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Despite recent advancements in clinical drugs, diabetes treatment still needs further
progress. As such, ongoing research has attempted to determine the precise molecular
mechanisms of the disorder. Specifically, evidence supports that several signaling
pathways play pivotal roles in the development of diabetes. However, the exact
molecular mechanisms of diabetes still need to be explored. This study examines
exciting new hallmarks for the strict involvement of autophagy and TGF-b signaling
pathways in the pathogenesis of diabetes and the design of novel therapeutic
strategies. Dysregulated autophagy in pancreatic b cells due to hyperglycemia,
oxidative stress, and inflammation is associated with diabetes and accompanied by
dysregulated autophagy in insulin target tissues and the progression of diabetic
complications. Consequently, several therapeutic agents such as adiponectin,
ezetimibe, GABA tea, geniposide, liraglutide, guava extract, and vitamin D were shown
to inhibit diabetes and its complications through modulation of the autophagy pathway.
Another pathway, TGF-b signaling pathway, appears to play a part in the progression of
diabetes, insulin resistance, and autoimmunity in both type 1 and 2 diabetes and
complications in diabetes. Subsequently, drugs that target TGF-b signaling, especially
naturally derived ones such as resveratrol, puerarin, curcumin, hesperidin, and silymarin,
as well as Propolis, Lycopus lucidus, and Momordica charantia extracts, may become
promising alternatives to current drugs in diabetes treatment. This review provides keen
insights into novel therapeutic strategies for the medical care of diabetes.
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HIGHLIGHTS

• The involvement of autophagy in the development of diabetes
is corroborated by affecting the physiology and role of
pancreatic b cells and the homeostasis of glucose.

• The prominent role of autophagy signaling pathway was
supported by the alteration of autophagy markers in patients
and animal models of T1DM, T2DM, and gestational diabetes.

• Several anti-diabetic strategies including adiponectin,
ezetimibe, liraglutide, taurine, adipose tissue-derived stem
cells (ADSCs) and even exercise as well as natural products
such GABA tea, geniposide, guava extract, vitamin D have
been shown to target autophagy.

• TGF-b, especially TGF-b1 as an uppermost isoform of TGF-b
superfamily, may play a very essential role in the development
of insulin resistance and obesity and finally, diabetes.

• Anti-diabetic drugs such as metformin and rosiglitazone have
been reported to act via modulation of the TGF-b signaling
pathway.

• Natural agents including compounds as resveratrol, puerarin,
curcumin, hesperidin and silymarin, and extracts of propolis,
Lycopus lucidus, and Momordica charantia have been shown
to combat diabetes via modulation of TGF-b signaling
pathway.
INTRODUCTION

Diabetes mellitus (DM) is one of the most prevalent metabolic
diseases worldwide. It is characterized by hyperglycemia and
defective production and/or secretion of insulin and complications
in the heart, kidney, and neural system leading to death, which
have drawn notable attention to the management of diabetes.
Among 451 million patients with diabetes, 5 million deaths were
considered in the 20–99 years age range in 2017 (Cho et al., 2018).
Despite recent achievements in the treatment of diabetes, it is
important to continue deducing the molecular mechanisms of
diabetes pathogenesis and shed light on new horizons for the
complete treatment. Among several molecular mechanisms,
autophagy and transforming growth factor–b (TGF-b) signaling
pathways may play a causal role in the induction and progression
of diabetes.

The involvement of dysregulated autophagy and TGF-b
signaling pathways in the pathogenesis of diabetes and arising
complications including cardiomyopathy, retinopathy, and
nephropathy, has been reported in several studies (Jung et al.,
2008; Levine and Kroemer, 2008; Al-Mulla et al., 2011;
Bartolomé et al., 2014). The integrity of the autophagy
pathway is a requisite to normal regulation of cells (Ebato
et al., 2008). Autophagy induction is usually known as a
protective mechanism to degrade unwanted components and
proteins in cells (Klionsky and Emr, 2000). In the absence and/or
dysregulation of autophagy, the accumulation of destructed
proteins and components leads to deficits in cells. Activation
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of the TGF-b pathway is commonly associated with cell cycle
arrest and induction of apoptosis, whereas altered signaling of
TGF-b has been shown to play a substantial role in tumorigenesis
(Zhao et al., 2018). However, one of the most conspicuous trends
in recent years has been to evaluate the impact of TGF-b in the
pathogenesis of other disorders such as diabetes (Wilson et al.,
2017; Yadav et al., 2017). In addition, the potential cross-talk
between autophagy and TGF-b has received a great deal
of attention.

In light of this evidence, it is of interest to investigate studies
regarding the involvement of autophagy and TGF-b signaling
pathways and their cross-talk in the progression of diabetes to
provide an impetus for identifying therapeutic strategies in the
management of hyperglycemia and subsequent complications.
For this aim, electronic databases including “Scopus,” “PubMed,”
and “Cochrane Library” were searched using the keywords
(“Autophagy” OR “mTORC” OR “LC3” OR “ATG” OR “TGFb
(TGF-beta)” OR “SMAD”) [all field] AND (“diabetes”
OR “hyperglycemia”) [title/abstract/keyword]. Data was
gathered from the inception date until January 2019. Among
them, English language papers were solely included. Two
independent investigators evaluated primarily obtained papers.
From a total of 6,532 results, 4,336 papers were excluded because
of duplication, 1,074 being irrelevant on the title and/or abstract,
920 reports for being reviews, and 16 because of language
restriction. Among 281 retrieved papers, 26 were excluded
according to their full text, and 95 were excluded because of
the involvement of TGF-b and autophagy in diabetes
complications including nephropathy, retinopathy, and
neuropathy. One-hundred sixty articles were finally included in
this systematic review. Figure 1 discloses a flow chart of the
study design.
BIOLOGICAL AND PHARMACOLOGICAL
ASPECTS OF AUTOPHAGY SIGNALING

Autophagy is a catch-all, self-eating process in which intracellular
components are recruited to the lysosome for degradation.
Macroautophagy, microautophagy, and chaperone-mediated
autophagy, as the three main classes of autophagy, are involved in
the lysosome-associated degradation of cytoplasmic constituents as
well as unfolded proteins. Macroautophagy (hereafter known as
autophagy) is an evolutionarily conserved mechanism characterized
by double-membrane autophagosomes from cytoplasmic
components that are fused with the lysosome to form an
autophagolysosome for degradation of engulfed components with
lysosomal enzymes (Klionsky and Emr, 2000). Consequently, an
outstanding role of autophagy in multicellular organelles is the
perseverance of homeostasis in metabolic, functional, and structural
processes. While autophagy provides a driving force in the
regulation of cell viability and function, it is also considered as the
second type of programmed cell death in which the accumulation of
autophagosomes distinguishes itself from apoptosis (Boya et al.,
2005; Tsujimoto and Shimizu, 2005). Recent studies have
September 2020 | Volume 11 | Article 498758

