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Simple Summary: Endobronchial ultrasound-guided transbronchial aspiration is a minimally in-
vasive and highly accurate modality for the diagnosis of lymph node metastasis and is useful for
pre-treatment biomarker test sampling in patients with lung cancer. Endobronchial ultrasound image
analysis is useful for predicting nodal metastasis; however, it can only be used as a supplemental
method to tissue sampling. In recent years, deep learning-based computer-aided diagnosis using
artificial intelligence technology has been introduced in research and clinical medicine. This study
investigated the feasibility of computer-aided diagnosis for the prediction of nodal metastasis in
lung cancer using endobronchial ultrasound images. The outcome of this study may help improve
diagnostic efficiency and reduce invasiveness of the procedure.

Abstract: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a valid
modality for nodal lung cancer staging. The sonographic features of EBUS helps determine suspicious
lymph nodes (LNs). To facilitate this use of this method, machine-learning-based computer-aided
diagnosis (CAD) of medical imaging has been introduced in clinical practice. This study investigated
the feasibility of CAD for the prediction of nodal metastasis in lung cancer using endobronchial
ultrasound images. Image data of patients who underwent EBUS-TBNA were collected from a video
clip. Xception was used as a convolutional neural network to predict the nodal metastasis of lung
cancer. The prediction accuracy of nodal metastasis through deep learning (DL) was evaluated using
both the five-fold cross-validation and hold-out methods. Eighty percent of the collected images were
used in five-fold cross-validation, and all the images were used for the hold-out method. Ninety-one
patients (166 LNs) were enrolled in this study. A total of 5255 and 6444 extracted images from the
video clip were analyzed using the five-fold cross-validation and hold-out methods, respectively.
The prediction of LN metastasis by CAD using EBUS images showed high diagnostic accuracy with
high specificity. CAD during EBUS-TBNA may help improve the diagnostic efficiency and reduce
invasiveness of the procedure.

Keywords: EBUS-TBNA; echo B-mode imaging; deep learning-based computer-aided diagnosis;
nodal staging

1. Introduction

Endobronchial ultrasound-guided transbronchial aspiration (EBUS-TBNA) is a mini-
mally invasive and highly accurate modality for the diagnosis of lymph node (LN) metasta-
sis and is useful for pre-treatment biomarker test sampling in patients with lung cancer [1].
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According to the current guidelines for lung cancer staging, EBUS-TBNA is recommended
as the best first test for nodal staging prior to considering surgical procedures [2].

During EBUS-TBNA, multiple LNs are often encountered within the same nodal
station. In this process, selecting the most suspicious LN for sampling is important, consid-
ering the difficulty of sampling all LNs using EBUS-TBNA under conscious sedation. Thus,
EBUS image analysis is useful for predicting nodal metastasis; however, it can only be used
as a supplemental method to tissue sampling [3]. We have previously reported the utility of
six distinctive ultrasound and Doppler features on EBUS ultrasound images for predicting
nodal metastasis [4,5]. However, categorization of image characteristics was not reliable
owing to the fact it was subjective and varied significantly with the operator. Therefore,
we sought an objective method to predict nodal metastasis. Elastography is a potential
solution since it can visualize the relative stiffness of targeted tissues within the region of
interest and helps to predict LN metastases. Moreover, it uses objective parameters such
as a stiff area ratio [6,7]. However, elastography requires additional operations during the
procedure, and its parameters do not reflect real-time values.

In recent years, deep learning (DL)-based computer-aided diagnosis (CAD) using
artificial intelligence (AI) technology has been introduced in research and clinical medicine.
CAD has been used for radiology, primarily in the areas of computed tomography (CT),
positron emission tomography-CT (PET-CT), and ultrasound images, and for the diagnosis
of several tumors, such as breast cancer and gastrointestinal tumors [8–11].

If real-time CAD-based prediction of nodal metastasis during EBUS-TBNA is made
possible, the operator can easily identify the most suspicious node for diagnosis, thereby
reducing the procedure time of EBUS-TBNA. The well-experienced EBUS operator could
predict benign lymph nodes with approximately 90% accuracy by subjective categorization
of EBUS ultrasound characters. The AI-CAD technology might make “the expert level
prediction of nodal diagnosis” possible even for non-experts. The purpose of this study
is to investigate the feasibility of CAD for the prediction of LN metastasis in lung cancer
using endobronchial ultrasound images and DL technology.

