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Abstract: The 2021 WHO classification proposed a pattern-based grading system for early-stage
invasive non-mucinous lung adenocarcinoma. Lung adenocarcinomas with high-grade patterns
have poorer outcomes than those with lepidic-predominant patterns. This study aimed to establish
genetic prognostic signatures by comparing differences in gene expression profiles between low- and
high-grade adenocarcinomas. Twenty-six (9 low- and 17 high-grade adenocarcinomas) patients with
histologically “near-pure” patterns (predominant pattern comprising >70% of tumor areas) were
selected retrospectively. Using RNA sequencing, gene expression profiles between the low- and
high-grade groups were analyzed, and genes with significantly different expression levels between
these two groups were selected for genetic prognostic signatures. In total, 196 significant candidate
genes (164 upregulated and 32 upregulated in the high- and low-grade groups, respectively) were
identified. After intersection with The Cancer Genome Atlas–Lung Adenocarcinoma prognostic
genes, three genes, exonuclease 1 (EXO1), family with sequence similarity 83, member A (FAM83A),
and disks large-associated protein 5 (DLGAP5), were identified as prognostic gene signatures. Two
independent cohorts were used for validation, and the areas under the time-dependent receiver
operating characteristic were 0.784 and 0.703 in the GSE31210 and GSE30219 cohorts, respectively.
Our result showed the feasibility and accuracy of this novel three-gene prognostic signature for
predicting the clinical outcomes of lung adenocarcinoma.

Keywords: histological subtype; lung adenocarcinoma; prognosis; RNA sequencing

1. Introduction

The International Association for the Study of Lung Cancer, American Thoracic So-
ciety, and European Respiratory Society proposed a new classification system for lung
adenocarcinoma in 2011 [1]. The new classification system divides lung adenocarcinoma
into five subtypes (lepidic, acinar, papillary, micropapillary, and solid), and the effect
of the new classification on the prediction of survival rate and recurrence has been re-
ported [2,3]. Patients with micropapillary- and solid-predominant adenocarcinomas have
a higher recurrence rate than patients with lepidic-predominant adenocarcinomas. In
addition, patients with early-stage lung adenocarcinoma with high-grade subtypes (solid
and micropapillary) have higher recurrence rate and poorer prognosis than those with
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the low-grade subtype (lepidic) after sublobar resection [4–6]. Therefore, the histological
subtype has been well-documented as an important prognostic factor for early-stage lung
adenocarcinoma [2–6].

Although the predominant pattern group can serve as a prognostic factor in overall
survival (OS) and recurrence probability, most patients exhibit mixed-type lung adeno-
carcinomas. Hence, the histological classification of lung adenocarcinomas needs to be
improved [7–9]. In addition, interobserver disagreement exists in the determination of
histological subtypes [7–9]. Therefore, revealing the genetic prognostic signature for early-
stage lung adenocarcinoma based on histological subtypes may help physicians predict the
survival and recurrence of patients more accurately.

This study aimed to explore the relationship between histological subtype and expres-
sion profiles individually and to focus on the low-grade subtype (lepidic) and high-grade
subtypes (micropapillary and solid).

2. Materials and Methods
2.1. Patient Populations

The investigations were performed in a retrospective cohort of 26 individuals with
surgically resected lung adenocarcinoma who were managed at the National Taiwan
University Hospital between 1 January 2011, and 15 November 2021. The inclusion criteria
were as follows: patients (1) with lung adenocarcinoma and (2) with a pathologically
proven “near-pure” (>70%) single histological subtype of lepidic, solid, or micropapillary
lung adenocarcinomas [10]. The Hospital’s Research Ethics Committee approved this study
(project approval no. 201610057RINB), and all patients provided written informed consent.

Preoperative staging procedures included chest radiography, blood chemistry analysis
and serum carcinoembryonic antigen (CEA) measurement, computed tomography of
the chest, abdomen, and brain; bone scanning or positron emission tomography; and
pulmonary function tests. All patients underwent standard lung tumor excision and
mediastinal lymph node dissection. Clinicopathological parameters, including age, sex,
smoking status, preoperative serum CEA level, underlying malignant disease, lung cancer
family history, surgical procedure (wedge resection, segmentectomy, or lobectomy), method
of surgical approach (thoracotomy or video-assisted thoracoscopic surgery), and clinical
outcomes were collected from the chart review.

