G3.:

Genes | Genomes | Genetics

A Bayesian Poisson-lognormal Model for Count
Data for Multiple-Trait Multiple-Environment
Genomic-Enabled Prediction

Osval A. Montesinos-Lépez,* Abelardo Montesinos-Lépez,™ José Crossa,*"' Fernando H. Toledo,*

José C. Montesinos-Lépez,® Pawan Singh,* Philomin Juliana,* and Josafhat Salinas-Ruiz**

*Facultad de Telematica, Universidad de Colima, 28040, México, TDepar‘camento de Matemaéticas, Centro Universitario
de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, 44430 Jalisco, México, *|International Maize and
Wheat Improvement Center (CIMMYT), 06600 México, D.F., México, §Depar‘tamento de Estadistica, Centro de
Investigacion en Matematicas (CIMAT), Guanajuato 36240, México, and **Colegio de Postgraduados, Campus Cérdoba,
Km. 348 Carretera Federal Cérdoba-Veracruz, Amatlan de los Reyes, 94946, México

ABSTRACT When a plant scientist wishes to make genomic-enabled predictions of multiple traits
measured in multiple individuals in multiple environments, the most common strategy for performing the
analysis is to use a single trait at a time taking into account genotype x environment interaction (G x E),
because there is a lack of comprehensive models that simultaneously take into account the correlated
counting traits and G x E. For this reason, in this study we propose a multiple-trait and multiple-environment
model for count data. The proposed model was developed under the Bayesian paradigm for which we
developed a Markov Chain Monte Carlo (MCMC) with noninformative priors. This allows obtaining all
required full conditional distributions of the parameters leading to an exact Gibbs sampler for the posterior
distribution. Our model was tested with simulated data and a real data set. Results show that the proposed
multi-trait, multi-environment model is an attractive alternative for modeling multiple count traits measured
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in multiple environments.

genomic selection

Plant breeders need more efficient models for performing genomic
selection for multiple-traits and multiple-environments for count data.
Count data are those dependent variables that take values 0, 1, 2,...
without an explicit upper limit. These types of dependent variables are
common in genomic selection, for example: panicle number per plant,
seed number per plant, number of infected spikelets per plant, etc. Due to
its simplicity and its ability to generate samples from high-dimensional
probability distributions, the Gibbs sampler is one of the most popular
computationally intensive methods for fitting complex multilevel models
(Park and van Dyk 2009). This method is also very popular for modeling
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normal and binary responses when efficient closed-form Gibbs samplers
have been developed. However, obtaining a closed-form Gibbs sampler
for count data is not straightforward. For this reason, Montesinos-L6pez
et al. (2015, 2016a) in the context of genomic-enabled prediction and
genomic selection proposed closed-form Gibbs samplers for multi-
level models for univariate count responses with and without the
genotype X environment interaction (G X E) term that helps fill the
lack of closed-form Gibbs samplers for count data. Although these
models are helpful for modeling univariate count responses, many
times breeders record phenotypic data for multiple counts. Scientists
must take advantage of correlated traits to improve the prediction of
unobserved genotypes and to increase the prediction accuracy of other
count traits that are difficult to measure but that are associated with
traits that are easy to measure. The available univariate count models
are not appropriate for dealing with these situations.

Since prediction problems are ubiquitous and of great interest and
importance in statistical science, more attention has been given to
parametric inference than to predictive inference (Harville 2014).
However, thanks to the efforts of scientists like C.R. Henderson,
currently there is a lot of evidence that the model-based approach
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to prediction is a useful tool for predicting future observations, and many
linear mixed effects models have been developed for predicting future
observations (Harville 2014). Most of these models are valid for
normal responses, but few have been developed for discrete out-
comes and very few for predicting more than one trait at a time.
Thus there is a great need for developing more univariate and
multivariate models for non-normal traits. Developing these
models is very challenging since in predictive inference, inferences
are sought about tangible quantities that are regarded as unobserv-
able at the time of the inferences; the focus is on quantities that
will, or could, become observable in the future, or that can be
observed at the time of the inferences but only with an unaccept-
able delay or with undue effort or expense (Harville 2014). These
quantities are regarded as the realizations of the elements of an
unobservable random vector, say an M-dimensional unobservable
random column vector w, and/or as realizations of linear combi-
nations (or other functions) of the elements of w (Harville 2014).

Poisson and negative binomial (NB) distributions are the most
common random variables used for modeling count data; NB distri-
bution is preferred when there is evidence of considerable overdis-
persion. In the Bayesian context, estimating the overdispersion
parameter in the NB distribution is challenging because Metropo-
lis-Hastings algorithms are used most of the time; this is compu-
tationally expensive and not practical for use in genomic-enabled
prediction where data sets are large. Montesinos-Lopez et al. (2015,
2016a) proposed a Gibbs sampler for NB distribution but it is not com-
putationally efficient. Other authors have proposed using the Poisson-
lognormal distribution to model count data to account for overdispersion
(Williams and Ebel 2012). The Poisson component of the Poisson-log-
normal distribution accommodates integer inputs (or outputs) to de-
scribe the actual number of counts observed within a single unit or
sample, while the lognormal component of the distribution describes
the overdispersion in the Poisson rate parameter due to clustering of
some factors and describes how the average of these factors varies across
the population (Williams and Ebel 2012). Adding this lognormal com-
ponent to the predictor of a Poisson model is very helpful for accommo-
dating a general correlation structure between traits when more than one
trait is under study (Ma et al. 2008).

