [36–39]. The scope for this review is vinyl esters, their
polymerization techniques, and the crosslinking processes; this is the first such inclusive
study. In addition, the use of vinyl esters as surface coatings and the incorporation of
nanomaterials for corrosion protection are described. The literature review section extends
the current use of polyester-based coatings for corrosion protection and improves the
properties of polyester coatings.

2. Polyesters

Polyesters are polymers formed from a dicarboxylic acid and a diol by a polyconden-
sation process. Polyesters were first discovered by W.H. Carother while he was working
for DuPont; however, his research was incomplete. In 1941, British scientists Whinfield
and Dickson discovered the synthetic polyester fiber polyethylene terephthalate (PET) [40].
Polyester because popular in the 1970s due to its inexpensive and durable nature. Polyesters
have various polymer backbones formed by esterification condensation; their applications
depend on the parameters and the resulting orientation of the polymer chain [41]. The pro-
duction of polyesters includes the addition of catalysts, promoters, curing agents, binders,
solvents, and pigments. The characteristics of polyesters include strong fibers, mechanically
durable, hydrophobic, retention of their original form, and easy to wash and dry. The draw-
backs associated with polyesters are their low melting point, moisture absorption, toxicity,
gelation during polycondensation reactions, and environmental and health hazards [42,43].
The global market for polyesters is set to increase by an average of more than 5% annually
by 2020 due to the demand for and applications of polyesters [44].

Polyesters can either be thermoset or thermoplastic polymers. Thermosets are formed
by a compound with more functionality (covalent bonds) while thermoplastics are con-
nected by weak intermolecular forces (see Figure 4) [45,46]. The rigid network structure
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formed by thermoset polymers gives rise to various applications due to the properties they
possess [47]. Thermoplastic polyesters, PET and polybutylene terephthalate (PBT), are
commercial products that are commonly used in the packaging industry [48]. Polyesters
are classified by the orientation of the polymer chain as unsaturated, saturated polyesters,
alkyd resins, and vinyl esters, respectively.
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2.1. Unsaturated Polyesters

UPs are the largest group of polyesters. The backbone consist of alkyl thermosets
resin [49]. The unsaturation in these polymers is due to a double or an olefin triple bond in
the hydrocarbon chain of either the acid or alcohol. Poth et al. [50] defined UPs as building
blocks of polycarboxylic acid-containing double bonds at the alpha position of carboxyl
groups or their derivatives. UPs have been used since the 1930s due to their capability
to be reinforced with other materials. Samsidin et al. [51] investigated an unsaturated
polyester by modifying it with graphene grafted with silane at various weight percentages
for application as a primer to carbon steel metal plates. The unsaturated polyester has poor
mechanical and corrosion resistance when applied on its own, but adding a reinforcing
agent to the polyester results in optimum performance of the primer coating. Graphene
possesses good physicochemical properties; however, it has been reported in the literature
that incorporation into polyester resin affects the polarity, which in turn affects the level
of corrosion protection. Therefore, the researchers incorporated a silane coupling agent to
compatibilize and improve the interaction of the polyester and graphene. The polymer
was tested for corrosion using the immersion test and the Tafel test. It was discovered
that the addition of 3% of saline solution to the polyester and graphene gives the lowest
corrosion rate, of 0.148 mmpy, and the immersion test corroded area improved by 50%. A
wide range of physical and chemical properties can be obtained from UPs depending on
the application of the resin [52]. A chemical reaction illustrating the formation of UP resin
from fumaric acid and methanol is presented in Figure 5; dimethyl fumarate is classified as
an ester and used in the medical industry as an activator for some medications.
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UPs are relatively inexpensive, mechanically strong, and possess tunable thermal
properties. However, further modification of UPs properties with different fillers, additives,
and pigments is a stimulating topic for advanced technology purposes [53]. The polymer
can be reinforced with different inorganic and organic particles for better resistance to
corrosion, weather, and flame-retardant properties [54]. The crosslinking of the polymers
depends on the balance of the catalyst, inhibitors, and promoters [55]. In particular, the
extent of cure depends on the materials used in the polymerization; the impenetrable
structure is formed by crosslinking with oxygen, heat, and light [56]. The environmental
aspect to reduce the amount of volatile used in UPs as crosslinkers and catalysts has been of
great interest in attempts to minimize air pollution [57]. Li et al. [58] produced a self-curable
UP, not by using crosslinking monomers but by adding vinyl groups on the end of the
polymer chain to solve the problem of air pollution. The self-crosslinking reaction rate
was seen to be greatly induced by the radical initiator (benzoyl peroxide) by increasing the
polymerization reactivity attributed to the radical homopolymerization of the conjugated
product. The raw materials commercially available for the production of UPs are petroleum
based. The chemical structures of the acids and alcohols used in the synthesis of UPs
are illustrated in Figures 6 and 7, respectively. The acids include organic compounds,
dicarboxylic acids, and aromatics; their applications are in the pharmaceutical, textile, and
food industries [59]. The glycols and allyl alcohol are organic compounds used as raw
materials in the production of polyesters and other pharmaceutical applications [60].