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Hydarpoor et al. TGF-b and Autophagy Pathways in Pathogenesis of Diabetes
contributed to a significant understanding of the cellular initiation
and activation of autophagy signaling pathway (Hurley and Young,
2017; Yu et al., 2018). Specifically, the detailed molecular pathway
behind the cellular function of autophagy and involved factors in
mammals have recently been explored by a recent review article (Yu
et al., 2018). As outlined in this review article, signaling factors such
as ATG (AuTophaGy related proteins) family proteins, Unc-51 like
autophagy activating kinase (ULK) complex, phosphatidyl inositol-
3 phosphate (PI3P) and its producing complex, Ras-associated
binding (Rab), 1A/1B-light chain 3 (LC3), 5′ adenosine
monophosphate-activated protein kinase (AMPK), mitogen-
activated protein kinase (MAPK), sulfiredoxin (SRX), WD-repeat
protein interacting with phosphoinositides (WIPI), and soluble N-
ethylmaleimide-sensitive factor-attachment protein receptor
(SNARE) proteins implicated in the autophagy pathway (Yu
et al., 2018).

The molecular and cellular mechanisms of autophagy are
summarized in Figure 2. There are accumulating evidence
emphasizing on the significance of autophagy’s role in the
maintenance of cellular homeostasis (Eltschinger and Loewith,
2016). However, in spite of extensive studies over the past several
years, the mechanism of autophagy remains only partially
understood. It has been proposed that autophagy acts as a
protective mechanism to retinue cells from the production of
aggregative proteins and activation of inflammatory responses
(Levine and Kroemer, 2008). The role of autophagy in
metabolism management is supported by activation of the
autophagy mechanism in a starvation state through inhibition
of mTOR. Additionally, the impact of autophagy on metabolism
was examined through the development of Atg7+/- haploinsufficient
Frontiers in Pharmacology | www.frontiersin.org 3
mice in the normal condition where no disorders were observed.
Yet, in crossed Atg7+/- with ob/ob mice (deficiency of leptin), there
were increased diabetogenic symptoms relative to ob/ob mice (Lim
et al., 2014). From literature, dysfunctional autophagy leads to
depreciated fat mass, increased degradation of hepatic lipid, and
plunges in lipid levels in hepatocytes through activation offibroblast
growth factor 21 (FGF21), eventually leading to insulin resistance
(Shibata et al., 2009; Singh et al., 2009; Zhang et al., 2009; Kim et al.,
2013). The primary role of autophagy in the pathogenesis of
diabetes is further corroborated by several studies on the
physiology and function of pancreatic b cells (Kaniuk et al., 2007;
Ebato et al., 2008).

Role of Autophagy Signaling in Diabetes
Under physiological conditions, autophagy may be upregulated
as a cellular defense mechanism. As mitochondria play a pivotal
role in cellular endogenous ROS production and insulin
biosynthesis and secretion, regulation of mitochondrial quality
and quantity control through the selective engulfment of
excessive or damaged mitochondria via autophagosomes
promotes b cell health and is of paramount importance in
preventing the progression of diabetes. In this line, an
enhanced increase in mitochondrial oxidative stress and
HbA1C levels resulted in mild hyperglycemia in patients with
prediabetes, newly diagnosed type 2 diabetes mellitus
(NDT2DM) and advanced duration of type 2 diabetes mellitus
(ADT2DM). This increasing glycemic burden enhanced
mitochondrial dysfunction in patients with T2DM. With the
increased levels of oxidative stress, the aggregation of
dysfunctional mitochondria was occurred in cells due to
FIGURE 1 | Flow diagram related to selection process of papers.
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autophagy dysregulation (Scherz-Shouval and Elazar, 2007),
resulted in increased insulin resistance, and acceleration T2DM
disease progression (Petersen et al., 2003).

Examination of the classical autophagy markers, LC3II and
LAMP2, revealed a remarkable rise in LC3-II and LAMP-2
mRNA expression in subjects with prediabetes (Rovira-Llopis
et al., 2015), while patients with NDT2DM and ADT2DM
showed the significant reduction in both LC3II and LAMP2
mRNA and protein expression. Mitochondrial autophagy
(mitophagy) by clearing cells of damaged mitochondria via
autophagosomes contributes to the improvement of prediabetic
and diabetic symptoms. Mitophagy is regulated by several
numbers of factors such as PTEN induced putative kinase 1
(PINK1), PARKIN, microtubule-associated protein light chain 3
(LC3), and lysosome-associated membrane protein2 (LAMP-2)
and mitophagy receptors NIP3 like protein X (NIX) and
mitofusin2 (MFN2) (Ding and Yin, 2012). Prediabetic subjects
have been shown to possess an increased level of mitophagy
biomarkers and mitochondria as compared to T2DM patients. It
has also been demonstrated that the expression levels of
Mitofusin-2 (MFN2), NIX, PINK1, and PARKIN were
augmented in prediabetes in comparison with healthy ones.
On a protein level, though NIX and PINK1 levels were
comparable to the controls, MFN2 showed a significantly
increased expression.

Among T2DM patients, a comparison between ADT2DM
and NDT2DM showed a significantly decreased level of LAMP2
in patients with ADT2DM in comparison with NDT2DM,
indicating the suppression of mitophagy induced by oxidative
stress, resulting in further deterioration of survival. Moreover, a
recent study by Møller et al. (2017) reported a decreased level of
LC3II in muscle cells from T2DM patients as compared to the
control subjects. Attenuation of LAMP-2 expression results in
reduced autophagy, leading to b cell dysfunction and insulin
Frontiers in Pharmacology | www.frontiersin.org 4
resistance (Liu et al., 2013; Bhansali et al., 2017). In patients with
NDT2DM and ADT2DM, researchers have been found a
significantly reduced mRNA and protein expression of MFN2,
NIX, PINK1, and PARKIN. In this line, oxidative stress-
mediated by moderate to severe hyperglycemia was shown to
be associated with a decreased level of these genes leading to
impairment of mitophagy. Specifically, augmented oxidative
stress in T2DM patients leads to impairment in PINK1 and
PARKIN-mediated mitophagy, as delineated by the reduced
content of LC3II and LAMP2 proteins, resulting in aggregation
of disturbed mitochondria.