Based on the previous considerations, the main goal of this research is
to extend the genomic-enabled Bayesian prediction model for count data
with genotype x environment (G x E) interaction to the context of
multiple traits under a Poisson-lognormal model. Since nowadays sci-
entists measure multiple count traits in multiple environments, the
joint modeling of multiple count traits can help to increase prediction
accuracy and parameter estimation accuracy, and reduce trait selection
bias. This argument is very well documented for continuous pheno-
types; see, for example, Henderson and Quaas (1976), Pollak et al.
(1984), Schaeffer (1984), Jiang et al. (2015), and Montesinos-Lopez
et al. (2016b). It is reasonable that it could also substantially help in
the context of multivariate count phenotypes.

MATERIALS AND METHODS

Experimental data

First we describe real phenotypic and genotypic experimental data used
to illustrate the results of the new Poisson-lognormal model. Then we
explain the theory (joint posterior density and prior specification) of the
proposed model, the Gibb sampler, and its implementation. We also
describe how to assess prediction accuracy and simulated data sets,
genomic-enabled prediction models, and give the link to the data and
software availability.
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Phenotypic data

The phenotypic data set used included 182 spring wheat lines de-
veloped by the International Maize and Wheat Improvement Center
(CIMMYT) that were assembled and evaluated for resistance to
Fusarium graminearum at El Batan experiment station in Mexico
in 2011 in three experiments. For the application, we call these three
experiments Envl, Env2, and Env3. In all the experiments (environ-
ments), the genotypes were arranged in a randomized complete
block design, in which each plot comprised two 1-m double rows
separated by a 0.25-m space. Fusarium head blight (FHB) severity
data were collected 20 and 30 d before maturity by counting symp-
tomatic spikelets on five randomly selected spikes in each plot. We
used the counts collected at 20 d as trait 1 and the counts collected at
30 d as trait 2. These data sets were taken from the data used by
Montesinos-Lépez et al. (2016a) in their paper for count data with
genotype X environment interaction.

Genotypic data

DNA samples were extracted from young leaves 2-3 wk old taken
from each line, using Wizard Genomic DNA purification (Promega)
following the manufacturer’s protocol. DNA samples were geno-
typed using an Illumina 9K SNP chip with 8632 single nucleotide
polymorphisms (SNPs) (Cavanagh et al. 2013). For a given marker,
the genotype for the ith line was coded as the number of copies of
a designated marker-specific allele carried by the ith line (absence =
zero and presence = one). SNP markers with unexpected AB (het-
erozygous) genotype were recoded as either AA or BB based on the
graphical interface visualization tool of GenomeStudio (Illumina)
software. SNP markers that did not show clear clustering patterns
were excluded. In addition, 66 simple sequence repeat markers were
screened. After filtering the markers for 0.05 minor allele frequency
and deleting markers with >10% of no calls, the final set of SNPs
included 1635 SNPs.

Statistical model
Let Yé.i) be the phenotypic response of trait /, in replication k, in

h

ko we

environment i for genotype j. Conditionally on hj(l), bgjl), and ¢
assume that the distribution of YXEQ is a Poisson distribution with mean
equal to /LEJIIZ = exp <nf]2>, with the following linear predictor:

ol = 04 604 80+ ) "

where Bgl) is the intercept of environment i in trait /, b;” is the random
effect of line j in trait /, bgjl) is the interaction random effect of envi-

ronment i, line j and trait /, and cfj,z is an individual random effect for

the response in the replication k, environment i, line j, and trait /; the
(1)
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der to take into account part of the correlation between traits not
explained by the other random effects. It is interesting to point out

that marginally the proposed model is equivalent to a Poisson-log-

0

normal model with random effects. Conditioning on b p? ,and ¢ ik
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the distribution of Yl.(jQ can be approximated using the NB distribution

as:
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with a large enough value of r (for example, r = 1000). This proba-
bility can be expressed as:
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where 7;:;9 = xgl)rﬂ*(l) + bj + b + C:k’ and ") = BV —log(r).
Then, using the identity of Polson et al. (2013) this expression (Equa-
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conditional distribution for all phenotypic count responses is
expressed as:

T
® ] . Therefore, according to Appendix A, the joint

P(Y|B*, b1, by, c,w) xexp (y*T(XB* + Z1by + Z,by +¢)

(XB* + Z1by + Zoby + )T
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wherew = (w1, ...,0;]", @;=[wq, ..., 0", w;j= [wﬁh,..,wﬁK]T,
and the others terms are defined in the Appendix A. Hereafter we
assume that the joint distribution of the random line-trait effects
is b1|%; ~ Ni£(0,G;), with G; = G®Z,, the joint distribution
of the interaction random effect of environment i and line
jin trait I is b,|%;, Zp ~ Np1(0,G,), with G, = 2 ®G®X,, and
c|Z; ~ Ni(0, Z,p)) with Z(5) = Iy ® Z,, assuming that all the extra
random effects (c,,k) are independent and identically distributed. It is
important to point out that the correlation between traits is taken into
account in both parts of the model: (a) in random effect b; with general
covariance matrix X;, and (b) in random effect ¢ with general covariance
matrix X, while the correlation between environments is taken into ac-
count in random effect b, with general covariance matrix Xz. Normal
random effect ¢ resulted because we paired a lognormal distribution,
exp(c), with the Poisson distribution to create an overdispersed distribu-
tion, which is referred to as the Poisson-lognormal distribution. The above
statement is clear if we remember that if W has a normal distribution,
then Z = exp(W) has a lognormal distribution.