The interest in environmentally friendly UP resins has been extensively studied due
to the worsening problem of air pollution. Bio-based UPs have been investigated to reduce
the volatiles currently generated in the production of these polymers [61]. The use of
renewable resources such as polymeric materials has been widely investigated due to the
depletion of our fossil fuel reserves [62]. Dai and colleagues replaced petroleum-based
with a bio-based UP 2,5-furandicarboxylic acid (FDCA) and itaconic acid. It was found to
be thermally stable at 299 ◦C, with a 5% weight loss of the degradation temperature. The
flexural strength increased from 116.8 to 122.8 Mpa with the inclusion of 6.8% FDCA in the
polymer matrix. However, the glass transition temperature decreased from 141.7 to 127.6 ◦C,
attributed to the crosslinking density induced by the double bond in the polymer chain.
They concluded that bio-based UPs are comparable to, and even better than, petroleum-
based UPs and can be applied instead [63]. Zhang et al. [64] reported the formulation of an
environmentally friendly coil coating primer using a water-based saturated polyester. The
effect of pretreatments, polymerizing agents, and the addition of fillers was investigated.
Pretreatment is an essential part of coil coating of metal substrates, resulting in improved
adhesion to the surface and overall good quality of the coated film. The type of additives
used influences the quality of the overall coating; environmentally friendly pigments
ZnMoO4, Zn3(PO4)2, AlH2P3O10, and Zn3Al(PO4)3 were instead of highly toxic chromates
and lead-based pigments. The resulting coating showed excellent salt spray resistance at
360 h, good mechanical properties with 2H pencil hardness, and superior adhesion with
minor improvements to the surface properties. Interest in the development of bio-based
raw materials for coatings is increasing; however, cost implications and the availability of
materials remain constraints.
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2.2. Saturated Polyesters

Saturated polyesters are a type of polymer without hydroxyl groups resulting from
the use of excess polyol or modifying the formulation [65]. Generally, a reaction between
a dibasic acid with a diol will give a saturated polyester with an equivalent ratio poly-
condensation process. They are linear and possess structures similar to simple polymers.
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Depending on the degree of polymerization, they are either solid or highly viscous [66].
The production of terephthalate follows the scheme in Figure 8.
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Figure 8. Reaction for the synthesis of a dibasic acid terephthalate.

Terephthalic acid is a dibasic acid widely used for saturated polymers because of its
chemistry. The esterification reaction is a condensation reaction initiated by the carboxyl
group that can either be prepared by direct esterification, ester interchange process [67],
or the reaction between a dihalide and an acid [68]. All the processes described form
low-molecular-weight polymers, but these can be made into high-molecular-weight poly-
mers by increasing the temperature. Other examples of saturated polyesters include
poly(hexamethylene adipate), poly(ethylene adipate), di-isocyanate modified polyester,
and poly (hexamethylene terephthalate). A condensation reaction between dimethyl tereph-
thalate and ethylene glycol, giving a PET polymer, is illustrated in Figure 9.
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polyester PET.