Binding of insulin to the insulin receptor (IR) is associated
with phosphorylation of downstream targets including IRS-1 and
IRS-2 (Withers and White, 2000) and subsequent activation of
phosphatidylinositol 3-kinase (PI3K) signaling pathway, which is
associated with activation of several processes such proliferation,
cell growth, and glucose uptake. Suppression of insulin signaling
pathway by ER stress is resulted in phosphorylation of IRS-1/2 by
JNK and insulin resistance (Özcan et al., 2004). Preventing IR
processing or reducing its expression has also been shown to
cause insulin resistance and diabetes in humans (Yoshimasa
et al., 1988; Formisano et al., 1993; Iwanishi et al., 1993). In 3T3-
L1 adipocytes, it has been observed that ER stress through
induction of autophagy results in down-regulation of the IR
protein level (Özcan et al., 2004; Nakatani et al., 2005). This
reduction in IR levels is accompanied by a decrease in IR
downstream signaling and inducing insulin resistance in 3T3-
L1 adipocytes. Specifically, the autophagy inhibitor 3-
methyladenine (3-MA) utilization in 3T3L1 adipocytes has
been shown to reveal the function of autophagy in triggering
ER stress-induced IR degradation (Zhou et al., 2009). In
addition, in 3T3-L1 adipocytes, glucose uptake under insulin
stimulation is suppressed by ER stress suggesting that a reduced
number of IR medicated by ER stress seems to play a causal role
FIGURE 2 | Schematic representation of autophagy signaling pathway.
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in insulin sensitivity (Zhou et al., 2009). However, normal
glucose tolerance in IR (+/-) heterozygous knockout mice
(Joshi et al., 1996), indicating that less IR may still exhibit
expression in the range of normal. This is further complicated
by research showing that inhibition of autophagy to ameliorate
ER stress was not successful in 3T3L1 adipocytes; proposing that
under stressful ER conditions, IR has been disturbed. Although,
in vitro models of obesity, it has been demonstrated that
chemical chaperones and/or overexpression of ER chaperone
ORP150 may potentially alleviate insulin signaling and insulin
sensitivity (Ozawa et al., 2005; Özcan et al., 2006).

Studies have documented that autophagy may act as an early
event in experimental diabetes. streptozotocin (STZ)-induced
diabetes leads to activation of VMP1-mediated autophagy in
pancreatic b cells after 3 h administration (Grasso et al., 2009).
The early detection of VMP1 and autophagic signals in STZ-
treated rats and cells indicates that increased autophagy
expression and related signals in b cells may play an important
role as the recognized biomarkers of diabetes development.
However, this supposition requires further evidence with
future experiments (Grasso et al., 2009). Further validity was
obtained through studies examining specific autophagic factors
in mutagen and/or knockout animal models, namely, the Atg7-
knockout mice (Atg7Δbcell) model (Jung et al., 2008; Fujitani
et al., 2009). In one study, Ebato and colleagues clarified that the
altered expression of autophagy factors, namely autophagy-
related gene 7 (Atg7) knockout in mice fed a high-fat regimen,
plays the causal regulatory role in maintaining the normal
structure and function of b cells, leading to destruction of b
cells and eventual insulin resistance (Ebato et al., 2008). In this
line, dysregulated autophagy seems to play an important role in
the pathogenesis of both T1DM and T2DM as well as their
arising complications (Fierabracci, 2014). It is proposed that in b
cells lacking autophagy, autoantigens are embarked on major
histocompatibility complex (MHC) class I and are consequently
recognized by T cell receptors on CD8+ T cells. This results in T
cell activation and b cell destruction, where b and T lymphocytes
are recruited to these inflammatory sites, such as pancreatic
islets, with the production of autoantibodies (Lam-Tse et al.,
2002). Development of the autoimmunity process leads to
further activation of b and T cells, promoting huge lysis of b
cells and insulitis. As a key to illuminate the crucial role of
autophagy in diabetes progression, immunoblotting analysis
unraveled the altered expression of some autophagic signals
including light chain IIIB (LCIIIB), Beclin I, ATG12, and p62
proteins in non-obese diabetic (NOD) mice (Fierabracci, 2014).

Insulin resistance as a feature of T2DM is commonly
associated with a progressive decrease in the b cell function
and the emergence of hyperglycemia (Fujimoto, 2000; Kahn,
2000), mediating oxidative stress that hinders cell-reparative
process like autophagy downstream. On the other hand, to
maintain the b cell function and survival as well as insulin
sensitivity at target sites, the involvement of autophagy seems
to be crucial (Marchetti and Masini, 2009; Gonzalez et al., 2011;
Kruse et al., 2015). It has been reported that decreased number of
autophagosomes in b cells from ob/ob mice, implying the
Frontiers in Pharmacology | www.frontiersin.org 5
inhibition of autophagic degradation in insulin resistance (Abe
et al., 2013). Furthermore, aggregation of polyubiquitinated
proteins due to increased oxidative stress in the b cells of
Zucker diabetic rats was shown to be mediated by autophagic
dysfunction (Kaniuk et al., 2007). Moreover, a reduced level of
IL-10 mRNA level has been reported in PBMCs from T2DM
patients. Several studies have demonstrated that mTOR
activation has a direct relationship with the expression of IL-
1b and TNF-a but has a negative relationship with IL-10
through the IKKb (Laplante and Sabatini, 2012; Shigihara
et al., 2014). Notably, evaluation of the link between
inflammation and autophagy revealed that autophagy play the
main role in regulating inflammation (Ma and Blenis, 2009;
Menzies et al., 2011) in macrophages (Kaushik and Cuervo,
2012), keratinocytes (Menon et al., 2014), hypothalamus
(Hardie, 2003), adipocytes (Rivera et al., 2014), and peripheral
blood mononuclear cells (PBMCs) (Lempiäinen and
Halazonetis, 2009). In PBMCs of T2DM and non-diabetic
(ND) subjects, mRNA expression of BECN1, LAMP2, and
LC3B decreased as the protein level of p62/SQSTM1 was
increased (Inoki et al., 2003), meaning that the autophagic
process decreased. The decline in protein levels of LC3B-II is
accompanied by the rise in TNF-a and IL-1b expressions, while
the increase in the protein level of p62 parallels the reduction in
them. Thus, It seems that decreased autophagy in PBMCs of
T2DM may be due to hyperglycemia (Egan et al., 2011; Guillén
and Benito, 2018). However, the inhibitory effect of mTOR on
autophagy pathway may be another motive (Sancak et al., 2007;
Garcıá-Aguilar et al., 2016) as its activation attenuates the Beclin
1 gene expression in PBMCs. AMPK also plays the premier role
in the regulation of autophagy (Garcıá-Aguilar et al., 2016), albeit
with inconspicuous involvement relative to mTOR (Guillén and
Benito, 2018).