Prior specification and joint posterior

In this section, we provide the joint posterior density and prior specifi-
cation for the Bayesian Poisson Multiple-Trait and Multiple-Environment
(BPMTME) model. The joint posterior density of the parameter vector
becomes:
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where we are implicitly assuming the following structure of the prior
density of the hyper-parameters:
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More  specifically, we assume that
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Q ~ IW(k, B) indicates an inverse Wishart random matrix distri-
KpFL
bution with density function || _+exp [—%tr(Bﬂ_l )} ,k>0, B, Q;

both are positive definite matrices, and IG(a,b) denotes an in-
verse gamma distribution with shape parameter a and rate param-
eter b.

Using the specified priors we ended up with all full conditional
distributions given in Appendix B.

Gibbs sampler

To produce posterior means for all relevant model parameters, below we
outline the exact Gibbs sampler procedure that we propose for estimat-
ing the parameters of interest. As is the case with Markov Chain Monte
Carlo (MCMC) techniques, the ordering of draws is somewhat arbitrary;
however, we suggest the following order:

Step 1. Simulate B* according to the normal distribution given in
Appendix B (BI1).

Step 2. Simulate b; according to the normal distribution given in
Appendix B (B2).

Step 3. Simulate b, according to the normal distribution given in
Appendix B (B3).

Step 4. Simulate ¢ according to the normal distribution given in
Appendix B (B4).

Step 5. Simulate X, according to the IW distribution given in Ap-
pendix B (B5).

Step 6. Simulate a; according to the IG distribution given in Ap-
pendix B (B6).

Step 7. Simulate X according to the IW distribution given in Ap-
pendix B (B7).

Step 8. Simulate ajz according to the IG distribution given in Ap-
pendix B (B8).

Step 9. Simulate wfl,)( according to the Pdlya-gamma distribution
given in Appendix B (B9).

Step 10. Simulate X, according to the IW distribution given in Ap-
pendix B (B10).

Step 11. Simulate a;. according to the IG distribution given in Ap-
pendix B (B11).

Step 12. Return to step 1 or terminate when chain length is adequate
for meeting convergence diagnostics.

Model implementation

The Gibbs sampler described above for the BPMTME model was
implemented as an R-software package (R Core Team 2016). We
performed a total of 40,000 iterations; 20,000 samples were used
for inference because the first 20,000 were used as burn-in to de-
crease MCMC errors in prediction accuracy. We used a thinning of
five, so that 4000 samples were used for inference. The chain con-
vergence diagnostic was done by visual checks using the trace plots
and autocorrelation functions of each component of 8 coefficients
and variance components, and in general we observed that they
stabilize very quickly for the real and simulated data. We imple-
mented the prior specification given in the previous section where
the BPMTME model was defined. The hyper-parameters used
were: B =0y, 2, = 1x10*%, Zg = Iy, v¢ = vy = vg = 2, and
A; = Api = Ay = 1x10% where I is the identity matrix of dimen-
sion ILXIL. All these hyper-parameters were chosen to lead
weakly informative priors. Also, it is important to point out that
for the implementation with real and simulated data sets, we
worked with the sum for each line resulting from its corresponding
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number of replicates. This was done to save time in the implemen-
tation of the proposed model.

Assessing the prediction accuracy of the models

We used cross-validation 1 (CV1), which mimics a situation where
lines were evaluated in some environments for all traits but
some lines are missing in other environments, as proposed by
Montesinos-Lopez et al. (2016b). For real and simulated data, pre-
diction ability was assessed using 10 trn-tst (trn = training and tst =
testing) random partitions; we used this approach because it
provides higher precision in the predictive estimates than the
framework that uses different numbers of folds. However, for
the simulated data we used five different partitions (percentages)
for the training and testing sets, and the corresponding testing
sets were assumed as missed values. The percentages for the train-
ing set were 90, 80, 70, 60, and 50% and their corresponding com-
plements were used as testing (tst) sets (tst = 10, tst = 20, tst = 30,
tst = 40, and tst = 50%). Of the variety of methods for comparing
the predictive posterior distribution to the observed data (gener-
ally termed “posterior predictive checks”), we used Spearman’s
correlation because the phenotype is not normally distributed.
Models with values closer to one indicate better predictions. The
predicted observations were calculated with S collected Gibbs

samplers  as: exp(Xi%*(S) + le;is) + ZZI;;S) +¢), where

B, i)is), l;;s), and ¢ are estimates of 8%, by, by, and c in the sth
collected sample.