Saturated polyesters have various properties, including high resistance to abrasion,
bacteria, resistance to chemical attack, high strength, and flexibility, and possess good
dielectric properties [69]. Their hydrophilic nature is responsible for the poor mechanical
properties. Environments with high temperatures account for the decreased structural
properties of saturated polyesters [70]. Lee and colleagues [71] investigated the synthesis
of four types of flexible polyester resins with urethane polyol of polycarbonatediol (PCDL)
isocyanate and carboxylic-terminated polyester pre-polymer. It was found that increasing
the concentration of the polyol by approximately 300 ppm increased the flexibility of the
polymer observed from the Fourier transform infrared (FTIR) spectrum detected at 1240
and 1760 cm−1 and the increased intensity of these bands. This was attributed to the soft
segment and highly rubbery nature of the urethane polyol monomer. The polymer cures by
free radical reactions, which are related to aging and oxidation. Dutta et al. [72] prepared a
short oil polyester resin based on Mesua ferrea L. (Nahar) seed oil for stoving paint; the
morphology and thermal stability were investigated. They found that the Nahar-based
paint has excellent properties when compared to a castor oil-based stoving paint; however,
the corrosion resistance was the same. They reported that this was due to the strong triazine
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and phenyl moieties as well as the three-dimensional (3D) network. Furthermore, research
articles have been published based on saturated polyesters and their modification, as well
as their use in anticorrosive coating [73,74].

2.3. Alkyd Resins

A reaction between a polyhydric alcohol and a fatty acid followed by a reaction with a
dibasic acid gives an alkyd resin [75]. Glycerol is the most common type of polyalcohol
used and phthalic anhydride is used as a polybasic acid. Alkyds can be modified by
substituting a polybasic acid with a monobasic acid [76]. The polycondensation reaction
between glycerol and phthalic anhydride giving polyester glyptal alkyd resin is illustrated
in Figure 10.
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Other polybasic acids used include maleic anhydride, fumaric acid, and isophthalic
acid and the polyols used include ethylene glycol, trimethyloethane, and neopentyl glycol,
among many others [77]. The properties of alkyds include compatibility with other coating
polymers [78]. Alkyd resins have applications in paints, thermosetting polymers, and the
printing industry [79].

2.4. Vinyl Esters

Vinyl esters are polymers derived from vinyl alcohols [80]. The reaction of glycidyl
acrylate and glycidyl methacrylate with bisphenol A through an esterification process is one
example of forming the vinyl esters [81]. The functionalities are based on the combination
of epoxy resin with an unsaturated polymer. There are very reactive with polar groups that
give the excellent properties associated with vinyl esters. Vinyl esters are easy to handle
at room temperature, which gives greater control over the curing rate [82]. However, the
short shelf life is a drawback for quality control. A reaction to form a vinyl ester resin is
illustrated in Figure 11.

Vinyl esters are sometimes classified as a polyester but they are di-esters due to
the backbone of the chain that contains a link of ether groups [83]. The crosslinking is
similar to that of UPs; however, the physical properties are superior due to the presence
of olefin groups in the polymer chain [84]. The excellent properties of vinyl esters include
good mechanical strength and resistance to chemical, solvent, and corrosion attacks [85].
Zhang et al. [86] studied the effect of isothermal temperature on the curing extent, gel
time, rheology, and the mechanical properties of vinyl ester resin. The researchers found
that the extent of cure depends on the isothermal temperature, while the tensile strength
(higher elongation) increased with the increase in crosslinking density. The shear storage
and loss modulus at the gel point were also observed to decrease with increases in both
the isothermal temperature and the heating rate. The formation of micro-gels during the
gelation process was the reason for this observation.
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The chemical and physical properties of vinyl esters are due to the size, the level
of the polarity of terminal groups, arrangements of the monomers along the chain, and
molecular weight [87]. Bio-based vinyl esters have been of most interest to improve the
thermal and mechanical properties of vinyl esters. Winkler et al. [88] studied the thermal
and mechanical properties of fatty acid starch esters (FASEs) by varying the degree of
substitution of ester groups. The thermal stability was improved by more than 50 ◦C,
which attributed to the starch obtained directly from plants while the mechanical properties
decreased due to the supermolecular network of the polymer. It was concluded that the
esterification process improves stability by reducing the rate of degradation of the starch.
Vinyl esters tend to possess high molecular weights since nothing is eliminated during
polymerization. Vinyl esters may be considered to be substituted ethylene due to their
close relations to many polymeric coating and plastic resins, e.g., polyethylene, polystyrene
(PS), polyvinyl chloride (PVC), and synthetic rubber [89]. Common resins commercially
available in the market are listed in Table 1.

