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Deep ultraviolet laser direct write 
for patterning sol-gel InGaZnO 
semiconducting micro/nanowires 
and improving field-effect mobility
Hung-Cheng Lin1,*, Fabrice Stehlin2,*, Olivier Soppera2, Hsiao-Wen Zan1, Chang-Hung Li1, 
Fernand Wieder2, Arnaud Ponche2, Dominique Berling2, Bo-Hung Yeh1 & Kuan-Hsun Wang1

Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution 
and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating 
and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the 
requirements for direct photopatterning and for achieving semi-conducting properties with thermal 
annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows 
direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect 
mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic 
ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV 
irradiation step results in photolysis and a partial condensation of the inorganic network that 
freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced 
reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-
enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in 
solar cell, display, flexible electronics, and biomedical sensors.

Amorphous metal-oxide have emerged as potential replacements for organic and silicon materials in 
thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uni-
formity, has extended their applications to active-matrix electronics, including displays, sensor arrays 
and X-ray detectors1–4. Moreover, their solution process ability and optical transparency have opened 
new horizons for low-cost printable and transparent electronics on plastic substrates. Conventional 
metal-oxide formation by the sol–gel route requires an annealing step at relatively high temperature, 
which has prevented the incorporation of these materials with the polymer substrates used in flexible 
electronics. In past few years, many approaches have been proposed to lower down the sol-gel process 
temperature5–9. Among these attempts, ultraviolet (UV) photo-annealing is a promising technique due 
to effective elimination of organic components and the acceleration of metal-oxide-metal (M-O-M) con-
densation10–13. The photon energy transferred to sol-gel mixture can initiate the formation of M-O-M 
network.

When oxide semiconductor thin film is used in various kinds of devices such as transistors, solar-cells 
or sensors, patterning of oxide semiconductor film is required. Conventionally, photoresist process is used 
to pattern the oxide thin film. However, when removing photoresist, the acid treatment or plasma treat-
ment usually causes damage on the underlying oxide semiconductor film. Also, because the photoresist 
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residue may cause a poor contact between oxide layer and the following deposited metal electrode, 
a complete photoresist removal is required. Recently, self-patterning oxide thin-film transistor (TFT) 
was demonstrated by using deep-ultraviolet (DUV) lamp (main emission peak at 253.7 nm) to irradiate 
directly on sol-gel oxide precursors through a mask14–16. The best resolution of the DUV-photo-patterned 
indium-gallium-zinc-oxide (IGZO) is 3 μ m. The DUV direct-patterning relies on the DUV-induced 
M-O-M network formation. The condensation reaction in thin film, however, is also easily initiated by 
thermal heating, even at low temperature (50 °C). The success in photopatterning on sol-gel oxide mate-
rial hence relies on the sufficient photo-energy transferring without heating up the substrate.

In this work, we firstly demonstrate the ability of DUV laser (wavelength of 193 nm) to write on 
sol-gel IGZO thin film at room temperature (25 °C). Compared with DUV lamp patterning, the direc-
tional DUV laser irradiation avoids the substrate heating and suppresses the diffraction effect. Hence, 
the line pattern with a 800-nm linewidth and a sharp edge is obtained by mask lithography. Moreover, 
two-beam DUV laser interference lithography (LIL) is firstly used to direct write IGZO nanowires with 
width of 300 nm. To evaluate the electrical property of the DUV-laser-write IGZO material, thin-film 
transistors with DUV laser patterned IGZO channel are fabricated. High-enough electron mobility rang-
ing from 1.1 cm2/Vs to 13 cm2/Vs can be obtained when the thermal post-annealing temperature varies 
from 300 °C to 600 °C, which shows that the DUV laser irradiation does not deteriorate the electrical 
properties. On the contrary, a beneficial effect of the DUV laser was recorded. Atomic force microscope 
(AFM) images and X-ray photoelectron spectroscopy (XPS) analysis are also performed to investigate 
the condensation reaction under DUV and thermal annealing. Compared with control device, DUV 
irradiation is proposed to deliver homogeneous IGZO film with improved mobility.

