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Abstract: Ultraviolet (UV) optical devices have plenteous applications in the fields of nanofabrication,
military, medical, sterilization, and others. Traditional optical components utilize gradual phase
accumulation phenomena to alter the wave-front of the light, making them bulky, expensive, and
inefficient. A dielectric metasurface could provide an auspicious approach to precisely control the
amplitude, phase, and polarization of the incident light by abrupt, discrete phase changing with high
efficiency due to low absorption losses. Metalenses, being one of the most attainable applications of
metasurfaces, can extremely reduce the size and complexity of the optical systems. We present the
design of a high-efficiency transmissive UV metalens operating in a broadband range of UV light
(250–400 nm) with outstanding focusing characteristics. The polarization conversion efficiency of the
nano-rod unit and the focusing efficiency of the metasurface are optimized to be as high as 96% and
77%, respectively. The off-axis focusing characteristics at different incident angles are also investigated.
The designed metalens that is composed of silicon nitride nanorods will significantly uphold the
advancement of UV photonic devices and can provide opportunities for the miniaturization and
integration of the UV nanophotonics and its applications.
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1. Introduction

Metasurfaces have stirred up a spree of research interest in recent years due to their brilliant
performance in the field of electromagnetic wave manipulation [1–9]. Metasurfaces are based on
some well-designed subwavelength scale arrays of resonators to manipulate the amplitude, phase,
propagation direction, and polarization of light to nanoscale resolution at an ease [10–19], making them
an appropriate option for miniaturization and integration of photonic systems. Currently, metasurfaces
are being applied to various applications, such as metalenses [20], holograms [21,22], cloaking [23,24],
surface plasmon launcher [4], nonlinear devices [3,11,25–28], bio sensing [26,27], computing [11,28],
switching [5,29], and various novel photonic systems and devices [30–34]. Among these, metalenses
are a stirring and significant research direction and application of metasurfaces since they not only
outperform the optical properties but are also far smaller and ultrathin comparing to the conventional
expensive and bulky optical lenses [35]. Furthermore, they provide a doorway to the integration
and miniaturization of the optical devices. Transmissive or reflective metalenses can be explored by
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dielectric or plasmonic metasurfaces. Plasmonic metalenses perform well in reflection mode. However,
owing to the higher reflection and absorption losses of the metals, plasmonic metalenses are less
efficient in much preferred ‘transmissive mode’ for most of the optical devices and systems. The
quest for highly efficient photonic devices has led to the employment of dielectric material as the most
promising candidate for the progression of high efficiency transmissive metalenses. Optical losses
are minimized to a significant extent by choosing a wide bandgap and high refractive index dielectric
material. Thus, dielectric metalenses outperform the plasmonic metalenses in terms of transmission
applications [36]. The desired characteristics of dielectric metalenses comprise high diffraction and
transmission efficiencies, large numerical aperture (NA), and broadband wavelength operation [37].

Previously reported work on metalenses has focused on various wavelengths ranging from
ultraviolet to near-infrared [38], but these metalenses defocused at a small range of UV spectrum due
to the insufficient phase delay. Phase manipulation can be realized by various methods depending
on principles; for instance, Huygens metasurfaces [39,40], surface plasmon wave-guiding [41,42] and
dielectric effective refracting [43,44]. For the Pancharatnam–Berry (PB) phase method, the extra local
phases of unit cells are controlled by incident angles by element rotation, and they manipulate circularly
polarized (CP) light with great ability.

As mentioned above, earlier reported work on the metalenses in the UV range is lean and they do
not operate in a broadband UV spectrum, and hence are defocused on a small UV range. Moreover, the
focusing efficiency and the polarization conversion efficiency of the unit cell is not as high as reported
in our work [38,45,46]. Our design of a 2-D, dielectric UV metalens is based on silicon nitride Si3N4

metasurface, exhibiting high efficiency with a full phase delay of 2π for the broadband UV range
(250–400 nm) using PB phase. Our designed metalens has polarization conversion efficiency as high as
96%, thus enabling ultra-high focusing efficiency to 77%. Furthermore, the calculated full width at
half maximum (FWHMs) of the focal spot is also diffraction limited. We envision that the designed
metalens will open up a new doorway towards the development of miniaturization and integration of
the UV photonic devices and its applications.