Simulated data sets

The proposed model was also tested with two simulated data sets (S1and
S$2). Both data sets were simulated under the proposed model (described
in the statistical model section) with three environments, two traits,
200 genotypes, and five replications. The B coefficients used for both
data sets were BT =1{0.20, 0.25, 0.15, 0.20, 0.30, and 0.32]. The first two
B coefficients belong to traits 1 and 2 in environment 1, the third and
fourth values belong to traits 1 and 2 in environment 2, and the last two
traits for environment 3. The variance-covariance matrices used for
the first data set (scenario S1) gave rise to a matrix of correlation
between traits and environments of 0.8; these matrices were:

r . 0.003 0.0022 0.0024

3 = 006000351 g'ggzl T = {0.0022 0.0022 0.0012} and
L= ’ - 0.0024 0.0012 0.0030
[0.0003 0.0003 | . . )

Y = 10,0003 0.0004 | The variance-covariance matrices used for

the second data set (scenario 2) gave rise to correlation matrices with
correlations equal to 0.3; the corresponding covariances were:

r E 0.003 0.0007 0.0009

3= 006000152 888;2 , X = [0.0007 0.0022 0.0007], and
L ' - 0.0009 0.0007 0.0030
[0.0003 0.0001] . . .

3 = . It is also important to point out that

0.0001 0.0004
for both simulated data sets, we assumed independence between
genotypes, i.e., Gg = I509. The implementation of the BPMTME
model for these two simulated data sets was the same as that used
with the real data sets described in the section on model
implementation.

Data availability

The Gibbs algorithm described in this paper was implemented in C++
using the Armadillo linear algebra Library (Eddelbuettel and Sanderson
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B Table 1 Prediction accuracy measured with the average of the 10 random partitions using the Spearman correlation (ASC) for each

testing (tst) percentage for the BPMTME and BPME models

Trait-Env ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC
11 0.625 0.575 0.710 0.635 0.597 0.480 0.574 0.574 0.551 0.553
21 0.693 0.568 0.705 0.566 0.542 0.533 0.527 0.560 0.572 0.546
12 0.815 0.571 0.694 0.615 0.551 0.492 0.395 0.452 0.423 0.397
22 0.548 0.553 0.685 0.612 0.541 0.597 0.627 0.608 0.609 0.590
13 0.754 0.575 0.715 0.623 0.518 0.613 0.635 0.616 0.581 0.569
23 0.610 0.590 0.706 0.628 0.559 0.539 0.601 0.556 0.600 0.597
Average 0.674 0.572 0.702 0.613 0.551 0.542 0.560 0.561 0.556 0.542
S1 SD SD SD SD SD SD SD SD SD SD
11 0.118 0.104 0.060 0.045 0.050 0.053 0.018 0.018 0.013 0.016
21 0.104 0.118 0.046 0.059 0.045 0.033 0.026 0.025 0.013 0.007
12 0.048 0.113 0.032 0.061 0.051 0.026 0.025 0.016 0.014 0.009
22 0.136 0.116 0.072 0.065 0.045 0.032 0.032 0.015 0.010 0.011
13 0.077 0.135 0.045 0.047 0.048 0.033 0.030 0.018 0.012 0.011
23 0.102 0.118 0.062 0.050 0.043 0.033 0.019 0.014 0.013 0.008
Trait-Env Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean
11 0.728 0.514 0.740 0.643 0.581 0.499 0.581 0.584 0.548 0.561
21 0.561 0.630 0.711 0.587 0.544 0.511 0.550 0.561 0.584 0.561
12 0.537 0.623 0.668 0.647 0.567 0.529 0.402 0.437 0.439 0.416
22 0.531 0.575 0.721 0.625 0.550 0.613 0.641 0.591 0.616 0.600
13 0.571 0.633 0.674 0.613 0.522 0.607 0.618 0.593 0.564 0.570
23 0.640 0.538 0.711 0.636 0.568 0.570 0.574 0.544 0.588 0.585
Average 0.595 0.585 0.704 0.625 0.555 0.555 0.561 0.552 0.557 0.549
S2 SD SD SD SD SD SD SD SD SD SD
11 0.074 0.122 0.044 0.050 0.054 0.046 0.023 0.016 0.015 0.012
21 0.154 0.098 0.057 0.055 0.061 0.039 0.028 0.026 0.014 0.007
12 0.144 0.088 0.041 0.056 0.039 0.023 0.025 0.014 0.013 0.010
22 0.142 0.108 0.055 0.054 0.035 0.025 0.029 0.020 0.012 0.012
13 0.137 0.112 0.065 0.058 0.040 0.030 0.027 0.017 0.013 0.010
23 0.105 0.135 0.064 0.051 0.043 0.032 0.020 0.014 0.014 0.006

SD denotes standard deviations.