Results and Discussion
DUV-laser-write a-IGZO Patterns. We firstly demonstrate the direct patterning ability of DUV 
laser irradiation on sol-gel IGZO mixture. The detail of the preparation of IGZO sol-gel mixture is 
described in Methods. A new zinc methacrylate precursor was used in this work. The molecular structure 
of the zinc methacrylate precursor is given in Fig. 1(a). Zinc methacrylate precursor was chosen because 
metal methacrylate complexes have been proved to exhibit high sensitivity in the DUV range allowing 
light-induced crosslinking. Thus they were used as photosensitive building blocks to generate nanopat-
terning by laser direct write17,18. The emission wavelength of the DUV laser is 193 nm. The laser density 
is typically 300 mW/cm2 for a beam size of 3 ×  6 mm2. Two patterning methods are used. (1) Patterning 
by irradiating DUV laser beam on sample through a binary amplitude mask (names as DUV-laser-write 
hereafter) is as shown in Fig. 1(b). The mask is fused silica substrate with periodic chromium line pat-
terns. The line pattern has two kinds of line widths, 5 μ m and 800 nm, while the duty ratio is fixed at 50%. 
The patterning is carried out in contact lithography configuration to limit the diffraction artefacts. This 
configuration is possible without damaging the functional film surface nor the mask surface because the 
film is dry after spin-coating deposition. (2) Patterning by using interference patterns from DUV laser. 
In this case, a combinaison of two fused silica phase masks is used to generate sinusoidal light patterns 
as shown in Fig. 1(c). This method is a direct-write interference lithography (IL) process, hence is named 
as DUV-IL-write in this paper. By controlling the interference laser profile, periodic IGZO line pattern 
can be realized with controlled line width and period. In this work, we fix the period at 600 nm.

The IGZO patterns produced by the two methods are then investigated. The molar ratio of indium, 
gallium, and zinc is fixed at 4:1:2. The Atomic Force Microscope (AFM) images of the IGZO line pattern 
with different periods are shown in Fig. 2. Samples in Fig. 2(a,b) are fabricated by using DUV-laser-write 
while the sample in Fig. 2(c) is fabricated by using DUV-IL-write. We successfully obtain a-IGZO lines 
with line width ranging from 5 μ m to 800 nm by simply irradiating DUV laser through a binary fused 
silica mask. Moreover, by generating interference patterns with phase masks, we also successfully realize 
IGZO nanowires with linewidth of 300 nm. The tilted sidewall of IGZO nanowire is due to the sinusoi-
dal light intensity distribution in interference lithography. The writing, however, is effective down to the 
substrate. One of the major interests of the interference lithography technique is to allow a rapid nano-
patterning over large area (few seconds of irradiation for nanostructures over cm2). This process opens 
thus a route to produce nanowire oxide transistor and nanowire oxide sensors.

The obtained resolution is far better than reported in previous works. The determinant parameters 
are the use of a DUV laser wavelength (193 nm) and a choice of a suitable precursor accordingly to the 
emission wavelength. Laser light has the advantage to be directional, which limits the diffraction effects, 
and opens the possibility to generate regular light nanopatterns by interference lithography. Moreover, 
it is usually reported that DUV lamp irradiation provokes a heating of the sample up to about 120 °C10. 
Such heating propagates to the parts of the sample protected from light by the mask, inducing unwanted 
crosslinking. The effect is a dramatic loss of the resolution that can be avoided by using laser irradiation 
if associated to a suitable precursor. This point is demonstrated by comparing the photoresponse of the 
IGZO thin film with laser and DUV-lamp irradiation, when a mask with 800 nm width lines is used. The 
results are plotted in Fig. 3(a). Tuning DUV–lamp irradiation energy from 10 mJ to 500 mJ, no structure 
is achievable and hence the structure height is 0 nm. Under laser irradiation, the evolution of the struc-
tures height is classical for a negative tone resist: at low light dose, no structures are recorded because the 
crosslinking in bright areas is not sufficient to keep the material on the substrate during development. 
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The maximum height is reached for 1000 mJ. For higher dose, a loss of contrast is recorded due to the 
crosslinking in the dark area.