2. Materials and Methods
2.1. Participants

Patients with lung cancer or those suspected of suffering from lung cancer who
underwent EBUS-TBNA for the diagnosis of LN metastasis were enrolled in this study.
We prospectively collected clinical information and images related to bronchoscopy since
April 2017 (registry ID: UMIN000026942), and the ethical committee allowed prospective
case accumulation with written consent (ethical committee approval ID: No. 2563, Chiba
University Graduate School of Medicine). The EBUS-TBNA video clips from April 2017
to December 2020 were retrospectively reviewed, and the patient’s clinical information
was obtained from electronic medical records (ethical committee approval ID: No. 3538,
Chiba University Graduate School of Medicine). This was a collaborative study between
the Chiba University Graduate School of Medicine and Olympus Medical Systems Corp.
(Tokyo, Japan). All patient identifiers were deleted, and the image data were sent to the
Olympus Medical Systems Corp.’s laboratory and analyzed using DL technology (ethical
committee approval ID: OLET-2019-008, Olympus Medical Systems Corp.). This study was
conducted in accordance with the principles of the Declaration of Helsinki.

2.2. EBUS-TBNA Procedure

The patients underwent EBUS-TBNA under local anesthesia with moderate conscious
sedation using midazolam and pethidine hydrochloride. OLYMPUS BF-UC290F and EU-
ME1 and EU-ME2 PREMIER PLUS were used to observe LNs. Systematic nodal observation
starting from the N1, N2, and N3 stations using B-mode, Doppler mode, and elastography
was first performed. The size of each LN was measured, and EBUS-TBNA was performed
for LNs > 3 mm along the short axis on the EBUS image. TBNA was initiated at N3, N2, and
N1 stations to avoid overstating. For TBNA, a dedicated 22-gauge or 21-gauge needle (NA-
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201SX-4022, NA-201SX-4021, Olympus Medical Systems Corp., Tokyo, Japan) was used,
and rapid on-site evaluation was performed during the procedure. All EBUS procedures
were performed by skilled operators (T.N. and Y.Sakairi.) or under their supervision.

2.3. Confirmation Diagnosis of EBUS-TBNA

Rapid on-site evaluation by DiffQick staining and conventional cytology by Papanico-
laou staining were performed and diagnosed by a cytopathologist. The histological core
was collected in CytoLyt solution and fixed in 10% neutral buffered formalin. The formalin-
fixed paraffin-embedded specimens were stained with hematoxylin and eosin (H&E) and
subjected to immunohistochemistry. Cytology as well as histology was evaluated by in-
dependent pathologists who provided pathological diagnosis [12]. The referenced final
diagnoses were as follows: (1) malignant cells were proven by EBUS-TBNA, (2) histological
diagnosis was made for surgically resected samples after EBUS-TBNA, (3) clinical follow
up by radiology after 6 months.

2.4. EBUS Image Extraction and Image Data Sets

Ultrasound images were recorded as video clips in the MP4 format; divided into
shorter clips featuring each LN using video editing software, XMedia Recode 3.4.3.0 (Sebas-
tian Dörfler, Eschenbergen, Germany); and subsequently anonymized using the dedicated
software VideoRectFill (Olympus Medical Systems Corp.). All patient information was
manually masked on the software. An anonymized video clip was provided to Olympus
Medical Systems Corp. with diagnostic information linked to each LN.

In this study, we retrospectively and prospectively collected cases and investigated the
detection of LN metastasis in each LN. The evaluation methods are illustrated in Figure 1.
We retrospectively and prospectively collected LNs. We attempted both five-fold cross-
validation and hold-out methods for evaluation. Because the images from the video clips
included different ultrasound processors (EU-ME1 and EU-ME2 PREMIER PLUS) and
different image sizes, these images were allocated equally to each training, validation, and
testing group (Figure S1).
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2.5. Adjustment of Images for DL

Prior to image analysis, the videos were decomposed into time-series images, from
which images of different scenes were extracted. The areas in which the B-mode was drawn
were cropped from the images and the cropped images were resized to the same size. To
increase the generalizability of the DL algorithm, data augmentation was applied only
to the training images, and the number of training images was increased. Scaling and
horizontal flipping were used in the data augmentation process.