2.2. Histopathological Analysis

All specimens were fixed in formalin and sectioned for microscopic examination
with hematoxylin and eosin staining. An experienced thoracic pathologist (M-S Hsieh)
performed histopathological studies according to the 2021 World Health Organization
(WHO) criteria [11]. Tumor sizes, histological patterns, and pathological features, including
tumor cell type, grading, vascular and/or visceral pleural invasions, lymphovascular
invasion, spread through airspaces, section margins, and regional lymph node metastasis,
were obtained. Tumor spread through air spaces (STAS) was defined as tumor cells within
air spaces in the lung parenchyma at a distance of at least one alveolus away from the
main tumor [12]. The subtype percentages of each lung tumor, including lepidic, low-grade
acinar, papillary, high-grade acinar (including cribriform or complex glandular pattern),
micropapillary, and solid types, were also recorded according to the newly proposed
grading system of the 2021 WHO [11]. In this study, low-grade adenocarcinomas were
defined as having a predominantly lepidic pattern (>70% of total tumor part) with no or
less than 20% high-grade pattern, whereas high-grade adenocarcinomas were defined as
having either solid or micropapillary as the predominant pattern (>70% of total tumor part).
The selected low-grade and high-grade cases were subjected to RNA sequencing.

2.3. Total RNA Sequencing Library Construction

A minimum of 1 µg of human total RNA was required for library preparation. Ribo-
somal RNA was removed using rRNA Removal Mix at 68 ◦C for 5 min. rRNA removal
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beads were applied to bind rRNA, and the clear supernatant was transferred to a new
1.5-mL LoBind tube. Elute, Prime, and Fragment High Mix were used to fragment the
clear RNA. Double-strand cDNA was synthesized using the First Strand Synthesis Act D
Mix and Second Strand Marking Master Mix. After adding A-tailing Mix to the adenylate
3’ ends, the sequencing adaptors were ligated immediately. The cDNA fragments were
enriched by 15 cycles of polymerase chain reaction amplification and qualified using Qubit
2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) and 2200 TapeStation (Agilent
Technologies, Santa Clara, CA, USA), respectively.

2.4. Differential Gene Expression Analysis

After preparation according to the manufacturer’s protocol, bioinformatic analysis
was performed initially from converting and de-multiplexing BCL basecall files to Fastq
files using the bcl2fastq tool (Illumina Inc., San Diego, CA, USA) following an Illumina user
guide. Adapter sequences and low-quality bases were trimmed using Atropos [13]. The
trimmed paired-end reads were mapped to the GRCh37 build of the human genome refer-
ence using STAR [14]. Mapped reads in SAM format were transferred to the compressed
BAM format by SAMtools [15]. Duplicate reads in the BAM files were marked using the
Picard utility [16]. Gene-specific read counting was performed using featureCounts [17]
according to the GENCODE gene model [18]. For differential gene expression analysis,
DESeq2 [19] was applied to the gene table of the raw read counts. The criteria of significance
were the adjusted p-value (false discovery rate) being less than 0.005 and the log2 fold
change being greater than and equal to 3 or less than and equal to −3 (Figure 1).
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Figure 1. Flowchart of a three-gene prognostic signature construction and validation.

2.5. Construction and Validation of Prognostic Genes

We intersected the differentially expressed genes to the significant prognostic genes
from The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) obtained from
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OncoLnc with an adjusted p-value less than 0.005 [20,21]. A prognostic risk score was
calculated based on the expression of these three genes multiplied by their Cox coef-
ficients. Two validation cohorts, 226 patients with adenocarcinomas of pathological
stage I–II (GSE31210) [22] and 278 patients with adenocarcinomas and squamous car-
cinomas (GSE30219) [23], were divided into the high-risk and low-risk groups based on
the median of the prognostic risk score. To examine the prognostic performance, a time-
dependent receiver operating characteristic (ROC) curve was generated for the areas under
the ROC curve.

3. Results
3.1. Patient Clinicopathological Characteristics

Of the 26 patients included in the study cohort, 9 (34.6%) and 17 (65.4%) had low-grade
subtype (lepidic) and high-grade subtype (solid or micropapillary) lung adenocarcino-
mas, respectively (Table 1). All tumors were pathologically proven to have a “near-pure”
(>70%) single histological subtype. The mean follow-up period was 44.1 months (range,
9–117 months). Most patients were nonsmokers (73.1%). Females accounted for 53.8% of
the study population.

Table 1. Clinicopathological characteristics and clinical outcomes.