The importance of fine patterning, particularly the submicron-meter patterning, can be discussed for 
two kinds of applications. (1) For display and for electronics applications, the patterning of the oxide 
active region is required to clearly define the channel region without surrounding current effect. For 
this purpose, patterning with micrometer resolution is usually enough. A sub-micrometer resolution, 
however, benefits the future development of oxide transistor with submicron-meter channel length 
and multiple fin-like channels (i.e. Fin field-effect-transistor (Fin-FET))19. (2) For bio/chemical sensor 
applications, the formation of nanowire transistor is necessary to enlarge the surface to volume ratio 
and hence to improve the sensitivity. The ZnO nanowire FETs are widely developed for such sensor 
works20,21. However, current process still faces challenges for mass production. In this study, the IGZO 
multi-channel with a linewidth of 300 nm can be directly patterned by interference DUV laser. It is 
expected that the reported method facilitates the development of IGZO nanowire bio/chemical sensors.

Figure 1. Direct write of IGZO micro and nanopatterns. (a) Molecular structure of the zinc methacrylate 
precursor. Schematic description of patterning methods used including (b) patterning by irradiating DUV 
laser beam on sample through a binary amplitude mask and (c) patterning by using interference lithography 
with DUV laser and phase masks. The material acts as a negative tone photoresist and patterns are obtained 
after development.
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The proposed laser direct write can be used for a wide range of composition of the IGZO precursor. 
The atomic ratio between In, Ga and Zn in a-IGZO is indeed known to significantly influence the elec-
trical properties of IGZO22,23. One interest of the solution route for sample preparation is that the com-
position can be easily modified in a wide range by just adjusting the molar ratio of introduced starting 
precursors. With this aim, materials with molar ratio of In, Ga and Zn of 6.8:1:2.2, 4:1:2 and 2:1:2 were 
investigated. In all cases, microphotopatterning can be achieved (Figure S1). The most interesting electri-
cal properties were obtained with a molar ratio of 4:1:2, and thus, the results presented in the following 
sections are related to this composition.

Semiconducting properties. After we successfully demonstrate the DUV direct-write IGZO pat-
terns, the electrical property of the direct-write pattern is evaluated by producing DUV-laser-write IGZO 
TFT with bottom-gate top-contact structure. Firstly, IGZO TFTs with periodic line channels are fab-
ricated. After DUV irradiation, a thermal post-annealing of 600 °C is used to remove the remaining 
organic moieties (solvant and ligands) and to form the M-O-M network. AFM images (not shown) 
confirm that the post-annealing only reduces the pattern thickness without changing the line width. The 
resulted thickness is about 20 nm. Fig.  3(b) shows the transfer characteristic of the DUV direct-write 
IGZO TFT with periodic multiple line channels. The period of the multiple line channels is 10 μ m as 
shown in Fig. 3(c). The field-effect mobility as high as 6.7 cm2/Vs and the threshold voltage of -4.9 V are 
obtained, verifying the feasibility of the DUV direct write process.

Then, the influence of DUV laser irradiation on IGZO TFT performance is investigated. IGZO TFTs 
with and without DUV laser write process are fabricated. Those devices without DUV laser write are 
named as STD IGZO TFT. The details of the fabrication process are described in Methods. The DUV laser 
irradiation condition is fixed at 2 J and the post-annealing temperature is changed from 600 °C, 450 °C, 
to 300 °C. The transfer characteristics of DUV-laser-write IGZO TFTs with three different post-annealing 
temperatures are compared in Figure S2(a). Those of STD IGZO TFTs are shown in Figure S2(b). A 
good switching property is obtained for DUV-laser-write IGZO TFT. For both DUV-laser-write and 
STD IGZO TFTs, increasing the post-annealing temperature can effectively increase the output cur-
rent. The extracted saturation-region field-effect mobility, threshold voltage, and subthreshold swing of 
DUV-laser-write and STD IGZO TFTs are compared in Fig. 4(a–c), respectively. The parameter extraction 

Figure 2. Typical example of IGZO patterns. AFM images of patterns obtained by binary amplitude mask 
lithography (a,b) and interference lithography (c) Material composition was In:Ga:Zn =  4:1:2. Widths of 
structures are respectively (a) 5 μ m, (b) 800 nm and (c) 300 nm.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:10490 | DOi: 10.1038/srep10490

method is described in Method. The average value and the standard deviation are obtained by measuring 
three independent devices with identical process condition.