Table 1. Common resins on the market [90].

Resin Structure Polymer Properties Application
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The different properties of vinyl ester resins are important for specific applications as
shown in Table 1 above. The reactions to form the different commonly used vinyl esters
are not the same, resulting in various reaction kinetics [91]. The polymerization rate is
influenced by the resonance stability from the initiation step, the polarity of the olefins,
and the steric hindrance [92]. The reactivity of vinyl esters has been enhanced by utilizing
nanoparticles due to their high strength and high surface area [93]. Brand et al. [94] reported
a novel method to tailor cellulose nanocrystal (CNC) using vinyl esters and found that the
hydroxyl groups on the surface of the nanoparticles greatly influence the reaction efficiency
as well as the kinetics. The influence was associated with either the kinetics being controlled
by the diffusion of reactant and/or the catalyst within the CNCs agglomerates. The rate of
reaction is influenced by the nucleophilicity of the surface on the hydroxyl groups. Anand
and colleagues used glass fiber-reinforced composites at elevated temperatures to form
a hybrid polymer composite (Ni-P coated glass fiber/Al2O3 nanowire-reinforced vinyl
ester composite). The results showed improved storage modulus by 210% for the vinyl
ester with 0.75 wt% Al2O3 nanowires and 44% Ni-P/GF as the reinforcement compared to
glass fiber as the only reinforcement material. An increase in the start and end temperature
from 450 to 505 ◦C, respectively, in the thermal stability of the reinforced composite [95].
Vinyl esters are formed by various methods according to the application, as previously
mentioned; below is a more detailed discussion of the different polymerization reactions.

2.4.1. Polymerization of Vinyl Ester

There are four polymerization techniques for polymers: bulk, solvent, suspension,
and emulsion processes. It has been mentioned that they are considered addition products
of various epoxide resins and unsaturated acids. Many patents have been reported on
the synthesis of vinyl esters ever since their discovery in the 1960s [96–103]. Oxidation
is the degradation of the polymer during polymerization, which is a problem; however,
it is minimized by the use of catalysts and reducing agents [104]. Polymerization at
low temperatures yields polymers with a uniform backbone and high molecular weight,
attributed to the slow reaction rates [105].

Primarily, bulk polymerization technique is a straightforward method of all four pro-
cesses. The degree of polymerization in bulk polymerization is low due to the suspension
of the monomer [106]. The processing is conscientious and requires a temperature control
system. Some examples are PS, polyethylene, PVC, and polymethyl methacrylate. Sec-
ondly, solvent polymerization utilizes organic catalysts to form precipitation [107]. The
polymer formed is expensive, tangible, and soluble in most organic solvents and has a
high viscosity [108]. It is used for the production of polyvinyl alcohol (PVA), polyacryloni-
trile, PVC, polyacrylic acid, polybutadiene, etc. Suspension polymerization is an aqueous
process that forms stable colloids. Agitation is used to disperse the molecules to form a
suspended solution, also referred to as bead polymerization [109]. Some examples include
the production of PVC, polyvinyl acetate, PS, styrene-divinyl benzene, etc. Lastly, in emul-
sion polymerization, the monomer is emulsified in water. It is a commonly used method
because of its ease of modification and the yield of high molecular weight polymers. Fast
polymerization rates minimize production time, and the final products do not need further
modification. Webster and his colleagues synthesized a cyclic carbonate functional polymer
via the free radical solution copolymerization of vinyl ethylene carbonate with vinyl ester
monomers [110]. They reported that the coatings produced had excellent solvent resistance
to xylene, butyl acetate, dimethylformamide, propylene glycol monomethyl ether, methyl
amyl ketone, ethyl ethoxypropionate, and propylene glycol monomethyl ether acetate. The
solvent resistance was attributed to the amine crosslinkers that were utilized in the synthe-
sis of the polymers. Production efficiency minimizes troubleshooting in the manufacturing
process while also costing the company lots of money. Both the suspension and emulsion
processes give resin that is less viscous and thermally stable; however, they are easily
contaminated [111]. The crosslinking of vinyl esters resins is different from polyesters;
however, all follow free radical polymerization.