2014). It was included in the R package BMTME as an extension of its
current features. With the updated version (0.0.4), the user can also fit
count data by means of the same pipeline presented by Montesino-
Lopez et al. (2016b). However, due to the need for sampling from
a Pélya-gamma distribution, it was necessary to include a dependency
regarding the R package BayesLogit (Polson et al. 2013) and for the
moment, we are only distributing the package through CIMMYT’s
repository http://hdlLhandle.net/11529/10866. Users must have
BayesLogit properly installed in their computers before installing
BMTME v0.0.4, as well as the R version 3.2.4. or higher. The phenotypic
(FHB) and genotypic (marker) data used in this study can also be down-
loaded from that link.

RESULTS

The results are given in two sections: the first section gives the results of
the simulated data and the second section gives the results of the real data
set.

Prediction accuracy in the simulated data

Table 1 shows the results for both scenarios (S1 and S2) described in
the simulation study for the BPMTME model and for the Bayesian
Poisson multi-environment (BPME) model (univariate version of the
BPMTME model). Since for each scenario we studied the prediction
accuracy of the models using 10 random partitions for each of the five
training-testing percentages, we provided the average of the Spearman
correlation of the 10 random partitions for each testing percentage (10,
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20, 30, 40, and 50%) for each scenario and each model (BPMTME and
BPME models). First, we compare, for each scenario (S1), the predic-
tion accuracies for each testing percentage between the BPMTME
model and the BPME model. Then we compare the prediction accuracy
for each testing percentage between the two scenarios.

The first comparison is important since we hypothesized that the
BPMTME model produces better predictions than the BPME model.
Under S1, on average, the BPMTME model produced better predictions
than the BPME model. For the 10% testing percentage, the BPMTME
model was on average 17.89% better than the BPME model. When the
testing percentages were 20 and 30%, the BPMTME model was on
average 2.1% better than the BPME model. When the testing percentage
was 40%, the BPMTME model was on average 9.16% better than the
BPME model, and when the testing percentage was 50%, the BPMTME
model was on average 1.4% better than the BPME model. It is also important
to point out that for trait-environment combination 12, the best model
was the BPMTME model for the five testing percentages; the superiority
of this model over the BPME model in the five cases was >27%.

For the second scenario (S2) and the 10% testing percentage, the
BPMTME model was on average 5.16% better than the BPME model,
whereas for the 20, 30, 40, and 50% testing percentages, the BPMTME
model was on average 3.17,21.75,10.75, and 0.9% better than the BPME
model, respectively.

When we compare the prediction accuracies of scenarios S1 and S2,
we see that there are no significant differences between the two scenarios,
although, on average, for all the testing percentages the BPME model was
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M Table 2 The posterior means (Mean) and SD of parameter estimates of 8*, X;, X., and Xy of the BPMTME model

By 0.018 0.119 S 0393 0.086 Senn 0.0198 0.0416
By -0.151 0.133 Sa2 0.367 0.063 e 0.0014 0.0079
By 1.806 0.099 S 0.381 0.069 S 3.92E-05 0.0003
Ba 1.680 0.102 Soin 0.702 0.058 Sex 0.003 0.0041
By 2.806 0.097 S 0.102 0.039 Sex 1.45E-05 0.0002
B 2.751 0.091 S 0.726 0.060 k3 4.94E-05 0.0001

SD denotes standard deviations.

a little better than BPMTME. To make sense of this result, we need to
remember that under scenario S1, the correlation of the three variance-
covariance matrices (Z;, Xg, and X.) was 0.8, while under scenario S2
the correlation of these three covariance matrices was 0.30.

Estimation and prediction accuracy in the real data set
Table 2 gives the parameter estimates of the real data set. The 3 coef-
ficients between traits and between environments are different, which
implies that the counts between environments and between traits are
different. The larger counts are observed in environment 3 and the
lower counts are observed in environment 1; also, the counts in trait
1 are a little larger in comparison to trait 2. The variances for each trait
(that belong to X;) are very similar (0.393 for trait 1 and 0.381 for trait
2) and the correlation between these two traits is 0.948 (with a covari-
ance of 0.367 in X;); that is, the correlation between traits is high since
the resulting correlation between traits is close to one. The variances of
traits estimated under the variance-covariance matrix (X.) were 0.702
for trait 1 and 0.726 for trait 2, with a correlation of 0.1418 (and a co-
variance of 0.102); in this case, the correlation between traits that is not
explained by X, is very low (0.1418). However, the variances of environ-
ments were very low: 0.0198, 0.003, and 4.94E—05 for environments 1,
2, and 3, respectively (obtained from Xg). The correlations between
environments were also very low since the correlation between environ-
ments 1 and 2 was 0.182 (with covariance 0.0014 from Xg), the corre-
lation between environments 1 and 3 was 0.039 (with covariance
3.92E—05 from Xg), and the correlation between environments
2 and 3 was 0.037 (with covariance 1.45E—05, from Xg). X, is the
general variance-covariance matrix of traits that were not explained
by variance-covariance matrix ;.

Table 3 shows that, in general, there are no significant differences in
terms of prediction accuracy between the two models (BPMTME and
BPME); however, it is very interesting that predictions are pretty high
under both models, since in all cases the predictions are >0.5. For
example, under both models the lowest predictions were for trait—
environment combination 11, while the best predictions were for
trait-environment combinations 13 and 23.