Figure 4(a) shows that the field-effect mobility is significantly increased with post-annealing temper-
ature. The mobility obtained for STD devices with this material is lower than the mobility reported in 
previous works on sol-gel IGZO TFTs10,16. The new zinc precursor, zinc methacrylate, may not decom-
pose as well as other precursors when the annealing temperature is as low as 300 °C. However, with 
DUV irradiation, the mobility can be significantly improved. In Fig.  4(a), the field-effect mobilities of 
DUV-laser-write IGZO TFTs (blue symbols) are significantly higher than those of STD IGZO TFTs (red 
symbols). The DUV-enhancement effect is more pronounced when the annealing temperature is reduced. 
Specifically, when annealing temperature changes from 600 °C, 450 °C, to 300 °C, the mobility enhance-
ment ratios (i.e. the mobility of DUV-laser-write IGZO TFT divided by the mobility of STD IGZO TFT) 
are about 2, 7, and 56, respectively. It is noted that when decreasing post-annealing temperature from 

Figure 3. Laser patterning and electrical properties of material. (a) The height of IGZO thin film with 
laser or DUV-lamp irradiation prepared with irradiation through binary mask with line width of 800 nm. (b) 
The transfer characteristic of IGZO TFT with DUV-laser-write periodic multiple channel lines. The thermal 
annealing temperature is 600 °C. Channel width and length are 1000 μ m and 300 μ m, respectively. (c) AFM 
image of multiple line channels produced by laser irradiation through binary mask. The period is 10 μ m.
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600 °C to 300 °C, the threshold voltages of DUV-laser-write IGZO TFT also change from a negative 
value (i.e. -15.1 V) to be close to zero (i.e. 2.7 V). The detail mechanism to explain the shift of threshold 
voltage in sol-gel oxide TFT is still not well understood. Low post-annealing temperature may avoid the 
interaction between the densifying oxide film and the ambient gas species including oxygen and water 
vapor15,24. In Fig. 4(c), with increasing annealing temperature, we also observe a significant increase in 
subthrehsold swing of STD device. This phenomenon will be discussed later with material analysis. With 
300 °C post-annealing, DUV-laser-write a-IGZO TFT exhibits a field-effect mobility of 1.4 cm2/Vs, a 
threshold voltage of 2.7 V, and a subthreshold swing of 0.55 V/dec. The low enough subthreshold swing 
indicates that the DUV-laser-write IGZO TFT exhibits low defect density at IGZO/insulator interface as 
well as in IGZO bulk. The obtained mobility (1.4 cm2/Vs) is already higher than the mobility in com-
mercial amorphous silicon (a-Si:H) TFT (typically 0.5 cm2/Vs). With the close-to-zero threshold voltage 

Figure 4. Effect of DUV annealing on electrical properties. (a) Mobility, (b) threshold voltage, and (c) 
subthreshold swing of DVU-laser-write and of STD IGZO TFTs are plotted as a function of post thermal 
annealing temperature. Average value and standard deviation are extracted from three independent devices 
with identical condition.
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and the low enough subthreshold swing, the proposed DUV-laser-write a-IGZO TFT is promising for 
developing low-power solution-processed pixel circuitry.