It is a fact that T2DM could be characterized by chronic
inflammation in which leukocytes are impaired in function
(Hernandez-Mijares et al., 2013; Rovira-Llopis et al., 2014).
Hyperglycemia-induced oxidative stress and ER stress are well-
known mechanisms involved in the progression of T2DM
(Gonzalez et al., 2011; Scherz-Shouval and Elazar, 2011). A
large cohort study indicated that autophagy is enhanced in the
leukocytes of T2DM patients. It has been shown that regulation
of autophagy in diabetes is different depending on cell types,
namely, autophagy is activated in the pancreatic b cells and
inhibited in the liver of T2DM mice. In the leukocyte of T2DM
patients, an increase in autophagy marker, Beclin 1, is in
accordance with the increase in intracellular ROS level
(Rovira-Llopis et al., 2015). Although autophagy should
control this ROS accumulation by removal of damaged
mitochondria, leukocytes from T2DM patients indicate that
autophagy activation is not sufficient to reduce ROS
production (Hubbard et al., 2010). In addition to oxidative
stress, ER stress upregulates autophagy via inhibition of the
AKT/TSC/mTOR pathway by mediating LC3 lipidation to LC3-
II in conjunction with the activity of PERK/eIF2a phosphorylation
and by transcriptional activation of autophagy-related genes
(Gonzalez et al., 2011).
September 2020 | Volume 11 | Article 498758
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In several in vitro and in vivo studies to evaluate the role of an
amyloidogenic protein in b cells, human islet amyloid
polypeptide (hIAPP) was shown to play the causal role in the
pathogenesis of T2DM. Furthermore, a reciprocal interplay was
found between the clearance of hIAPP and the activation of
autophagy, where autophagy deregulation led to failed clearance
of hIAPP and subsequently aggregated hIAPP is associated with
decreased activity of the autophagy system (Kahn et al., 1999;
Morita et al., 2011; Rivera et al., 2011; Shigihara et al., 2014).
Neuronal dysfunction and cognitive impairment in dementia
have also been shown to have a strong association with b cell
failure, such that AD is known as the type 3 diabetes in literature
(Ott et al., 1996; Steen et al., 2005; Moroz et al., 2008; Chen and
Zhong, 2013). The role of autophagy in the development of
memory dysfunction was scrutinized in STZ-induced diabetic
rats, where expression of Ab1-42 and autophagic markers, LCII
and beclin 1, was increased in the hippocampus. Adversely, the
reduced expression of lysosome factors, such as LAMP1 and
LAMP2, illustrated the involvement of lysosome dysfunction in
the neurodegenerative impact of diabetes. These results endorse
the impact of autophagy and lysosome deregulation in neuronal
loss in diabetic conditions (Ma et al., 2017). As another example,
it was shown that high fat-fed, STZ-induced diabetic mice are
vulnerable to cognitive dysfunction through altered expression of
autophagy signaling factors including LCII/I, p62, and beclin1
(Guan et al., 2016) (Figure 3).

Drugs Targeting Autophagy Signaling for
Therapeutic Benefits in Diabetes
Adiponectin
Adiponectin is a metabolic hormone secreted by adipose tissue.
It has been shown that adiponectin acts as a diabetes regulating
hormone (Cheng et al., 2014) that activates the autophagy
Frontiers in Pharmacology | www.frontiersin.org 6
pathway in insulin target cells and decreases in metabolic
diseases. Adiponectin mediates direct metabolic effects and
improves insulin sensitivity by the autophagic cellular
mechanism (Jahng et al., 2015; Xu and Sweeney, 2015). For
example, the mechanism of adiponectin demonstrated the
involvement of the AMPK signaling pathway in improving
insulin sensitivity and glucose tolerance in db/db mice or mice
fed a high-fat diet (Okada-Iwabu et al., 2013). Moreover, insulin
resistance in L6 skeletal muscle cells (Huang et al., 2002b)
revealed that the increase in expression of a GRP78 promoter-
dependent fluorescent reporter and IRE1 phosphorylation
(pIRE1), pPERK, and ATF6 is induced under treatment of
high insulin/glucose (HIHG) and is paralleled by ER-stress
induction (Ahlstrom et al., 2017), while adiponectin treatment
alleviated ER stress in an autophagy-dependent manner via
activation of AMPK signaling factor.

Ezetimibe
Mounting evidence indicates a direct relationship between
metabolic disorders, such as obesity, liver diseases and insulin
resistance (Clark, 2006; Byrne, 2012). Owing to the correlation
between abnormal cholesterol metabolism and the development of
metabolicdiseases, it appears that the samedrugs couldbebeneficial
for both types of diseases. Ezetimibe treatment is a good example of
both decreasing intestinal cholesterol incorporation by blocking
Niemann-Pick C1-like (NPC1L1) protein (Altmann et al., 2004;
Garcia-Calvo et al., 2005) and as described in previous studies,
improving glycemic control, leading to an increase in bioactive
GLP-1 and pancreatic b cell mass in Otsuka Long-Evans
Tokushima Fatty (OLETF) rats (Yang et al., 2011). Furthermore,
the expression of ATG5, ATG6, and ATG7 in the liver was
considerably increased in ezetimibe-treated OLETF rats (Chang
et al., 2015), demonstrating the efficacy of ezetimibe treatment in
FIGURE 3 | Schematic illustration of a proposed model of autophagy involvement in diabetes and its complications.
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improving impaired autophagy process and increased ER stress in
insulin resistance disease.

Liraglutide
Liraglutide is a synthetic peptide with 97% sequence homology to
native human GLP-1 and is a promising anti-diabetic dug
(Drucker and Nauck, 2006; Lovshin and Drucker, 2009).
Injection of liraglutide, which can cross the blood-brain
barrier, may prove as a neuroprotective agent in animal
models with neurologic disorders, such as cerebral ischemia
(Zhu et al., 2016), traumatic brain injury (Li Y. et al., 2015),
stroke (Sato et al., 2013), and Alzheimer’s complications (Han
et al., 2013). As a result, liraglutide may attenuate DM-induced
cognitive decline in mice.

Cognitive impairments, DM-induced hippocampal neuronal
injuries, and synaptic ultrastructure degradation were shown to
decrease in STZ-induced diabetic mice under liraglutide
treatment, which recruits the AMPK/mTOR pathway to
elevate the autophagic process (Qi et al., 2016). Additionally,
improvements in lesions in neuronal morphology and density in
the hippocampal CA1 region have also been observed after
chronic liraglutide administration. It has been suggested that
liraglutide did not have protective effects in STZ-induced
diabetic mice. Similarly, earlier data from preclinical and
clinical studies also indicated that GLP1 and its analogues had
no significant improvement in the glucose levels or body weight
(Zhao et al., 2013; Frandsen et al., 2015; Dejgaard et al., 2016;
Dietrich et al., 2016; Hernández et al., 2016; Zanotto et al., 2017).