Variables All
(n = 26)

Low-Grade
Subtype
(n = 9)

High-Grade Subtype
(n = 17) p-Value

age, years; mean (range) 64.7 (41–85) 67.8 (55–85) 62.9 (41–85) <0.001
sex (female), n (%) 14 (53.8%) 5 (55.6%) 9 (52.9%) 0.899

smoker, n (%) 7 (26.9%) 2 (22.2%) 5 (29.4%) 0.694
lung cancer family history, n (%) 6 (23.1%) 2 (22.2%) 4 (23.5%) 0.940

abnormal serum CEA level a 5 (19.2%) 0 (0%) 5 (29.4%) 0.070
visceral pleural invasion, n (%) 6 (23.1%) 1 (11.1%) 5 (29.4%) 0.669
lymphovascular invasion, n (%) 9 (34.6%) 0 (0%) 9 (52.9%) 0.007

differentiation 0.001
well/moderate 13 (50%) 8 (88.9%) 5 (29.4%)

poor 12 (46.2%) 0 (0%) 12 (70.6%)
STAS positive, n (%) 11 (42.3%) 0 (0%) 11 (64.7%) 0.001

predominant subtype, n (%) <0.001
lepidic 9 (34.6%) 9 (100%) 0 (0%)

micropapillary 12 (46.2%) 0 (0%) 12 (70.6%)
solid 5 (19.2%) 0 (0%) 5 (29.4%)

tumor size (cm) 2.6 ± 1.2 1.9 ± 0.6 3.0 ± 1.2 <0.001
pN stage b 0.047

N0 18 (69.2%) 9 (100%) 9 (52.9%)
N1 2 (7.7%) 0 (0%) 2 (11.8%)
N2 6 (23.1%) 0 (0%) 6 (35.3%)

TNM stage b, n (%) 0.030
IA 12 (46.1%) 8 (88.9%) 4 (23.5%)
IB 5 (19.2%) 1 (11.1%) 4 (23.5%)

IIA 2 (7.7%) 0 (0%) 2 (11.8%)
IIB 1 (3.8%) 0 (0%) 1 (5.9%)

IIIA 6 (23.1%) 0 (0%) 6 (35.3%)
surgical method 0.056

lobectomy 18 (69.2%) 4 (44.4%) 14 (82.4%)
segmentectomy 3 (11.5%) 1 (11.1%) 2 (11.8%)
wedge resection 5 (19.2%) 4 (44.4%) 1 (5.9%)
clinical outcomes

follow-up period (months) 44.2 (9–117) 51.6 (30–117) 40.9 (9–79)
tumor recurrence 13 (50.0%) 1 (11.1%) 12 (70.6%)

5-y DFS (%) 85.7% 25.7% 0.004
death 8 (30.8%) 1 (11.1%) 7 (41.2%)

5-y OS (%) 100% 52.6% 0.043

CEA, carcinoembryonic antigen; DFS, disease-free survival; OS, overall survival; SD, standard deviation; STAS,
spread through air spaces. a Preoperative serum CEA level of more than 5 ng/mL is defined as abnormal serum
CEA level. b Tumor-node-metastasis classification for non-small lung cancer stage is based on the eighth edition
of the Union for International Cancer Control and American Joint Committee on Cancer TNM classification for
lung cancer.
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Compared to low-grade subtype lung adenocarcinoma, patients with high-grade
subtype lung adenocarcinoma were more likely to be younger (p < 0.001), had abnormal
preoperative serum CEA level (p = 0.070), had lymphovascular invasion (p = 0.007), had
poor differentiation (p = 0.001), had positive spread through air spaces (p = 0.001), had
larger tumor size (p < 0.001), had more lymph node metastasis (p = 0.047), and had higher
tumor–node–metastasis (TNM) stage (p = 0.030).

3.2. Correlations between Histological Subtypes and Clinical Outcomes

Tumor recurrence was noted in 13 patients, including 1 and 12 patients in low-grade
and high-grade subtype groups, respectively.

The 5-year DFS of the 9 patients with low-grade subtype and 17 patients with high-
grade subtype were 85.7% and 25.7%, respectively (p = 0.0036). The 5-year OS of the
9 patients with low-grade subtype and 17 patients with high-grade subtype were 100% and
52.6%, respectively (p = 0.043) (Table 1, Figure 2).

Biomolecules 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 

Figure 2. Kaplan–Meier survival analysis showed that the low-grade subtype group had superior 

(a) disease-free survival and (b) overall survival than the high-grade subtype group (p = 0.0036 and 

p = 0.043, respectively). 

3.3. Differentially Expressed Genes in Low-Grade (Lepidic-Predominant) and High-Grade (Solid 

or Micropapillary-Predominant) Adenocarcinomas 

To study the difference in gene expression between high-grade and low-grade ade-

nocarcinomas, we performed total RNA sequencing analysis. Two unsupervised meth-

ods, principal component analysis and pairwise correlation analysis, showed strong con-

cordance in high-grade and low-grade samples. Differential gene expression analysis was 

applied under the criteria of adjusted p-value less than 0.005 and the log2 fold change 

being greater than and equal to 3 or less than and equal to −3. We identified 196 significant 

candidate genes, including 164 upregulated in high-grade adenocarcinoma and 32 upreg-

ulated in low-grade adenocarcinoma (Figure 3). 