2. Materials and Methods

The capability to realize high efficiency dielectric metalens in the targeted UV region is critically
based on the optical properties of the material, as indicated by the complex refractive index, ñ = n + ik.
The adopted material should have a high refractive index (n > 2) with relatively negligible absorption
loss (k ≈ 0) at the operating UV regime. Despite a negligible absorption being crucial for high
transmission efficiency, a higher refractive index assures strong confinement of the UV light that
ultimately provide full (0 to 2π) phase control [47]. The bandgap of traditional dielectric materials
is narrow, causing high absorption losses in UV. Gallium nitride and titanium oxide have relatively
large bandgaps but they are not appropriate to use in the targeted UV spectrum due to their higher
absorption losses [46]. Si3N4 has been chosen as the dielectric material for its high refractive index
of about 2.3, an ultra-wide bandgap of about 5.1 eV, and its transparency window (k ≈ 0) for the UV
spectrum of 250–400 nm [48]. Phase manipulation can be achieved through various methods relying
on principles such as surface plasmon wave-guiding [41,42], dielectric effective refracting [43,44],
and metamaterial Huygens surfaces [39,40]. However, the PB phase method has gained significant
attention for being wavelength-independent [49,50]. In this approach, all the building blocks of the
metasurface have identical size and uniformly transmitted amplitude. When the circularly polarized
light is converted into inverse circular polarized light, the transmitted inversed polarized light will
have a geometric phase shift that is double of the rotating angle of the nanorod. The metalens design
presented here is based on high aspect ratio Si3N4 nanorods as shown in Figure 1.
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Figure 1. Design of the metalens. (a) Schematic of the metalens and its building block, the Si N  
nanorod. (b) Si3N4 nanorod on SiO2 substrate. (c) and (d) side and top views of the unit cell showing 
the height, width, and length of the nanorod having unit cell dimensions S × S. (e) By the rotation of 
the nanorod, the required phase is imparted by an angle of θ following the geometric Panchratnam–
Berry phase. 

The incident circularly polarized light can be partly converted into inversed circularly polarized 
light that has the geometric phase according to the PB phase method. In our design, the incident light 
was left circularly polarized light (LCP) and the transmitted light was right circularly polarized light 
(RCP). In case of incident LCP light, for a nanorod with rotating angle θ the generated phase shift φ 
will be φ = 2θ. All the simulations were performed using the commercial finite-difference-time-
domain (FDTD) method implemented by commercial software ‘FDTD Solutions’(produced by 
Lumerical Solutions Co. Ltd., Vancouver, BC, Canada) [51]. For the polarization conversion efficiency 
calculation, periodic boundary conditions were applied to both x and y-direction and perfectly 
matched layer (PML) is applied to the z-direction. The simulation area was discretized by a 3-D grid 
mesh using a step size of 0.25 nm in x, y, and z-directions. 

Polarization conversion efficiency can be defined as the fraction of the optical power of the 
incident circular polarized light which is converted to the optical power of the transmitted inversed 
circular polarized light [46,51]. By carefully optimizing the unit cell parameters such as height, width, 
length and period of the nanorod maximum polarization conversion efficiency can be attained. The 
conversion efficiency of the Si3N4 nanorod in the wavelength range of 250–400 nm is shown in Figure 
2. 

Figure 1. Design of the metalens. (a) Schematic of the metalens and its building block, the Si3N4 nanorod.
(b) Si3N4 nanorod on SiO2 substrate. (c) and (d) side and top views of the unit cell showing the height,
width, and length of the nanorod having unit cell dimensions S × S. (e) By the rotation of the nanorod,
the required phase is imparted by an angle of θ following the geometric Panchratnam–Berry phase.

The incident circularly polarized light can be partly converted into inversed circularly polarized
light that has the geometric phase according to the PB phase method. In our design, the incident light
was left circularly polarized light (LCP) and the transmitted light was right circularly polarized light
(RCP). In case of incident LCP light, for a nanorod with rotating angle θ the generated phase shift ϕ
will beϕ = 2θ. All the simulations were performed using the commercial finite-difference-time-domain
(FDTD) method implemented by commercial software ‘FDTD Solutions’(produced by Lumerical
Solutions Co. Ltd., Vancouver, BC, Canada) [51]. For the polarization conversion efficiency calculation,
periodic boundary conditions were applied to both x and y-direction and perfectly matched layer
(PML) is applied to the z-direction. The simulation area was discretized by a 3-D grid mesh using a
step size of 0.25 nm in x, y, and z-directions.