Polymers 2022, 14, 3413 12 of 23

2.4.2. Free Radical Polymerization

There are four steps involved in the free radical polymerization process: initiation,
propagation, chain transfer, and termination. To start the polymerization, initiation is
required to form a radical. Initiators are responsible for the crosslinking and the curing
process of the resin [112]. A monomer reacts with a small amount of an initiator to
produce a free radical. The radical formed in the initiation step reacts with the monomer
to grow the polymer chain. The transfer of the radical can follow different pathways,
either by a direct transfer to a monomer or another species or by the transfer of the radical
to the solvent [113]. When the polymer has no growth, termination can then occur by
two processes: coupling or disproportionation of the growing polymer. Free radicals
are formed by several methods, including thermal decomposition and photochemical of
peroxides azo compounds including their derivatives [114]. The polymer after the process
of polymerization is then hardened, which is curing to a hard film, by adding catalyst
as well as modifiers [115]. The vinyl ester chains form a 3D network structure that is
crosslinked and this is the curing process.

2.4.3. Crosslinking of Vinyl Esters

Vinyl esters follow the same mechanism as polyester by forming bonds with the side
groups of a polymer chain. However, in this case, the polymerization of a vinyl ester is by
free radicals, which initiates the crosslinking process. The initiator is responsible for the
crosslinking of the resin; it can, however, be affected by heat, accelerators, and promoters
in the polymerization. Ionization radiation is used to crosslink vinyl ester, which uses high
energy, while electron radiation uses high quantum energy and forms the radical directly
from the resin [116]. Ultraviolet radiation (UV) is also used with lower quantum energy by
using photo-initiators to decompose the light and generate free radicals [117]. Radiation-
curable coatings are promising because they are solvent-free, which is environmentally
favorable [118]. An example of the crosslinking mechanism is illustrated in Figure 12.
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The curing reactions of vinyl ester have been extensively studied and various kinetic
models have been proposed [119–121]. Gelation and vitrification are the phenomena mostly
investigated in the curing of vinyl esters. Gelation is defined as the time where a long
polymer chain with high molecular weight is formed, whereas vitrification is defined as
the temperature in which the glass transition (Tg) is equal to the curing temperature of
the resin [122,123]. The different phenomena can be represented in a time vs temperature
transformation cure diagram. The three states (rubber, liquid, and glass) that occur are
represented in Figure 13 above. The gelation, decomposition, and Tg of a polymer are
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important aspects that should be considered to obtain a product with satisfactory properties.
The different states that occur determine the thermosetting properties of the polymer.
The thermosetting properties determine the handling and processing due to the strong
dependence on gelation and vitrification [124,125].
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Differential scanning calorimetry has been utilized to study the kinetics of curing
processes, which include the degree of cure and the time it takes to cure [126]. The
polymerization and curing kinetics are mostly investigated with polyesters and vinyl esters,
but not much has been reported on their corrosion protection on steel. Cook et al. [127]
reported the curing kinetics of dimethacrylate-based vinyl ester resin and their thermal
properties and found that temperature has an effect in the three different steps in a free
radical polymerization. All the different classes of polyesters are applied in different
industries due to their properties as well the network structure. Vinyl esters are neglected
due to the high cost of the polymer resin and its production. The corrosion protection of
vinyl esters has not been explored; thus, there is a need to review this phenomenon to
understand the reason.