2.6. DL Algorithm Design

The Convolutional Neural Network (CNN) structure used in this study for LN metas-
tasis detection is shown in Figure S2. The metastasis detection CNN comprises a feature
extraction CNN and detection CNN. The feature extraction CNN comprises multiple stages
with each stage having multiple blocks and one downsampling layer. The final stage did
not include a downsampling layer. We used the Xception block for each block [13]. The
downsampling layer comprises two or more strides of the convolution layer. The detection
CNN comprises two convolution layers: one for classification and another for positioning.

Initially, the ultrasound image was input to the feature CNN, and local features,
such as edges and textures, were extracted from the input image in the first block. As it
progressed through the network, its features were integrated and finally converted into
features useful for detection.

Subsequently, the features useful for metastasis detection were input into the detection
CNN. The detection CNN outputs the probability and bounding box coordinates and sizes
for both metastasis and nonmetastasis. The bounding box with the highest probability was
selected from among all the metastatic and non-metastatic bounding boxes in the sequence.
Finally, the metastasis or non-metastasis parameters, coordinates and size of the bounding
box were obtained as the detection result.

2.7. Five-Fold Cross-Validation Method and the Hold-Out Method

For the five-fold cross-validation method, 80% of all the images were used for training
and validation. The images were divided into five sections: four sections were used for
training, and the last section was used for validation. By changing the validation section,
the training and validation were repeated five times. The prediction yield was calculated
as the average of the results of each validation.

In the hold-out method, all images were used for training and testing. All of the images
comprising the 80% used for the five-fold cross-validation method were used for training.
The remaining 20% of the images that were not used for the five-fold cross-validation
method were used for testing, following which the prediction yield was calculated.

The images of different sizes from the two ultrasound scanners (EU-ME1 and EU-ME2
PREMIER PLUS) were allocated proportionately in each section to avoid selection bias.

2.8. Statistical Analysis

The “Image” represents “per image” basis analysis and the “Lymph node” represents
“per lymph node” basis analysis. The “per image” analysis was based on the accuracy
of nodal metastasis prediction for each image. Due to limited number of still images, we
used the video clips for analysis. However, in this case, multiple images with varying
ultrasound features were included for each targeted lymph node, resulting in variation in
the judgement of the AI-CAD system. Therefore, in addition to “per image” analysis, we
included “per lymph node” analysis in which multiple images were evaluated for each
lymph node. The “per lymph node” analysis included (1) calculation of the ratio between
the number of images judged benign and malignant, (2) predicting as benign or malignant
based on the ratio >50%, (3) analysis of the accuracy of nodal metastasis prediction for each
lymph node.

Sensitivity, specificity, positive predictive value, negative predictive value, and di-
agnostic accuracy were calculated using standard definitions. Statistical analysis was
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performed using Fisher’s exact test and chi-square test for categorical outcomes, and Stu-
dent’s t-test for continuous variables. Data were analyzed using the JMP Pro 15 software
(SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05.

3. Results

Ninety-five cases with a total of 170 LNs were enrolled in the study. Two cases (two
LNs) were excluded because of a history of malignant lymphoma. Cases of large-cell
carcinoma and large-cell neuroendocrine carcinoma (one LN each) were also excluded be-
cause they could not be assigned to both the training and testing sets. Finally, 91 cases and
166 LNs were analyzed in this study (Figure 2). In this cohort, 64 LNs (38.5%) were diag-
nosed as metastatic and 102 LNs (61.5%) as non-metastatic by pathology. The characteristics
of the enrolled patients and LNs are listed in Table 1.
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Figure 2. Study cohort flow chart. One hundred sixty-six lymph nodes and 6444 images from
91 patients were enrolled in the final analysis.

Pathological diagnosis including cytology and histology were performed for all lymph
nodes. The success rate of each diagnosis was shown in Table 2. For adenocarcinoma cases,
molecular biomarker testing was performed for selected cases. For non-small cell lung
cancer cases, evaluation for PD-L1 (22C3) immunohistochemistry was done for selected
cases. Each success rate, detection rate, and testing rate was shown in Table 2.
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Table 1. Patients’ and nodal characteristics.