The mobility obtained in this work is also compared with the mobilities reported by other works on 
sol-gel oxide TFTs in Table S3 in supporting information5,6,9–11,16,25–40. There are several reports on oxide 
TFT using various approaches to improve the mobility as high as 140 cm2/Vs37. These approaches include 
the plasma treatment26,27, the incorporation of conductive nanotube/nanowire30,36,37, and the introduc-
tion of new precursor and new compound16,34,35,38, etc. Without using these treatments, the mobility 
reported on sol-gel IGZO TFT is typically 0.0007-0.8 cm2/Vs with 300 °C annealing temperature11,25,26 , 
0.02-1.56 cm2/Vs with 450 °C annealing temperature29–33, and 6.415 cm2/Vs with 600 °C annealing tem-
perature25. In our work, STD devices exhibit mobility of 0.025 cm2/Vs, 0.9 cm2/Vs, and 5.3 cm2/Vs with 
annealing temperature of 300 °C, 450 °C, and 600 °C, respectively. DUV-laser-write devices exhibit mobil-
ity of 1.4 cm2/Vs, 6.2 cm2/Vs, and 9.9 cm2/Vs with annealing temperature of 300 °C, 450 °C, and 600 °C, 
respectively. The mobility obtained in our work is comparable to the reported typical value, verifying that 
the DUV laser patterning is a feasible approach to deliver good enough electrical performance.

Material analysis. To investigate the influence of DUV irradiation on sol-gel IGZO, several material 
analysis methods such as XPS, AFM, FTIR, and ellipsometry analyses are performed on sol-gel IGZO 
films with and without DUV laser irradiation.

The reactions within the sol-gel matrix under photochemical and thermal annealing are investigated 
by XPS. To investigate the condensation reactions activated by photochemical and thermal processes, we 
first focus on the O 1 s components. The raw spectra and details of the deconvolution are given in Figure 
S4. Basically, one can find on each samples, 4 main components that are attributed according to data 
from literature24: O of carboxylate and nitrate species (533.4 eV), O of surface hydroxide (532.2 eV), O 
near an oxygen vacancy or O of volume hydroxide in defects, with interaction (H bonding for example) 
(531.4 eV), O of metal oxide lattice (530.1 eV). The results issued from the deconvolution are given in 
Fig. 5(a) and Table S5.

After spin-coating, as expected, oxygen atoms are mostly contained in carboxylate, nitrate and 
hydroxide groups, coming from metal precursors and partially hydrolyzed precursors. The formation of 
inorganic oxide lattice can not be detected at this stage, showing that the condensation reaction in the 
solution is inhibited. This explains the good stability with time of the IGZO precursor solution. The pres-
ence of many polar groups is also important to ensure a good adhesion of the film during spin-coating 
and especially to avoid dewetting effect.

The laser irradiation deeply modifies the material, even for lower dose (2 J) corresponding to condi-
tions for DUV patterning. First, the contribution of oxygen from ligands disappears, which corresponds 
to the photolysis of the starting complexes. Zn-carboxylates, In-nitrates and Ga-nitrates are decomposed 
under DUV light. Such photochemical pathway was already described for other transition metal like 
Zr, Ti or Hf linked to methacrylate acid17. N 1 s XPS data given in Figure S6 confirms the loss of the 
408.5 eV peak, characteristic of nitrates. Main contribution after laser irradiation is the 531.4 eV peak. 
Considering the loss of the ligands of the metal precursors, we attributed this contribution mainly to 
oxygen of hydroxides embedded in the thin film. This oxygen can be bonded by hydrogen bonds, which 
accounts for the crosslinking of the material used for photolithography. Interestingly, the formation of 
the metal oxide lattice is not really increased when the dose is increased from 2 to 24 J. However, after 
DUV laser irradiation, the level of defects (hydroxides) in the material remains too high to confer any 
interesting electrical properties. This demonstrates that the DUV laser curing is very efficient to provoke 
the crosslinking of the IGZO precursors needed for direct writing but further condensation necessary to 
reach the optimal electrical properties is obtained only after a thermal post-annealing step.

Thermal curing of IGZO precursors thin film was also investigated at 300 °C and 600 °C. With thermal 
annealing, the prevailing contribution corresponds to the oxygen from the metal oxide lattice. The yield 
of metal oxide lattice is noticeably higher when the temperature is increased from 300 °C to 600 °C. The 
corresponding loss of defects from further condensation probably accounts for better electrical prop-
erties of the sample cured at higher temperature. A significant decrease of the 531.4 eV peak is also 
observed. Such evolution is the result of decrease of hydroxide embedded in the film and increase of 
oxygen vacancy. The level of hydroxide groups at the surface of the material remains unaffected by the 
thermal treatment, since dehydration of metal oxide only occurs at higher temperatures.