Taurine
Taurine is a free amino acid and natural compound that shows
promising results for improving impaired glucose metabolism by
enhancing the low levels of PPARg and mTORC2 expression
induced by inorganic arsenic (iAs) in the liver of mice and
HepG2 cell line. In fact, taurine administration may ameliorate
iAs‐induced insulin resistance through activation of PPARg‐
mTORC2 signaling and subsequent inhibition of hepatic
autophagy. Although autophagy activation contributed to the
relief of insulin resistance with treatment by various compounds
(Shi et al., 2015; Li et al., 2017), taurine effectiveness in insulin
resistance is obtainable through autophagy inhibition.

Natural Products Targeting Autophagy
Signaling in Diabetes
GABA Tea
Several mechanisms including decreased g-aminobutyric acid
(GABA) neurotransmission, oxidative stress, and apoptosis have
beenconsidered for the pathogenesis of encephalopathy indiabetes.
Therefore, several studies have carried out experiments on the
effects on diabetic encephalopathy through the administration of
GABA tea (Hininger-Favier et al., 2009; Zhao et al., 2011). Reduced
GABA uptake (Duarte et al., 2000) and extracellular GABA were
reported in hyperglycemia, which attributed to increased neuronal
disorders. Consequently, it was observed that the administration of
GABA tea with enriching GABA neurotransmitters in diabetic
animals exerts hypoglycemic and anti-apoptotic effects on rat brain
cerebral cortex.
Frontiers in Pharmacology | www.frontiersin.org 7
GABA tea also known as Gabaron, developed for the first
time in Japan, is a new form of tea in which during a
fermentation process, GABA is accumulated in the leaves of
tea. The common use of GABA tea is in the amelioration of blood
pressure (Omori et al., 1987; Abe et al., 1995). Further
examination of the mechanism whereby GABA tea ameliorates
the neurodegenerative symptoms of diabetes in the brain of STZ-
induced DM rats revealed that blood glucose levels increase in
STZ-induced diabetes rats and improvement of hyperglycemia is
achieved by deactivation of the cortical Fas ligand, Fas-associated
death domain protein (FADD), caspase-8, Bid, and t-Bid levels—
all of which increased following 4 weeks of STZ-induced
diabetes. Moreover, signaling factors, such as Bax, cytochrome
c, activated caspase 9, and activated caspase 3 in the cerebral
cortex of STZ-induced diabetes rats, were significantly increased
compared with non-diabetic rats. In addition, GABA tea
exposure was associated with suppression of the apoptotic
pathways mediated by diabetes. Another cellular process
affected by GABA tea in STZ-induced diabetes is autophagy as
seen by decreases in related protein levels including Beclin 1,
ATG7, ATG12, LC3-I, and LC3-II following treatment with
GABA tea.

Geniposide
One potential drug for the regulation of abnormal signaling
pathways in diabetes is geniposide, an iridoid compound isolated
from Gardenia jasminoides J.Ellis with anti-inflammatory, anti-
angiogenesis, and anti-tumor activities (Lee et al., 1995; Koo
et al., 2004; Koo et al., 2006). Furthermore, it is significantly
capable of promoting glucose uptake (Guo et al., 2012). When
HepG2 cells in IR were treated with 62.5 mg/L geniposide, the
decreased levels of glucose were shown in the supernatant in a
time‑dependent manner. Consequently, it is thought that
geniposide promotes autophagy in insulin resistance HepG2
cells, leading to the inhibition of NF‑kB signaling factor and
reversing the inhibitory impact of NF‑kB on the expression of
GLUT‑4, thereby increasing mRNA and protein expression
levels of GLUT‑4. As such, geniposide may aid in insulin
resistance treatment.

Guava Extract
Guava, Psidium guajava L. (Myrtaceae), is a tropical fruit with
anti-oxidative, anti-inflammatory, and anti-diabetic attributes
(Li P. Y. et al., 2015) because of an increased level of vitamin
C, flavonoids, and polyphenolic ingredients (Flores et al., 2013).
In particular, the effectiveness of guava extracts in the reduction
of ROS, protection against inflammation in the kidney, DM-
induced sclerotic injury, and cell arrangement in the pancreas
has been observed (Lin and Yin, 2012). Moreover, the impact of
guava leaf extracts/trehalose treatment on T2DM was confirmed
in some studies (Eidenberger et al., 2013; Lin et al., 2016).
Trehalose as a disaccharide found in almost all of the
organisms has various therapeutic effects on T2DM (Bartolomé
et al., 2010). With this in mind, the effect of trehalose in
combination with guava extract was observed as a potent
scavenger of intracellular ROS in STZ-induced diabetic mice.
Along with T2DM-enhanced renal ROS, three types of
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programmed cell death including apoptosis, autophagy, and
pyroptosis were significantly diminished using guava juice and
trehalose exposure. While autophagy in diabetic patients has
mainly been proved to be a protective process against ER-stress,
guava juice and trehalose affect DM positively by reducing
autophagy leading to cell death (Lin et al., 2016).

Vitamin D
There is the enormous evidence for considering vitamin D
deficiency as one of the main causes of T1DM development
(Wolden-Kirk et al., 2011; Wranicz and Szostak-Wegierek, 2014;
Grant, 2015). The protective role of vitamin D against diabetes
has been suggested in several studies (Sørensen et al., 2012; Dong
et al., 2013). For example, pre‑treatment with 1,25(OH)2D3
promoted insulin secretion in STZ‑treated b cells, confirming
this notion. Examination of the precise underlying mechanisms
of vitamin D in STZ‑induced T1DM mouse model and mouse
insulinoma 6 (MIN6) b cells revealed that vitamin D increases
the expression of LC3 and Beclin 1, autophagic signaling factors
that may influence the promotion and development of diabetes
(Lee, 2014; Ding and Choi, 2015). Furthermore, enhanced
expression of Bcl‑2 in STZ‑treated mouse and MIN6 cells may
serve as a good indicator for showing the decrease in the
apoptotic rate of pancreatic b cells. Indeed, vitamin D may
induce autophagy and suppresses apoptosis, therefore accelerating
the regeneration of organelles under hyperglycemic conditions
(Wang et al., 2016).
BIOLOGICAL AND PHARMACOLOGICAL
ASPECTS OF TGF-BETA SIGNALING