No. of patients 91

Age (y) (median, range) 74 (12–86)

Gender

male 61 (67.0%)
female 30 (33.0%)

No. of lymph nodes 166

Diagnosis

Metastatic lymph nodes 64 (38.5%)
Adenocarcinoma 40 (24.0%)

Squamous cell carcinoma 15 (9.0%)
Small cell carcinoma 9 (5.4%)
Benign lymph nodes 102 (61.5%)

Lymph node station
1 1

2R 13
3p 2

4R/4L 41/25
7 43
8 1

10R/10L 5
11s/11i/11(Lt.) 15/6/4

12 9
13 1

Lymph node size of long axis Average (range), mm

All lymph nodes 12.9 (3.0–29.2)
Metastatic lymph nodes 15.5 (3.0–29.2)

Benign lymph nodes 11.3 (3.5–21.8)

Table 2. Detailed results of pathological diagnosis and biomarker testing in this study.

Metastatic Lymph
Node (n = 64)

Diagnosed by
Cytology

Diagnosed by
Histology

Success Rate of
Molecular Testing

Detection Rate of
Driver Gene
Mutations

Testing for PD-L1
Immunohistochemistry

Adenocarcinoma
(n = 40) 37/40 (92.5%) 37/40 (92.5%) 22/24 (91.7%) 13/22 (59.0%) 22/40 (55.0%)

Squamous cell
carcinoma (n = 15) 13/15 (86.7%) 14/15 (93.3%) N/A N/A 7/15 (46.7%)

Small cell carcinoma
(n = 9) 9/9 (100%) 9/9 (100%) N/A N/A N/A

First, we evaluated the ability of AI-CAD to detect LN metastasis using endobronchial
ultrasound images. A total of 5255 and 6444 extracted images from the video clip were ana-
lyzed using the five-fold cross-validation and the hold-out methods, respectively (Figure 1).
The representative EBUS images judged by AI-CAD in this study are shown in Figure S3.

Using the five-fold cross-validation method, the LN-based diagnostic accuracy, sensi-
tivity, specificity, positive predictive value, and negative predictive value of the AI-CAD
were measured to be 69.9% (95% CI, 32.4–75.2%), 37.3% (95% CI, 27.8–49.1%), 90.2% (95%
CI, 82.9–92.3%), 70.4%, and 69.8%, respectively (Figure 3). However, although the specificity
was high, the sensitivity of this method was low.
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Figure 3. The result of AI-CAD lung cancer lymph node diagnosis accuracy analysis using echo
images by five-fold cross validation method. (a) Diagnostic yield by per image basis and per lymph
node basis. (b) ROC curve.

Using the hold-out method, the LN-based diagnostic accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value of the AI-CAD were measured to
be 87.9% (95% CI, 75.4–94.1%), 76.9% (95% CI, 58.9–92.9%), 95.0% (95% CI, 79.3–100%), and
90.9% and 86.4%, respectively (Figure 4).
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Regarding the diagnostic yield by lung cancer subtypes, the diagnostic accuracy
rates were 90.5% for no malignancy, 76.9% for adenocarcinoma, 61.1% for squamous cell
carcinoma, and 93.9% for small cell lung cancer (Figure 5).
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4. Discussion

The potential applications of AI technology are rapidly growing in the medical field
and are expected to facilitate the demanding work of medical staff. The concept of AI,
including such systems as machine learning and DL, has been growing in popularity since
the evolution of graphics processing units. AI-CAD is one of the AI applications that
has been actively developed in radiology. Significant work has been done in the area of
combining radiomics and AI-CAD technology, which helps support the diagnosis of benign
and malignant tumors, prediction of histology, stage, genetic mutations, and prediction
of treatment response and recurrence using CT and PET-CT images [14–18]. AI-CAD is
highly useful in analyzing huge amounts of extracted information that includes informa-
tion invisible to humans. AI-CAD produces objective indicators based on the judgment,
knowledge, and experience of experts. During EBUS-TBNA, a highly skilled operator can
select the most suspicious LN to sample, based on a subjective categorization of ultrasound
image characteristics. In contrast, by applying AI-CAD technology in EBUS, even a trainee
can easily select the target LN for sampling, in addition to the dual advantages of a more
efficient and less invasive procedure. In this study, we used the CNN algorithm with
Xception to predict nodal metastasis based on the ultrasound images of LNs. Using the
hold-out method, AI-CAD exhibited a feasible diagnostic accuracy of 84.7%, on average,
per LN basis. In this study, the combination of Xception and the hold-out method resulted
in the highest diagnostic yield.