Combination of photochemical (24 J) and thermal treatment leads, for oxygen, to the same state as for 
only thermal treatment. The difference in electrical properties are thus not due to a further conversion 
into metal oxide, but probably, as discussed previously, because the DUV irradiation leads to a cold min-
eralization that produces a freezing of the material into a more homogeneous distribution, preventing 
segregations.

This assumption was supported by AFM characterization. The AFM images of sol-gel IGZO with and 
without DUV laser irradiation are compared in Fig. 5(b,c), respectively. The post annealing temperature 
is 600 °C. The surface roughness of IGZO without DUV laser irradiation is 0.59 nm while that of IGZO 
with DUV laser irradiation is only 0.23 nm. In Fig. 5(b), several large particles are observed, indicating 
a severe aggregation during the thermal annealing if no DUV treatment is carried out before this step. 
The severe aggregation may also explain the large subthreshold swing (i.e. 0.95 V/dec in Fig.  4(c)) of 
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STD device with 600 °C post annealing. It is well accepted that the metal ion may diffuse during ther-
mal annealing. The conductive indium aggregation at back interface may deteriorate the gate depletion 
function and hence cause a poor subthreshold swing. For sol-gel IGZO with 300 °C post annealing with-
out DUV treatment, no aggregation can be observed from the AFM image in Figure S7 in supporting 
information. As a result, the subthreshold swing of STD device with 300 °C post annealing is as good as 
0.25 V/dec as shown in Fig. 4(c).

The DUV-induced modifications were also investigated by spectroscopic ellipsometry and FTIR. The 
absorption spectra of the starting material given in Figure S8(b) confirm the absorption of the starting 
material at the excitation wavelength (193 nm). The absorption band covers a wide range of wavelength 
that allows the use of DUV lamps also for photocrosslinking, as shown below. Interestingly, an important 
shift of the absorption spectrum during DUV irradiation is observed demonstrating the photolysis of the 
absorbing species. The photolysis is confirmed by the FTIR spectra (Figure S8(c)). A decrease of the main 
bands comprised between 1200 and 1650 cm−1 is observed. Such bands are usually attributed to organic 
ligands bounded to metal41. Their progressive disappearance upon DUV irradiation confirms the pho-
tolysis of the starting precursors, as observed in XPS17. The decrease of the wide asymmetric band with 
maximum at 3400 cm−1 corresponds to the loss of C-H of organic ligands. The new band at 1050 cm−1 
can be assigned to the metal oxide network. Finally, these data are consistent also with the evolution 
of the thickness and refractive index of the film that reveals a densification of the material under DUV 
irradiation. This behavior is due to the condensation reaction and release of photoproducts. However, the 

Figure 5. Impact of DUV and thermal treatmant on material structure. (a) Schematic representation of 
different types of oxygen atoms present in the material and their relative proportion determined by XPS 
after spin-coating, DUV irradiation with 2 J and 24 J, thermal annealing at 300 °C and 600 °C and DUV 
irradiation followed by thermal annealing (600 °C). Raw XPS spectra and results from deconvolution are 
given in Figure S4. The AFM image of surface of (b) samples prepared by thermal annealing and (c) that of 
samples prepared by DUV annealing.
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densification induced by DUV irradiation is not complete and the thermal annealed samples undergo a 
further densification due to the condensation of the hydroxide pending groups as shown by XPS.

Conclusion
In summary, we successfully demonstrated the direct write technology of a sol-gel IGZO film by uti-
lizing DUV laser lithography. A formulation of DUV-sensitive precursors for preparing IGZO film was 
developed and a direct-write structure down to 300 nm was produced by keeping the 25 °C substrate 
temperature during DUV laser irradiation. The DUV-direct-write technology was also used to pattern 
the active layer in sol-gel oxide TFT. With 300 °C post-annealing, the DUV direct-write IGZO TFT 
exhibits field-effect mobility significantly higher than the control device without DUV irradiation. We 
concluded from the material analysis that DUV irradiation leads to a fast freezing of the material into 
a more homogeneous distribution without segregations, hence delivering an enhanced mobility than 
those of the controls. The reduced surface roughness with DUV irradiation also supports the proposed 
mechanism. The DUV laser interference direct-write enables the easy fabrication of oxide nanowires for 
applications in solar cell, display, flexible electronics, and biomedical sensors.