 

Figure 3. Differentially expressed genes. (a) Principal component analysis and (b) pairwise correla-

tion analysis identified two distinct clusters associated with morphological subtypes. (c) Intersection 

 

Lepidic

Micropapillary

Solid

0.94
0.95
0.96
0.97
0.98
0.99
1

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

−30

−20

−10

0

10

20

30

−50 −25 0 25

PC1: 27% variance

P
C

2
: 

1
3

%
 v

a
ri

a
n

c
e

● ● ●Lepidic Micropapillary Solid

a b

c

EXO1

FAM83A

DLGAP5

0

20

40

60

80

−5 0 5

log2FoldChange

−
lo

g
2

(p
a

d
j)

DE genes of low− and high−grade subtypes

Intersection of significant genes

Not meeting the cutoff

Prognostic genes of TCGA−LUAD

Figure 2. Kaplan–Meier survival analysis showed that the low-grade subtype group had superior
(a) disease-free survival and (b) overall survival than the high-grade subtype group (p = 0.0036 and
p = 0.043, respectively).

3.3. Differentially Expressed Genes in Low-Grade (Lepidic-Predominant) and High-Grade (Solid or
Micropapillary-Predominant) Adenocarcinomas

To study the difference in gene expression between high-grade and low-grade adeno-
carcinomas, we performed total RNA sequencing analysis. Two unsupervised methods,
principal component analysis and pairwise correlation analysis, showed strong concor-
dance in high-grade and low-grade samples. Differential gene expression analysis was
applied under the criteria of adjusted p-value less than 0.005 and the log2 fold change being
greater than and equal to 3 or less than and equal to −3. We identified 196 significant candi-
date genes, including 164 upregulated in high-grade adenocarcinoma and 32 upregulated
in low-grade adenocarcinoma (Figure 3).
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Figure 3. Differentially expressed genes. (a) Principal component analysis and (b) pairwise correlation
analysis identified two distinct clusters associated with morphological subtypes. (c) Intersection
of significant differentially expressed genes and The Cancer Genome Atlas-Lung Adenocarcinoma
prognostic genes.

3.4. Construction and Validation of Three Prognostic Genes

The differentially expressed genes were intersected with genes fitted in a multivari-
ate Cox proportional hazards regression model from TCGA-LUAD under the cutoff of
adjusted p-value less than 0.005. Exonuclease 1 (EXO1), family with sequence similarity
83, member A (FAM83A), and disks large-associated protein 5 (DLGAP5) were selected as
the prognostic gene signatures. A three-gene prognosis risk score was calculated based on
the gene expression level multiplied by the regression coefficient. Two validation cohorts,
226 patients with adenocarcinomas of pathological stage I–II (GSE31210) and 278 patients
with adenocarcinomas and squamous carcinomas (GSE30219), were used to evaluate the
power of the prognostic risk score. The 226 patients with early-stage adenocarcinomas
and 278 patients with adenocarcinomas and squamous carcinomas were divided into a
high-risk group and a low-risk group according to their three-gene risk scores, respectively.
The survival analysis showed that the high-risk group had worse OS than the low-risk
group (p-value < 0.0001 in GSE31210 and 0.00044 in GSE30219), and the areas under the
time-dependent ROC were 0.784 in GSE31210 and 0.703 in GSE30219 (Figure 4).
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4. Discussion

Gene signatures for prognostic prediction based on gene expression profiles of patients
with lung cancer have been reported in several previous studies. Dratz et al. reported a
14-gene signature for prognostic prediction in patients with non-squamous, non-small cell
lung cancer (NSCLC) [24–26]. The reported gene signature may identify patients at high
risk of mortality despite small, node-negative lung tumors and is helpful in prognostic pre-
diction [25] and adjuvant chemotherapy selection [26] for early-stage NSCLC. Jablons et al.
also reported a 15-gene signature that can differentiate between low-risk and high-risk sub-
groups regarding OS in patients with adenocarcinoma and squamous cell carcinoma [27].
These different gene signatures contribute to prognostic prediction and treatment decisions
in patients with lung cancer. However, additional gene signatures are needed for a more
accurate prognosis of lung cancer because of the diversity of prediction results. This is the
first study to use a prognostic signature for lung adenocarcinoma identified by differences
in gene expression profiles of low- and high-grade histological subtypes.