The comparison between the five-fold cross-validation and the hold-out methods,
demonstrated that the hold-out method exhibited a superior diagnostic yield in this study
setting. First, we evaluated using five-fold cross-validation, and then used hold-out method
as the standard for developing AI-CAD technology. The number of evaluated images was
increased by 20% for the hold-out method compared to five-fold cross-validation. The
increased number of images helped with comprehensive covering of image variation and
contributed toward better AI-CAD accuracy. The images used in this study were obtained
using two different ultrasound image processors (EU-ME1 and EU-ME2 PREMIER PLUS).
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In addition, a certain amount of collected images (approximately 10% of all images) were
of different sizes owing to the different screen sizes of the various video clips. These
variations might affect the diagnostic yield of the five-fold cross-validation and the hold-
out methods. Thus, for the analysis of different-size images the image had to be resized
and then analyzed, which resulted in an adversarial example (AE). An AE is an event in
which AI misrecognizes an image as completely different data owing to the addition of
insignificant noises that are imperceptible to humans. [19] Therefore, in this study, these
problems were solved by allocating images of different sizes in equal proportions for
AI-CAD analysis.

The final diagnostic accuracy and specificity for the prediction of LN metastasis using
AI-CAD in this study were 87.9% and 95.0%, respectively. Previous studies have reported
comparable but lower values. For instance, Ozcelik et al. reported an accuracy rate of
82% and specificity of 72% for the diagnosis of lung cancer LN metastasis in 345 LNs
by CNN using MATLAB [20]. Churchill et al. reported an accuracy rate of 72.8% and a
specificity of 90.7% for the diagnosis of lung cancer LN metastasis in 406 LNs by CNN using
NeuralSeg [21]. It is noteworthy, however, that the specificity of CNN-based diagnosis for
the prediction of nodal metastasis was found to be high, and this might help avoid futile
biopsies and reduce examination time as well as the risk of co-morbidities.

Furthermore, we examined the diagnostic yield of lung cancer subtypes (Figure 5). The
diagnostic yield was highest for small cell lung cancer, while the accuracy rate was relatively
low for squamous cell carcinoma. Squamous cell carcinoma is often accompanied by signs
of coagulation necrosis at the center of the LN, which might affect diagnostic accuracy.

In this study, the prediction rate for squamous cell carcinoma was relatively lower than
other histology. One of the possible reasons of this phenomenon was that the squamous cell
carcinoma often shows various histological characters, such as necrosis and fibrosis, and it
reflects the characters on an EBUS ultrasound image, such as necrosis sign and heterogeneity
of echogram. These various ultrasound image features might cause difficulties for learning
and validation by AI-CAD, resulting in a lower prediction rate. Although better AI-CAD
analysis required more numbers of squamous carcinoma cases for comprehensive coverage
of the image variation of squamous cell carcinoma, the number of actual squamous cell
carcinoma cases were relatively low in this study. If we could increase the number of
squamous cell carcinoma cases, the diagnostic yield could be better in the future.

This study has several limitations. First, the study population was limited, and we
used video clips to overcome the limitations of the small sample size. Some cases underwent
multiple LN assessments, and multiple LN images were obtained from a single case, which
might show similar image characteristics. Second, we used only B-mode images in this
study. Several reports have demonstrated the utility of other imaging modalities such as
Doppler mode imaging and elastography [5,6]. Finally, Xception was used for the CNN in
this study, although there is currently no consensus as to which algorithm should be used to
analyze echo images. To develop the optimal method of AI-CAD for EBUS imaging, a larger
prospective cohort study is required in the future. In addition, AI-CAD diagnosis using
other imaging modalities such as Doppler mode and elastography should be examined to
improve the diagnostic yield of AI-CAD for EBUS imaging.

In this study cohort, the prevalence of nodal metastasis was 38.5%, which was rel-
atively low in comparison with the previous report. Most of the enrolled patients were
referred to the surgical department as resectable lung cancer patients. In real clinical set-
ting, the AI-CAD technology will be useful if the operator cannot decide which one to be
sampled during EBUS-TBNA. The operator would not need the image analysis support
for selecting the target when the lymph node is obviously enlarged. Thus, this study
demonstrated that the AI-CAD can be used to support the nodal staging for surgically
treatable patients.
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5. Conclusions

In this study, we found that AI-CAD (a combination of Xception and the hold-out
method) for the prediction of LN metastasis using endobronchial ultrasound images is
feasible and exhibits high diagnostic accuracy and specificity. AI-CAD for EBUS may
reduce futile biopsies of LNs, shorten examination time, and make EBUS-TBNA a less
invasive procedure, regardless of operator experience.
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