Transforming growth factor-beta (TGF-b) was identified during
the early 1980s. Subsequently, TGF-b signaling was elucidated in
the middle of the 1990s with the identification of SMAD proteins
and TGF-b receptors. Since the first identification of TGF-b,
research is in progress to expound the TGF-b signaling pathway
and its pathophysiological importance. TGF-b signaling has been
studied in detail at the cellular and molecular level by various
scientists. Particularly, numerous cross-talks have emerged
regarding the relationship of TGF-b with other pathways as
well as the role of the TGF-b signaling pathway in the
development of various diseases. TGF-b is grouped in a family
of peptide growth factors that are involved in the developmental
processes, homeostasis of adult tissues, and a wide range of other
cellular functions. The impairment in TGF-b signaling has been
reported in several diseases including cancer, diabetes, and
cardiovascular diseases. The basic components of the TGF-b
signaling consist of a receptor complex with membrane-
associated receptors type I and type II and SMAD proteins,
which play a role in downstream transcriptional factors. Type I
and type II TGF-b receptors are similar in composition. The
receptors are composed of a cytoplasmic kinase domain, a single
transmembrane segment, and an ectodomain that is glycosylated
and disulfide-rich. Serine/threonine kinase activity and induced
phosphorylation of tyrosine are characteristic features of kinase
Frontiers in Pharmacology | www.frontiersin.org 8
domains in TGF-b receptors. There are seven different types of
type I TGF-b receptors, which are referred to as activin receptor-
like kinases (ALKs). Specifically, ALK5 or TGF-bRI is
responsible for TGF-b signaling in all types of mammalian
cells. For example, ALK5 works alongside ALK1 and ALK2 in
endothelial or other various cell types (Yan and Zhang, 2018;
Zhang, 2018).

In TGF-b signaling, ligand binding allows the receptor
complexes to assemble and activated type II TGF-b receptors
may phosphorylate type I receptor’s glycine-serine-rich (GS)
domain. This leads to the activation of type I receptors. Then,
the activated type I receptors phosphorylate the SMADs at their
carboxyl terminus, aiding SMADs to enter the nucleus to
regulate gene expression. Different SMADs are encoded in the
mammalian genomes and possess different features. Examples
include SMAD 2/3 for ALK5 and SMAD 1/5/8 for ALK1/2,
which act as direct substrates for their cognate receptor kinases.
By virtue of this ability, they are also referred to as receptor-
specific, or R-SMADs. Further downstream signal transducers,
such as small guanosine triphosphatases (GTPases), MAPKs,
Janus kinase/signal transducer and activator of transcription
(JAK/STAT), and phosphoinositide 3-kinase/protein kinase B
(PI3K/AKT) are also activated by TGF-b receptors. When
activated, these various signal transducer pathways perform
specific functions, such as converging to SMADs to influence
the output of TGF-b signaling. Thus, TGF-b signaling not only
has its specific role in the body but influences other pathways as
well; thereby explaining why dysregulation in TGF-b signaling is
involved in several diseases. Non-SMAD signaling transducers
can also be activated by TGF-b. One of the most important non-
SMAD effectors is ubiquitin E3 ligase tumor necrosis factor
receptor-associated factor 6 (TRAF6). TRAF6 produces
activation of downstream p38 MAPK, c-Jun N-terminal kinase
(JNK), and transforming growth factor beta-activated kinase 1
(TAK1) (Yan and Zhang, 2018; Zhang, 2018). As such, non-
SMAD pathways may also shed light on the variety of proteins
that TGF-b receptors interact with them. This serves as a greater
option for cells to influence downstream responses in accordance
with pathological and physiological demands (Figure 4).
ROLE OF TGF-b SIGNALING IN DIABETES

TGF-b is a cytokine with several numbers of functions inside the
body consisting of apoptosis, immune response in several cells,
differentiation, cell proliferation, and wound healing. Recent
experimental research has pointed out that TGF-b may play a
very essential role in the development of insulin resistance and
obesity (Beaudoin et al., 2014). There is evidence that TGF-b1 (a
predominant isoform of the superfamily of TGF-b) may be
involved in the development of diabetes (Flores et al., 2004).
Additionally, TGF-b plays an important role in the immune
system. It is involved with differentiation, chemotaxis, survival,
and lymphocyte proliferation. Regulation of leukocyte function is
an important role played by TGF-b, and dysregulation can lead
to autoimmune diseases, such as type T1DM. In T1DM, the
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destruction of insulin-producing b cells takes place and is
mediated by T cells, important targets of TGF-b1. Blocking of
TGF-b signaling in mice has led to an autoimmune phenotype,
involving activation and differentiation of T cells. In b cells, TGF-
b1 is expressed under the influence of insulin promoters and
inhibits T1DM from developing (Chen et al., 2008) (Figure 5).

A study using human subjects evaluated changes in the levels
of TGF-b2 and nerve growth factor in T1DM patients compared
with normal subjects and T2DM patients. It was found that levels
of TGF-b2 were significantly lower and levels of nerve growth
factor were higher in T1DM patients when compared to healthy
controls and T2DM patients (Azar et al., 1999). In another study,
TGF-b1 levels were evaluated in women with a previous history
of gestational diabetes mellitus (GDM) due to increased risk of
insulin resistance, obesity and endothelial dysfunction later in
life and early development of atherosclerosis. Therefore, this
study consisted of women with a prior history of GDM (pGDM),
women with T2DM, and the third group of healthy women. The
results showed that women with pGDM had significantly higher
levels of TGF-b1 than healthy women, but lower levels of TGF-
b1 than the T2DM group. The study indicated that age,
postprandial glucose levels, and BMI all affected TGF-b1 levels.
The elevation in TGF-b1 levels may be a result of the
inflammatory response that is produced against insulin
Frontiers in Pharmacology | www.frontiersin.org 9
resistance and hyperglycemia (Yener et al., 2007). In another
study carried out to study oxidation, glycation, and TGF-b1
levels, TGF-b1 levels were measured in children suffering from
type I diabetes mellitus and healthy children. It was observed that
parameters related to oxidation and glycation were considerably
augmented in diabetic children compared to healthy children,
such as TGF-b1 levels. Furthermore, correlation existed between
the TGF-b1 levels and the age of the children and the duration of
type I diabetes mellitus. However, no correlation existed between
parameters for oxidation and glycation and levels of TGF-b1
(Jakus ̌ et al., 2012).

Dysregulation of TGF-b pathway is specially associated with
progression of various complications associated with DM, such as
diabetic neuropathy, and delayed wound healing. Features of
diabetic neuropathy include glomerular sclerosis, tubulointerstitial
fibrosis, extracellular matrix (ECM) alterations, and mesangial
expansion. TGF-b1 is an important regulator of fibrosis
associated with diabetic nephropathy as indicated by increased
renal TGF-b1 expression in persistent hyperglycemic conditions
of human patients and animal models of diabetes. The effects of
TGF-b1 are produced as a result of binding to TGF-b1 type II
receptors (TbRII) and subsequently, induces activation of TGF-
b1 type I receptor (TbRI) kinase. Consequently, this results in
phosphorylation and activation of SMAD 2/3. Oligomeric
FIGURE 4 | Schematic representation of TGF-b signaling pathway.
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complexes of activated SMAD2/3 are then formed with SMAD4
and translocated to the nucleus, leading to the expression of
target genes, such as extracellular matrix (ECM) proteins as well
as the production of tubulointerstitial and glomerular fibrosis.
Thus, diabetic renal fibrosis may be treated by inhibiting the
TGF-b1/SMAD pathway (Wu et al., 2015).