These results can be explained in part because the correlation
observed between traits in correlation matrix X, was very low
(0.1418), and because the correlation observed in the correlation matrix
between environments was also low (see Table 2). However, although
the correlation between traits observed in correlation matrix X; was
very high (0.948), this alone did not contribute to superior predictions
under the BPMTME model in comparison to the BPME model. It is
important to point out that these results with the real data do not
indicate that the BPMTME model is not useful, but rather that there
is no advantage in using this model over the BPME model when the
correlation structures of traits (¥;, £.) and environments (Xf) are not
high. Another possible explanation of why the BPMTME model did not

1600 | O. A. Montesinos-Lopez et al.

outperform the BPME model is that the number of wheat lines in this
data set is limited (only 182) and only 18 (10%) of them are predicted in
some environments. When our proposed BPMTME model is used with
limited data sets, it is likely to capture idiosyncrasies of the data rather
than the true underlying processes; this problem may be entirely due to
limitations the data impose on our ability to detect the underlying
processes, rather than to any inherent value of simple models. Although
the results in Table 3 do not favor the BPMTME model, we can argue
that the proposed multivariate model has a low risk of doing worse in
terms of prediction accuracy. For this reason, we are convinced that
when dealing with prediction of count phenotypes for multiple traits
and multiple environments, the savviest solution is to run both models
and choose the one with better prediction performance. Another pos-
sible reason for the difference in performance of both models may be
the presence of more zeros than our model can support in the pheno-
types under study, since Figure 1 shows that for trait-environment
combinations, Traitl_Environmentl, Traitl_Environment2, Trait2_
Environmentl, and Trait2_Environment2, there is overdispersion
for the excess zeros. In the statistical literature, zero-inflated and
hurdle models have been proposed for coping with zero-inflated out-
come data with or without overdispersion. For this reason, as one
reviewer suggested, the proposed models for multiple-traits and multi-
ple-environments can be expanded to deal with the high occurrence of
zeros in the observed dependent variables to end up with zero-inflated
and hurdle versions for multiple-traits and multiple-environments.

DISCUSSION

In this paper, we propose a Poisson-lognormal multivariate model that
takes into account the TXE, TX G, and T X GXE interaction terms,
and helps to improve prediction capacity in comparison to the univar-
iate Poisson-lognormal model, which only takes into account the G X E
interaction term. The proposed model is original in the sense that an

B Table 3 Prediction accuracy of the real data set measured based
on the average of the 10 random partitions using the Spearman
correlation (ASC) for each testing (tst) percentage for the BPMTME
and BPME models in bold are the best predictions.

11 0.5008 0.0666 0.5145 0.0595
21 0.5309 0.0375 0.5814 0.0290
12 0.6805 0.0287 0.7064 0.0383
22 0.7025 0.0462 0.6715 0.0394
13 0.7447 0.0158 0.7672 0.0195
23 0.7576 0.0262 0.7187 0.0214
Average 0.6528 0.0368 0.6600 0.0345

SE denotes the standard error.
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Figure 1 Histogram of count frequencies of the real data set for the two traits under study for each environment.

exact Gibbs sampler was obtained, which makes this model more effi-
cient than existing Poisson-lognormal multivariate models that do not
take into account interaction terms and use the Metropolis-Hastings
algorithm to estimate parameters. Also, the lognormal random effect
exp(c) that was introduced in the linear predictor allows having an
approximate Poisson-lognormal model. The advantage of introducing
these lognormal random effects was twofold: (1) accounting for over-
dispersion (more than the Poisson variance) and (2) exploiting the
correlation between traits that was not captured by the variance-
covariance matrix of traits (X;). We introduced a general covariance
structure between the traits for the extra random effect (X, ), which plays
a really important role because it also allows borrowing information
between traits. Additionally, the proposed model also has a general co-
variance structure between environments which also allows borrowing
information between environments. It is important to point out that if
a gamma distribution was assumed for the random effect ¢, this would
produce a multivariate negative binomial model which, in addition to
being very inefficient for estimating the scale parameter, only allows
positive correlation structures because the NB model (univariate and
multivariate) was motivated solely for mathematical convenience.
Another advantage of the proposed BPMTME model is that it can be
used for performing univariate analysis employing the predictor given in
Equation (1), using the appropriate design matrices of environments, lines,
and genotype by environment. This alternative is really helpful since in ad-
dition to implementing the multiple-trait and multi-environment model for
count data, it also allows implementing a univariate multiple-environment
model with the same proposed code under a Poisson-lognormal
model. Here it is important to point out that the resulting univariate
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Poisson-lognormal model is different from the Poisson and NB models
with the GXE interaction term proposed by Montesinos-Ldpez et al.
(2016a), given that the models with G X E proposed by these authors do
not have the normal random effect cflk) . For this reason, a comparison with
this model was not included. However, according to the existing statistical
literature, there is evidence that when there is overdispersion, the Poisson-
lognormal model does a better job than the Poisson only model.