3. Developments in Polyester-Based Coatings

Similar work on polyester-based coatings and corrosion protection is outlined in this
section. The articles and reviews on polyester-based coatings/resin as corrosion protec-
tion of steel and other metal substrates have been reviewed. Dai et al. [128] synthesized
bio-based unsaturated polyester resins and their application in water-based coatings cured
by UV radiation applied on a tin plate substrate. Three polyesters were formed with
good properties and the reduction of the emission of volatile organic compounds was
achieved in this production. Lee and his colleagues synthesized and characterized the
polyester-based nanocomposites coatings for application in the automobile for pre-coated
surfaces [129]. The polyethylene (PE) polymer was polymerized with various clay nanopar-
ticles to form a composite; the pre-coated metal improve productivity. Good dispersion of
the organically modified MMT in the PE polymer improved the mechanical, viscoelastic,
and anticorrosion properties. The application using roll coating processes instead of a wet
coating process decreased the problem of air pollution that occurs during evaporation.
However, polyester-based compounds still have many drawbacks, such as the generation
of volatile organic compounds, high labor intensity, emission of harmful by-products,
and high costs. Atta et al. [130] studied unsaturated polyester resin based on rosin maleic
anhydride adduct for the corrosion protection of steel. The findings of the study revealed
that unsaturated polyesters based on the rosin adduct can be used for corrosion protection
of steel with improved properties.
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Corrosion protection of carbon steel oil pipelines by unsaturated polyester/clay com-
posite coatings was also investigated by Ramesh et al. [131]. The results indicated that the
protected film surface stability and its resistance to dissolution were the crucial parameters
in corrosion protection when applied to carbon steel. In a different study, Ramesh and
his colleagues investigated silicone polyester blended coatings for corrosion protection.
The hybrid system showed to have protection efficiency for more than 30 days, as well as
good thermal properties. In references [132], the synthesis and characterization of hyper-
branched polyester-urethane-urea (k10-clay) hybrid coatings was reported. The formation
of 63% condensation product was achieved while the hydrophilicity of the hybrid coating
is increased, attributed to the direct proportion increase in the clay and urea ratio. A similar
study by Piazza et al. [133] showed that polyester-based powder coatings with montmoril-
lonite (MMT) nanoparticles improved the anticorrosive properties when applied to carbon
steel substrates. However, the thermal stability of the coating was decreased when higher
concentrations of MMT were used, which was attributed to the oversaturation of the clay
in the polymer matrix. Chen et al. [134] investigated the in situ polymerization and charac-
terization of polyester-based polyurethane/nanosilica composite. It was reported that the
chemical interaction in the polymerization improved the mechanical properties due to the
nanoparticles being located in the interface and surface of the polymer when applied to
tinned iron. The corrosion performance improvements of hot-dipped galvanized steel by
electrodeposition of epoxy resin-ester modified BTSE (bis-tri-ethoxy-silyl-ethane) coatings
were reported by Xue and colleagues [135]. They showed that coating using electrodeposi-
tion achieved better corrosion protection than immersion coating, which was attributed
to the uniformity and non-porosity of the films. The application process of coating affects
the overall performance of the coating. The excellent properties of polyesters will reduce
the need for re-application processes and replacement of damaged structures affected by
corrosion as depicted in Figure 14.
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Figure 14. The degradation mechanism of a coated metal exposed to NaCl for 30 days from the initial
state, when there was an attack from the atmosphere and the resultant product with rust.

Vinyl esters are mostly used for excellent mechanical and adherent properties and
resistance to corrosion attack [136]. However, the short shelf life is a drawback for quality
control. Gopi et al. [137] synthesized and characterized the corrosion protection of poly (N-
vinyl carbazole-co-glycidyl methacrylate) coatings applied on low nickel stainless steel. The
results showed that the ratio of the copolymer improved the corrosion protection in 0.5 M
H2SO4 medium by the formation of a barrier effect from the polymer layer. The protection
efficiency is highly dependent on the composition of the copolymer. In another study,
Hollamby and colleagues investigated the hybrid polyester coating incorporating func-
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tionalized mesoporous carries for the holistic protection of galvanized steel surfaces [138].
A 96% corrosion efficiency was achieved, attributed to the use of a dense polymer and
mesoporous silica nanoparticles.