Polarization conversion efficiency can be defined as the fraction of the optical power of the
incident circular polarized light which is converted to the optical power of the transmitted inversed
circular polarized light [46,51]. By carefully optimizing the unit cell parameters such as height, width,
length and period of the nanorod maximum polarization conversion efficiency can be attained. The
conversion efficiency of the Si3N4 nanorod in the wavelength range of 250–400 nm is shown in Figure 2.
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efficiency as a function of the wavelength and width of the nanorod at length, L = 95 nm. 

The polarization conversion efficiency is as high as 96%. The optimized structure parameters for 
the unit cell are height H = 210 nm, width W = 85 nm, length L = 95 nm, and period S × S = 240 nm.  

3. Design of the Metalens, Results, and Discussion 

PB phase method was implemented for designing the broadband UV metalens for light 
convergence at a broadband range of UV light (i.e., 250–400 nm). The incident light with the 
wavelength λ is focused to a spot by phase control. For a traditional spherical lens, the difference of 
refractive index between the different media generates the phase shift. As the light propagates 
through the surface of metalens to the focal point, different positions in the metalens lead to different 
optical path difference which has a phase shift relative to the center of the metalens (i.e., [51–53]). 
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where, x and y are the coordinates of the nanorod in the metalens, f is the focal length and λ is the 
wavelength. As the wavelength and the focal length have been determined, the phase φ(x,y) for each 
nanorod can be calculated. This phase profile is imparted by the rotation of each nanorod at a given 
coordinate (x,y) by an angle θ(x,y). According to the Pancharatnam–Berry phase method, the phase 
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According to the above equation, the rotation angle of all the nanorods is determined at each 
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optimized nanorod structure could be able to alter the phase profile of transmitted light at will. 
Therefore, the transmitted PB phase can achieve full 0 to 2π phase range. The optimized structure 

Figure 2. (a) Simulated polarization conversion efficiency as a function of wavelength for which
periodic boundary conditions were applied in x and y directions and perfectly matched layer boundary
conditions were applied in the z-direction. (b) Polarization conversion efficiency as a function of
wavelength and length of the nanorod at width, W = 85 nm (c) Polarization conversion efficiency as a
function of the wavelength and width of the nanorod at length, L = 95 nm.

The polarization conversion efficiency is as high as 96%. The optimized structure parameters for
the unit cell are height H = 210 nm, width W = 85 nm, length L = 95 nm, and period S × S = 240 nm.

3. Design of the Metalens, Results, and Discussion

PB phase method was implemented for designing the broadband UV metalens for light convergence
at a broadband range of UV light (i.e., 250–400 nm). The incident light with the wavelength λ is focused
to a spot by phase control. For a traditional spherical lens, the difference of refractive index between
the different media generates the phase shift. As the light propagates through the surface of metalens
to the focal point, different positions in the metalens lead to different optical path difference which has
a phase shift relative to the center of the metalens (i.e., [51–53]).

ϕ(x, y) =
2π
λ
( f −

√
f 2 + x2 + y2) (1)

where, x and y are the coordinates of the nanorod in the metalens, f is the focal length and λ is the
wavelength. As the wavelength and the focal length have been determined, the phase ϕ(x,y) for each
nanorod can be calculated. This phase profile is imparted by the rotation of each nanorod at a given
coordinate (x,y) by an angle θ(x,y). According to the Pancharatnam–Berry phase method, the phase
shift generated by the rotation of the nanorod at the (x,y) position of the metalens has a relationship
as [51–53]

ϕ(x, y) = 2θ(x, y) (2)

where, θ(x,y) is the rotating angle of the nanorod in the position (x,y), hence each nanorod in the
metalens is rotated by an angle of [51–53]