The deregulated vascular system in the eyes and kidneys from
T1DM patients has been suggested to be affected by several
factors including the duration of diabetes and deregulation of
several signaling factors such as vascular endothelial growth
factor (VEGF), TGF-b1, and angiogenin (Zorena et al., 2009).
Further, TGF-b1 participation in vasculature and wound healing
has been proved via the promotion of extracellular matrix
proteins formation (Maheshwari et al., 2011). The measurement
of TGF-b1 serum levels in children and adolescents revealed a
positive relationship between the duration of T1DM and
complications in the vascular system (Zorena et al., 2013).
Augmentation of pro-inflammatory cytokines secreted by the
peripheral blood mononuclear cells (PBMCs) is associated with
atherosclerotic damages in T2DM (Ebato et al., 2008; Zoncu et al.,
2011; Lin et al., 2012) and results in resistance to insulin and
abnormality in b cell.

TGF-b serves as an important regulator of wound healing as it
is released by platelets at an early stage and plays many roles
downstream. For example, TGF-b is involved with chemotaxis of
immune and inflammatory cells to the wound site and formation
of granulation tissue and deposition of ECM. TGF-b also plays
an important role in the end stages of tissue remodeling in
wound healing by aiding replacement of collagen type III with
collagen type I. TGF-b also plays an important role in wound
healing by promoting epithelialization of wound. Thus,
therapeutic benefits may be achieved in diabetes by either
producing inhibitory or stimulatory effects on the TGF-b
Frontiers in Pharmacology | www.frontiersin.org 10
pathway depending on what effect is needed (Hozzein et al.,
2015). An animal study was conducted to study the defective
resolution of inflammation and impaired TGF-b signaling in
delayed wound healing in a female rat model of T2DM. This
clarified that wound healing was delayed due to elevated tumor
necrosis factor (TNF)-a/NF-kB activity and decreased estrogen
levels, which leads to decreased TGF-b/SMAD signaling and
impaired inflammation resolution. However, PEGylated soluble
tumor necrosis factor receptor type 1 (PEG-sTNF-RI) therapy
and estrogen treatment produced amelioration in the above-
mentioned defects (Al-Mulla et al., 2011).

A study was carried out to measure urinary TGF-b1 levels in
patients suffering from DM, due to the role of TGF-b1 in
enhancing renal fibrosis in diabetic neuropathy (DN). In a
study, urinary levels of TGF-b1 were measured in groups
consisting of healthy controls and patients suffering from DN.
The levels of TGF-b1 were found to be higher in diabetic patients
suffering from diabetic neuropathy compared to those belonging
to the normal control group (Tsapenko et al., 2013). Another
study on the role of TGF-b in DN utilized subjects that were
grouped into those who had a fast development of DN, those
with the slow development of DN, and healthy humans serving
as the control. In this study, cultured skin fibroblasts of the
subjects were evaluated for messenger ribonucleic acid (mRNA)
expression levels for latent TGF-b binding protein-1 (LTBP-1),
thrombospondin-1, TGF-b type II receptor (TGF-b RII), and
TGF-b1. Measurements were collected using real-time RT-PCR.
The results concluded that mRNA expression of LTBP-1 was
reduced in patients belonging to the slow development of DN
compared to both patients with the fast development of DN and
control subjects. Additionally, thrombospondin-1, TGF-b RII,
and TGF-b1 mRNA expressions were found to be similar in all
the groups. Low levels of LTBP-1 may point towards a genetically
FIGURE 5 | Schematic illustration of a proposed model of TGF-b involvement in diabetes and its complications.
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determined protective effect against DN. The study also suggests
that LTBP-1 may be involved in the development of DN via
regulation of TGF-b activity (Huang et al., 2002a).

Drugs Targeting TGF-Beta Signaling for
Therapeutic Benefits in Diabetes
Drugs that target the TGF-b signaling may be potential
candidates for therapeutic benefits in DM. Among them,
rosiglitazone is conventionally used as an agonist for the
proliferator activated receptor-gamma (PPAR-g) for the
treatment of DM. In a recent study, the effects of rosiglitazone
were studied on the TGF-b/SMAD signaling pathway in Zucker
diabetic fatty (ZDF) male rats. One group of rats received a chow
diet and rosiglitazone treatment while the other group received
chow diet without rosiglitazone treatment. The treatments were
given for the duration of six weeks and rosiglitazone was
administered in a dose of 100 mg/kg. Excision of retroperitoneal
white adipose tissues (rpWAT) and subcutaneous white adipose
tissues (scWAT) was performed to evaluate protein content/
phosphorylation. It was found that in both scWAT and rpWAT,
the protein content of mitochondria and glucose tolerance was
found to be increased. However, the protein content of fatty acid
handling enzymes was only shown to be elevated in the scWAT
of animals that received rosiglitazone. Specifically, there was an
elevation in the expression of SMAD4, TGF-b receptor I and II,
and anchor of SMAD for activation of the receptor. Additionally,
administration of rosiglitazone elevated levels of E3 ubiquitin
ligase SMURF2 and inhibitory SMAD7 as well as reduced the
phosphorylation of SMAD2 and SMAD3. These results indicate
that rosiglitazone specifically inhibits signaling produced by
SMAD2 and SMAD3 in scWAT. Besides, the SMAD7 and
SMURF2 mechanisms induced by rosiglitazone are most likely
responsible for decreasing phosphorylation of SMAD2 and
SMAD3. A feedback mechanism is formed by activation of the
SMAD signaling factors to oppose rosiglitazone induced
synthesis of lipid in scWAT (Beaudoin et al., 2014).