Ali et al. [139] developed a new polyester acrylate resin from palm oil for wood appli-
cations. Trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA)
proved to be more suitable diluents with palm oil, producing a stable coating. The use
of renewable resource materials such as palm oil makes the coating an environmentally
friendly option with the UV radiation-curable feature saving energy. The process to de-
velop new, innovative ways of polyester production has increasingly becoming the focus
of the paint industry. This is seen by researchers such as Abbate et al. [140] reporting
on a novel reactive liquid rubber with maleimide end groups for the toughening of the
unsaturated polyester resins. The amino-terminated butadiene–acrylonitrile copolymer
showed higher toughness at low concentrations when compared to the unmodified liquid
rubber. The modification of polymers with nanoparticles or macro particles has been
studied and proved to highly improve the efficacy and overall performance of the polymer
matrix. Marian et al. [141] investigated the thermal properties of polyester/graphene oxide
and graphite by thermomechanical analysis. Graphite was found to have an insignificant
influence on the thermal properties than graphene oxide attributed to the coefficient of
linear thermal expansion (CLTE). The use of polyvinyl chloride (PVC)-based plastisols
emits fumes such as phthalates, which encouraged the paint industry to focus its research
on producing paint formulations with additives for improved corrosion protection on metal
surfaces that were environmentally friendly [142]. However, through the incorporation of
nanoparticles and nanostructures, a paint can, for instance, be made conductive [143], more
scratch resistant [144], compatible with surfaces, and more resistant to fire and heat [145].
These improvements are partly due to the advantage conferred by nanoparticles having
significantly larger surface areas than ordinary micron-sized particles, which increases
chemical reactivity [146]. Many disadvantages remain for the current coating systems;
hence, protective surface coatings are used.

4. Applications

The applications of polyesters and vinyl esters depend on the properties of the resin.
Different industries apply polyester and vinyl ester resin due to their excellent properties as
already discussed. The different industries are outlined in Table 2 and the potential growth
in the application of biodegradable polymers is depicted in Figure 15.
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Table 2. Other applications of polyesters.

Industry Type of Polyester Properties Reference

Transportation

• Polybutylene-
terephthalate
(PBT)

• Poly (ether
sulfones) (PES)

• High resistance
to temperature

• High strength
• Hardness
• Excellent sliding

properties
• Electric

insulation
• High resistance

to abrasion and
modulus

[148–150]

Electrical
• Polypropylene

(BOPP)

• Dry without
losing volatiles

• Excellent
mechanical
strength

[151–153]
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Table 2. Cont.

Industry Type of Polyester Properties Reference

Industrial
applications

• Polyvinylidene
fluoride (PVDF)

• Fluorinated
ethylene
propylene (FEP)

• Chemical
resistance

• Good corrosion
properties

• Longer shelf life
prolongs the
lifespan of the
equipment

[154–158]

Construction
Ethylene
tetrafluoroethylene
(ETFE)

• Elasticity
• Structure with

lower weight
• Resistance to

thermal changes
• Mechanically

strong
• Chemical

resistance

[159,160]

5. Conclusions

The development of polyester-based resins has primarily been explored in the polymer
packaging industry. The thermal, kinetic, and flame-retardant properties of polyester resin
are mainly considered. Different synthesis methods have been developed for polyester
resins with excellent properties, resulting in the publication of many patents. There is still a
need to reduce the energy consumption in the coating industry to reduce carbon dioxide
emissions and production costs. The problem of volatile organic compounds (VOCs)
is the reason why there are limitations in the use of these polymers. Powder coatings
have been mostly used instead of solvent-borne coatings to reduce the use of VOCs. The
conversion of biomass to the synthesis of bio-based polyesters has been explored as a means
to prevent the depletion of natural resources. Blending polyesters with other polymers
has been largely attempted to overcome the limitations of the polymers and enhance
the properties of the end functional polymer, such as corrosion protection. Corrosion
protection has been investigated by using blends instead of neat polyester polymers. The
curing of polyester remains a highly investigated topic for this group of polymers. Hyper-
branched polyesters have been explored for their hydrophilicity in coatings. Untreated steel
and mild steel substrates are seldom used for the application of polyester coatings. The
corrosion protection of polyester coatings on steel is not reported because of the high curing
temperatures needed. Vinyl esters are mostly used for excellent mechanical and adherent
properties and resistance to corrosion attack. The production of vinyl esters compared to
polyester coating will be costly, but the excellent properties will reduce the frequency of
the re-application process and replacement of damaged structures. There are a few review
articles focusing on polyesters; however, there is still a need for more research that presents
an overview of polyesters and vinyl esters coatings for corrosion protection from different
points of view.
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