θ(x, y) =
π

λ
( f −

√
f 2 + x2 + y2) (3)
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According to the above equation, the rotation angle of all the nanorods is determined at each
position. It should be noted that the rotation angle can be an arbitrary value from 0 to π, so the
optimized nanorod structure could be able to alter the phase profile of transmitted light at will.
Therefore, the transmitted PB phase can achieve full 0 to 2π phase range. The optimized structure
parameters for the designed metalens in the wavelength range 250–400 nm were chosen as height
H = 340 nm, width W = 85 nm, length L = 150 nm, and period S × S = 240 nm. The diameter of the
metalens was 10 µm. The NA of the metalens at the design wavelength λd = 300 nm was calculated to
be 0.75. While focusing, efficiency of the metalens was as high as 77%. Figure 3 presents the focusing
characteristics of the designed metalens.
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Figure 3. Focusing characteristics of UV metalense at incident UV light 250–400 nm. Normalized
intensity distribution at y-z plane at (a) λ = 250 nm, (b) λ = 300 nm, (c) λ = 350 nm and (d) λ = 400 nm.
Normalized intensity distribution of the metalens at x-y plane at x = y = 0. (e) λ = 250 nm along x-axis
at z = 5.3 µm, (f) λ = 300 nm, along x-axis at z = 4.4 µm (g) λ = 350 nm, along x-axis at z = 3.5 µm
and (h) λ = 400 nm, along x-axis at z = 2.9 µm. The metalens has a diameter of 10 µm, the numerical
aperture (NA) of the metalens at designed wavelength λd = 300 nm is 0.75.

The normalized intensity distributions of the transmitted light beam in the y-z section of the
metalens are shown in Figure 3a–d and the intensity profiles of the transmitted light beam in the x-y
section of the metalens are shown in Figure 3e–h. The intensity distribution of the focal spot exhibits a
strongly focused, bright, and symmetric spot at the center of the focal plane at respective wavelengths
(250 nm, 300 nm, 350 nm, and 400 nm). The corresponding normalized intensity profiles along the
x-axis show a sharp peak at the center of the plane as shown in Figure 4.
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(a) y = 0, λ = 250 nm, z = 5.3 µm, (b) y = 0, λ = 300 nm, z = 4.4 µm, (c) y = 0, λ = 350 nm, z = 3.5 µm and
(d) y = 0, λ = 400 nm, z = 2.9 µm.

The focal length of the metalens was measured at representative wavelengths (250 nm, 300 nm,
350 nm, and 400 nm). The calculated full width at half maximum (FWHM) of the focal spots at the
respective wavelengths was 206 nm, 210 nm, 226 nm, and 238 nm; all the values were diffraction-limited
(i.e., λd

2NA ). The normalized intensity profiles of the focal spot along x-direction (at z = f, and y = 0)
are shown in Figure 4. The focusing efficiency of the UV metalens is measured to be as high as 77%,
shown in Figure 5.
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Figure 5. Focusing efficiency of the metalens designed for the broadband UV spectrum 250–400 nm.

We verified four wavelengths during the optimizing process; the designed metalens worked quite
well over the broadband range of 250–400 nm.

We also examined the focusing characteristics of the designed metalens at different incident angles
(i.e., 5◦, 15◦, and 25◦). It can be seen by the simulation results presented in Figure 6 that the transmitted
light beam was clear. Figure 6 shows the focusing characteristics and corresponding normalized
intensity distribution of the focal spot at different incident angles at the respective wavelengths.
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Figure 6. Focusing characteristics of UV metalens at 250–400 nm at different incident angles. Normalized
intensity distribution at x-z plane at an incident angle of 5◦ (a) λ= 250 nm, (b) λ= 300 nm, (c) λ = 350 nm
and (d) λ = 400 nm. Normalized intensity distribution of the metalens at x-z plane at an incident
angle of 15◦ (e) λ = 250 nm, (f) λ = 300 nm (g) λ = 350 nm and (h) λ = 400 nm. Normalized intensity
distribution at x-z plane at an incident angle of 25◦ (i) λ = 250 nm (j) λ = 300 nm (k) λ = 350 nm and
(l) λ = 400 nm

4. Conclusions

In summary, we report the design of a dielectric, high efficiency, diffraction-limited UV metalens
based on silicon nitride metasurface functioning in the broadband spectrum of ultraviolet light
(i.e., from 250–400 nm). PB phase was implemented to the unit cell to realize the required phase
distribution of the metalens. The simulated conversion efficiency was 96% while the focusing efficiency
of the metalens was as high as 77%. We also investigated the focusing characteristics of the metalens at
different incident angles (i.e., 5◦, 15◦, and 25◦), which showed a clear focus spot. The designed UV
metalens can have a great promising perception for a diverse range of applications in lithography, UV
laser, UV directional light, image sensors, sterilization, communication, and so on. This research on
high efficiency broadband UV metalenses can pave the way towards the advancement of miniaturized
and integrated UV nanophotonics. Techniques like multiple couple resonances, tailoring the phase
profiles at numerous distinct UV wavelengths, engineering the dispersion, or stacking metasurfaces
could be adopted in the future for designing an achromatic UV metalens.
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