According to our results, the proposed model may be useful for
breeders interested in modeling more than one count trait in many
environments simultaneously. Although in the simulation study the
BPMTME model was better in terms of prediction accuracy than the
BPME model, in the real data set both models had similar prediction
performance. Although the proposed BPMTME model showed no
superiority in the real data set, we believe that when the correlations
between traits and between environments are high, the proposed model
should be superior. However, more empirical evidence is necessary to be
sure that the proposed model helps to increase prediction accuracy
under these circumstances.

As previously mentioned, our results with the real data sets indicated
that the univariate model was slightly better than our multivariate model
in terms of prediction accuracy. This result, which was not expected, has
been documented in areas like econometrics where multivariate models
have been better at modeling interdependencies and achieve better fit.
Within a given sample, it has been found that univariate methods
outperform multivariate methods in sample predictions. Some of the
reasons that may explain these results are given here. (a) Multivariate
models have more parameters than univariate models (parsimonious).
Every additional parameter is an unknown quantity and has to be
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estimated. This estimation brings an additional source of error due to
sampling variation. (b) The number of potential candidates for multi-
variate models exceeds its univariate counterpart. Model selection is
therefore more complex, lengthier, and more prone to errors, which
affect prediction. (c) It is difficult to generalize nonlinear procedures in
the multivariate case. Generally, multivariate models must have a simpler
structure than univariate ones to overcome the additional complexity of
being multivariate. For example, while a researcher may use a nonlinear
model for univariate data, she/he may refrain from using the multivariate
counterpart or such a generalization may not have been developed.
Then, multivariate models will miss the nonlinearities that are handled
properly by the univariate models. (d) Outliers can have a more serious
effect on multivariate predictions than on univariate predictions. More-
over, it is easier to spot and control outliers in the univariate context, etc.
For these reasons, we believe it is necessary to explore other approaches
to prediction when dealing with multivariate responses (count and
normal phenotypes) and multiple environments, for when the number
of traits, lines, and environments increased significantly even with
normal phenotypes, the implementation of this model became very
difficult.

Finally, although the proposed model has some advantages, it also
has some disadvantages. The main disadvantage of the proposed
BPMTME model is that it is computationally demanding. Although
we implemented this model in C++ code, when the number of lines,
environments, and traits grows substantially, the time required for its
implementation increases greatly and can be untenable for large num-
bers. The second disadvantage is that our proposed BPMTME model is
in reality an approximation to the true BPMTME model: instead of
working directly with the Poisson model, we approximated it with the
negative NB distribution using r = 1000 as a scale parameter, which
works very well for small counts, as was shown by Montesinos-Lopez
et al. (2016a). Thanks to this approximation, it was possible to obtain
an exact Gibbs sampler that is more powerful for complex and large
data sets.

Conclusions

In this paper, we propose a multiple-trait, multiple-environment model
for count data under an approximate Bayesian Poisson-lognormal
model. The Gibbs sampler obtained is an approximation since the
Poisson-lognormal model is approximated using the NB distribution
in conjunction with a lognormal random effect. The proposed
BPMTME model was compared with its univariate counterpart
(BPME), and in the simulation examples, the proposed multivariate
model (BPMTME) was considerably better in terms of prediction
accuracy. This can be expected when there is a moderate or large
correlation between traits, which allows borrowing information between
traits. However, the prediction accuracy of the proposed multivariate
model was not superior to that of the univariate model with the real data
set. The proposed BPMTME model allows borrowing information
between environments because it takes into account a general covariance
matrix between environments. For these reasons, we believe that more
empirical work is needed to determine whether the proposed BPMTME
model is really a better tool than the BPME model tool for breeders
interested in simultaneously improving more than one count trait in
many environments. However, although an exact Gibbs sampler was
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proposed and the program was implemented in C++, it is computa-
tionally demanding and more work is required for increasing its speed.
Nonetheless, we are convinced that this limitation will disappear or
diminish considerably in the coming years as computer science is
improving very quickly.
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APPENDIX A: JOINT DISTRIBUTION OF ALL PHENOTYPIC COUNT RESPONSES

Conditioning on byj, by, ¢; = [cijt, - - -, cin]T and w;; = [wj1, . .. ,win}T, the joint conditional distribution for all the replications in envi-
ronment i and genotype j is

K nr K K
1 1
*T *T * *T . T *
S 188 | E DT S Ry B i
k=1 I=1 k=1 k=1

T T
where yi = yl-*le, N y;IT< .oMp= n};? S nj}] and Dj; = diag(Dy1, *-,Dyx). Then, the joint conditional distribution for all the
observations In environment i is given by

J
L,
Li = [J L exp (y?Tn? -5 TDm?)
j=1

T T
where y; = |yiL, -, y;ﬂ , M= [n;‘IT, e nj]T] , and D; = diag(Dy, ***, Dy). Finally, the joint conditional distribution for all the obser-

vations is

L= HL “eXp(y*Tn* +-m,'D q )
T T
where ys = [yi7, "] . mp = [mi",mi7] . and D = diag(Dy, 1, Dy).
Note that the predictor (1) can be expressed as

1} (1 *(1 1} (1 DT Hx (1
11k B<)+b +b21;+cz]lz log(r) = Bi(>+b<)+bgv 1112 xz() B (Z)+b<)+b23 1_712

with 0T = {,BYU), o B}‘(l)} ;a0 = {xﬁ), ,xf})} and where x!' = 1ifi =i and x,(tl) = 0 otherwise. This implies that