In this study, different gene expression profiles in low-grade (lepidic-predominant)
and high-grade (solid or micropapillary-predominant) adenocarcinomas were identified.
Three genes, EXO1, FAM83A, and DLGAP5 were selected as the prognostic gene signatures
because they had the most differing levels of expression between the low-grade and high-
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grade groups after intersection with TCGA-LUAD prognostic genes. Gene expression
levels of these three genes were significantly different between the high-grade and low-
grade groups. In two external independent validation cohorts, the clinical outcomes
of surgically resected lung cancers can be significantly predicted using this three-gene
prognostic signature. Our study provided molecular evidence supporting the current
pattern-based classification and grading system for lung adenocarcinoma.

EXO1 is a 5′-to-3′ exonuclease associated with DNA mismatch repair (MMR), DNA
double-strand break repair, nucleotide excision repair, and immunoglobulin matura-
tion [28–32]. It interacts with MSH2 and MLH in human cells and is essential for meiosis in
yeasts and mice [28,32,33]. EXO1 K589E polymorphism is associated with the development
of lung cancer in Taiwan and China [34,35]. High expression of EXO1 has been reported
to be associated with poor prognosis in lung, prostate, and breast cancers [28,36,37]. In
this study, EXO1 was significantly upregulated in lung adenocarcinomas with high-grade
patterns. Since EXO1 functions as a DNA repair gene, its high expression may reflect
the more complex genetic changes in the high-grade group. In this study, FAM83A was
significantly upregulated in histologically high-grade adenocarcinomas compared with
lepidic-predominant adenocarcinomas.

FAM83A is involved in several cell signaling pathways, including the EGFR, RAS/RAF/
MEK/ERK, and PI3K/AKT/mTOR pathways [38–42]. Overexpression of FAM83A has
been observed in lung, breast, bladder, head and neck, and cervical cancers [38–42]. It is
highly expressed in lung adenocarcinoma, especially in those with EGFR mutations, and
is considered to be a biomarker for prognosis [38,39,43]. FAM83A is associated with high
proliferative activities and invasiveness of lung cancer cell lines, advanced TNM stage, and
poor prognosis in patients with lung cancer [38,43]. FAM83A has been shown to promote
epithelial–mesenchymal transition and Wnt signaling activation in lung adenocarcinomas,
head and neck squamous cell carcinomas, and cervical squamous cell carcinomas [38,41–43].

The DLGAP5 gene encodes DLGAP-5, also known as hepatocarcinoma-upregulated
protein (HURP). HURP is a kinetochore protein that is important in mitosis and controls
spindle dynamics [44–46]. It is a microtubule-associated protein expressed during the
cell cycle, peaking at the G2/M phase [47]. HURP was first found to be overexpressed in
hepatocellular carcinoma [48]. The overexpression of HURP in cancers suggests increased
mitotic rates or dysregulation of the normal cell cycle. Increased DLGAP5 gene expression
has been found in most types of cancers and is associated with poor prognosis [49,50]. In
lung cancer, DLGAP5 overexpression was found to correlate with decreased OS and relapse-
free survival [49,50]. Our study demonstrated that DLGAP5 expression was significantly
different between low- and high-grade histologic types of lung adenocarcinoma. However,
the detailed mechanism by which DLGAP5 leads to poor clinical prognosis in lung cancer
remains unknown.

This study has some limitations and biases. First, this was a single-center study
that included only a small part of our lung cancer cohort. Further multicenter studies
with larger patient populations are required. We aimed to eliminate the histological
heterogeneity of analyzed tumors to select the representative genetic profiles of low- and
high-grade subtypes; however, not all cases displayed 100% purity of subtype (>70% in
this study). This study enrolled only patients with low-grade and high-grade histological
subtypes. The performance of prognostic prediction using genetic profiles from low- and
high-grade histological subtypes in general mixed-type populations needs to be further
validated. The study cohort was exclusively Asian, and extrapolation to other NSCLC
populations should be performed with caution. Our results showed the feasibility of using
this three-gene signature for prognostic prediction in two external validation cohorts with
non-Asian patients with NSCLC. Further studies using this three-gene prognostic signature
are warranted in the future.
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5. Conclusions

Using RNA sequencing, we demonstrated that histologically low- and high-grade
adenocarcinomas had different gene expression profiles. We also identified prognostically
related three-green signatures and validated them using two public datasets. Our study
provided molecular evidence supporting the current pattern-based tumor classification
and grading system for lung adenocarcinoma, as proposed by the WHO classification.
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