Methods
Sol-gel solution preparation and sol-gel film coating. The sol-gel IGZO solution was prepared 
by dissolving indium nitrate hydrate (In(NO3)3•H2O, Aldrich), gallium nitrate hydrate (Ga(NO3)3•H2O, 
Aldrich), and zinc methacrylate (Zn(CH2CH3COO)2, Aldrich) precursors in 2-methoxyethanol 
(CH3OCH2CH2OH, Aldrich). The molar ratio of In, Ga, and Zn was 4:1:2 while the total molar concen-
tration of metals is 0.25 M. All solutions were stirred for 1 day at room temperature before spin-coating 
on the substrate. Heavily doped Si wafer was prepared as the bottom gate and the 100-nm-thick thermal 
silicon nitride (SiNx) was used as the gate dielectric. Samples were firstly treated with UV/Ozone for 
10 minutes. IGZO films were spin-coated on the substrate with 4000 rpm for 40 s.

Standard IGZO TFT fabrication process. After IGZO film was spin-coated on the substrate, 130 °C 
pre-annealing for 1 minute was used to remove the solvent. Then, samples were placed into an ambient 
furnace with temperature of 300 °C, 450 °C, or 600 °C for 1 hour. After thermal annealing, we put a dry 
photo resist film onto the sample and use UV light to irradiate the dry photo resist through a shadow 
mask. Then, after developing the dry photo resist by using KOH (5%) and etching the unwanted IGZO 
region by using HCl (99%), IGZO active region was formed. The dry photo resist was removed by 
acetone. Finally, a 100-nm-thick aluminum was thermal evaporated through shadow mask to form the 
source and drain electrodes. The channel width is defined by the width of IGZO active region as 1000 μ m 
and the channel length is defined by the distance between the source and drain electrodes as 300 μ m.

DUV-laser-write IGZO TFT fabrication process. After IGZO film was spin-coated on the substrate, 
DUV irradiation was used to pattern the IGZO film. For DUV-laser-write devices, DUV laser (ArF laser 
with emission wavelength of 193 nm) was used to irradiate the IGZO film through a fused silica mask to 
form the active layer as periodic multiple lines or through a shadow mask to form a circular spot (with 
diameter of 3 mm). The non-irradiated part was removed by developing the samples in 2-MOE for 10 s. 
Then, samples were placed into an ambient furnace with temperature of 300 °C, 450 °C, or 600 °C for 
1 hour. Finally, a 100-nm-thick aluminum was thermal evaporated through shadow mask to form the 
source and drain electrodes. The channel length is defined by the distance between the source and drain 
electrodes as 300 μ m or 50 μ m.

Electrical measurement and material analysis. Agilent E5270B semiconductor parameter ana-
lyzer was used to measure the electric characteristics of IGZO-TFT in room temperature. By plotting the 
square root of the drain current ( I D ) as a function of gate voltage (VG) under saturation condition, the 
threshold voltage and mobility were extracted from the x-axis intercept and the slope of the plotted 
curve.

XPS analysis was performed on a Gammadata Scienta (Uppsala, Sweden) SES 200-2 X-ray photo-
electron spectrometer under ultra-high vacuum (P <  10−9 mbar). The monochromatized AlKa source 
(1486.6 eV) was operated at a power of 420 W (30 mA and 14 kV) and the spectra were acquired at a 
take-off angle (TOA) of 90° (angle between the sample surface and photoemission direction). During 
acquisition, the pass energy was set to 500 eV for wide scans and to 100 eV for high-resolution spectra. 
CASAXPS software (Casa Software Ltd, Teignmouth, UK, www.casaxps.com) was used for all peak fit-
ting procedures and area of each components were modified according to classical Scofield sensitivity 
factors (Zr3d: 7.04, C1s: 1.00 and O1s: 2.93). All components on high-resolution spectra were referenced 
according to the CHx component at 285.0 eV.
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