*(1)
| T '
Mijk = {ne) = XiB” + bij + bajj + ey,
*(ny
Mijk
T ] « 1 1
e1T®x,(1) g b(u) b;z])
where X5 = : N where elT is the I-th element of the canonical basis of R"". B* = : , b= : s by = : ,and
nglk) eZT ®x§"T) B*("T) b(l;T) bg?jﬂ
Cijk = . |. From here,
(nr)
Ciik
"7.:';‘1
m;=| ¢ | =XiB" + Zuby + Zaybay + ¢,
n?}K
Xin Cijl
where X;; = Do, Zij =1k ®l,,, Zy; = 1k ®I,,, ¢;j = i |, and 1k is a column vector of ones of dimension K.
Xijx Ciik
This implies that
m
;= | : | =XiB" + Ziiby + Zaibyi + ¢
*
Ny
X Ziyn 0 Zy 0 by bai Cjj
where X; = | : |, Z; = : oL 2y = : .t b= i |,byi=| i |,and¢;=| i |.Then
Xy 0 - Zy 0 - Zy by by ciy
m
1]* = : :Xﬁ*+Z1b1+Zzb2+c
n;
X Zy Zy 0 by (o
whereX=| ! |,Zy=| ! |,Z,=| ¢ . i |,bp=1| % [,andc= |  |.Finally,
X Zy 0 - Zy by cr
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1
L= exp(y*Tn* — n*TDn*) o exp <y*T(Xﬁ* +Z1by +Zby +¢) — 3 (XB* + Z1by + Zyb, + ¢) ' D(XB* + Z by + Zb, + c))

APPENDIX B: DERIVING FULL CONDITIONAL DISTRIBUTION FOR ALL PARAMETERS

Full conditional for g*
£ exp(y7T(XB°) —3 (X" + Ziby+ Zaba + 0 DIXB + 21ty + Zaba 40— S8 B, (8~ )

1 _
-3 (-2) [B:Tzv Uy TX — (Zyby + Zoby + c)TDX]ﬂ*>

o exp(_% B*T(zt)—lﬁ* _% (_Z)ﬂ;*T(E:)_lﬂ*)

* exp (—% BTz, + x"DX) B*

cexp B -8 VT8 B ~ NGB (B)

where ¢ = (£,' + X"DX) ™" and B7* = (2, B + XTy* — X"D(Z,b, + Z,b, + ¢)]
Full conditional for b,
1] =) exp(y7 2161~ 10 Do = 3660 )
« exp(—zblT(Gl_l +Z'DZ)) by — % (—2) [y*Tz1 — (XB % +Zsb) + c)TDll] bl)

(—2)b1(G1‘)‘1b1)

1 1
cexp(( 30 (6o

cexp( 3016 (61)7 (b1~ B1) ) ~ NG 6) (®2)

where G = (G;' +2TDZ) ™" and b} = G (ZTy*—ZTD(XB" + Z,b, +¢)).
Full conditional for b,

In a similar way as the full conditional of b;, then
bo| ~ N(b3, Gy) (B3)

where G} = (G, ' + ZI'DZ,) " and b = G5(Z1y* — ZID(XB* + Z1b, +¢)).

Full conditional for ¢

First note that ¢ is equal to c=[¢ ... cI]T:[cH...cU...cH cU]T, and we need to remember that
T

Cik = c§j}j f]’;”] ~N(0,%,), for all i, j, and k. This implies that c;j= [ ... ] ~N(0,Ix®E,),

c=len ... ey]" ~NOIg®Z),andc=[¢; ... ¢]" ~ N(0,2)), with Z ;) = Iy ® Z.. Therefore,

f(c|—)ocexp(y c——n*TDn ——c Ty~ a)c>

1 - T
o exp(—z cT(ZC(l) {y (XB* +Z1b; + Zzbz) D} c) (B4)

mexp(—;<c—c*)T( ) 1(6 C*)) ~ N(‘:*’Ef(u))

* - -1 *
where %) = (Zq) + D) Tand ¢ g [y —D(XB' + Ziby + Zaby)
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Full conditional for X,

1 1
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where C; = C; + B} GQIBTT +B;G;'B;Tand C, = 2vtd1ag<alr #) ,and B}, B}, and G; ! are matrices defined below. To see this, note
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Full conditional for a;
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Full conditional for X
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where C; = C + B:"G, 'B; and B; is defined below. First, this is because b (£;' ® G; )b, = ||(Z l/2®Gl 1/2)112|| and (X 1/2®G171/2)
b, 7( 1/2®G1 1/z)vec(B*) = vec(G; 1/ZB*):. 1/2)7 where B; is a matrix with I columns such that vec(B;) =b,. Then, expressing
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Full conditional for a;;
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Full conditional for wf]l,z

f(wf|BLSE) ~ PG(b =y} +r.d = n;) (B9)

Full conditional for X,
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where C! = C, + B;B;", where B is a matrix with ny rows such that vec(B}) = c.

Full conditional for g,
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