Metformin has also been used as an antidiabetic agent for a
long time. However, the exact mechanism of metformin is not
clear. Yet, certain researchers have found that TGF-b1 may be a
target for the action of metformin. A surface plasmon resonance-
based assay was used by researchers to explore the effect of
metformin on TGF-b1. It was found that metformin showed
direct binding with TGF-b1 and inhibited binding of TGF-b1
with its receptor. Binding of TGF-b1 with metformin at the
receptor-binding domain of metformin was demonstrated in the
molecular dynamic and molecular docking studies. Additionally,
metformin suppresses the dimerization of type II TGF-b1
receptor upon binding TGF-b1, which is essential for
downstream signal transduction in the TGF-b pathway (Xiao
et al., 2016). In a study on diabetic rats, it was shown that vitamin
D produced improvement in TGF-b and insulin like growth
factor 1 (IGF-1) levels in their intervertebral disc. However, the
administration of vitamin D (calcitriol) had a protective effect
against degenerative changes produced in the intervertebral disc
of diabetic rats and improved IGF-1 and TGF-b levels. Thus, by
increasing the levels of TGF-b1 and IGF-1, vitamin D may be
Frontiers in Pharmacology | www.frontiersin.org 11
helpful in the prevention and treatment of intervertebral disc
degeneration in patients suffering from diabetes (An et al., 2017).
A study was conducted to observe the effect of undenatured
camel whey protein in enhancing wound healing in diabetic
mice. Researchers found that whey protein increased the
expression of TGF-b, fractalkine (CX3CL1), KC (keratinocyte-
derived chemokine), MIP (macrophage inflammatory proteins)-
2, and MIP-1a levels in diabetic mice treated with whey protein.
Additionally, levels of IL (interleukin)-6, IL-10, TNF-a, and IL-
1b were restored to normal levels through whey protein
treatment. Thus, the actions of whey protein exerted a
beneficial effect on wound closure in diabetic mice (Badr
et al., 2012).

Natural Products Targeting TGF-b
Signaling in Diabetes
Natural products may be used for targeting TGF-b signaling and
inducing therapeutic benefits in diabetes. The advantage of these
natural products is that they may be safer alternatives in the
treatment of diabetes in comparison to allopathic drugs. By
targeting TGF-b signaling, they could play a novel role in the
treatment of diabetes in comparison to standard drugs. Some of
the natural products that may be used in the targeting of TGF-b
signaling for therapeutic benefits in diabetes are as follows:

Resveratrol
Resveratrol (3, 5, 4′-trihydroxystilbene) is a phenolic compound
with very important health benefits (Yeung et al., 2019).
Resveratrol is found in several plants and is effective in the
treatment of a number of age-dependent, metabolic and chronic
diseases such as cancer, Alzheimer’s, diabetes, inflammation,
bacterial and viral infections (Pawar et al., 2017; Moosavi et al.,
2018). In a study, resveratrol improved diabetic neuropathy in
STZ-induced diabetic rats. Resveratrol exhibited an effect on
diabetic neuropathy by inhibiting the TGF-b/SMAD and
extracellular signal-regulated kinase (ERK)1/2 signaling.
Streptozotocin was administered in a dose of 65 mg/kg body
weight. Induction of diabetes was confirmed by diabetic
symptoms in rats, such as polyphagia, polydipsia, and fasting
blood glucose of ≥300 mg/dL. Resveratrol was administered to
animals at a dose of 0.75 mg/kg body weight for 8 weeks and
three times per day. Animals were divided into groups in the
following manner: normal animals receiving only normal saline,
diabetes rats administered resveratrol treatment, and diabetic
rats not administered resveratrol treatment. After the test,
animals were sacrificed and histology of their kidney was
examined by using microscopy. Biochemical and other
important parameters were measured to evaluate the effect of
resveratrol in diabetic rats. It was shown that glomerular
hypertrophy and urinary albumin excretions as well as,
expression of collagen-IV, fibronectin, and TGF-b in the
glomeruli, were reduced in rats that received resveratrol
treatment. Specifically, the thickness of the glomerular
basement membrane was reduced to original thickness via
resveratrol treatments while the expression of nephrin was
enhanced to normal levels in diabetic rats administered
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resveratrol. In the kidneys of diabetic rats, phosphorylation of
SMAD2, SMAD3, and ERK1/2 was shown to be inhibited by
resveratrol. Therefore, this study suggests that resveratrol reduces
early glomerulosclerosis in diabetic nephropathy through
inhibition of ERK1/2 and TGF-b/SMAD. Furthermore,
resveratrol reduces podocyte injuries in diabetic rats (Chen
et al., 2011).

Lycopus lucidus Turcz. ex Benth.
Lycopus lucidus Turcz. ex Benth. is a medicinal plant used in
Chinese herbal medicine. It has a traditional phytomedicine with
anti-inflammatory, antioxidant, antimicrobial, anti-allergic, anti-
osteoclastogenesis, anti-cancer, and anti-diabetic properties
(Shin et al., 2005; Yu et al., 2011; Yao et al., 2013; Lu et al.,
2015; Jeong et al., 2019). The aqueous extract of L. lucidus was
used in a study to improve renal damage in STZ-induced diabetic
rats with diabetic nephropathy. Two models were used in this
study for determining renal fibrosis: an in vivo model in which
STZ was used for inducing diabetic nephropathy in rats and an in
vitro model where renal fibrosis was determined by treating
fibroblasts with recombinant TGF-b1 (rhTGF-b1). Results
showed that the aqueous extract of L. lucidus suppressed the
activation of ERK1/2 and SMAD2 by rh-TGF-b1. The
aforementioned effect also downregulated the expression of
SMAD7, SMAD4, TGF-bRII, and TGF-bRI in SV40MES13
cells without any inhibitory effect on cell viability. In the in
vivo rat model, L. lucidus reduced the serum levels of blood urea
nitrogen (BUN) and serum creatinine (SCr) along with activity
of superoxide dismutase. In glomerular tissues, L. lucidus
ameliorated the expansion of the mesangial area. Furthermore,
L. lucidus reduced mRNA levels of TGF-b1 and phosphorylation
of SMAD2. Thus, the above study confirmed that L. lucidus may
be a potential new candidate in inhibiting renal fibrosis by
blocking the signaling pathway of TGF-b. The study also
points towards a protective effect of L. lucidus in preventing
renal damage in STZ-induced diabetic rats by (Yao et al., 2013).

Puerarin
Puerarin is an isoflavonoid found in many plants and a common
adjuvant therapy in China in the alleviation of diabetes, cardiac
fibrosis, angina pectoris, and cardiovascular diseases (Zhang
et al., 2015; Yuan et al., 2016; Jin et al., 2017). In a study, the
effect of puerarin on renal damage was observed in STZ-induced
diabetic Wistar rats. The animals were grouped into normal
control group, untreated diabetes group, two diabetes groups
treated with two doses of puerarin at 140 and 200 mg/kg,
respectively and a standard drug-treated group. It was found
that the diabetic untreated group compared to the normal
control group showed increased levels of total cholesterol,
triglyceride, blood glucose, IFN (interferon)-g, IFN-g/IL-4,
malondialdehyde (MDA), and kidney index while the levels of
catalase (CAT), superoxide dismutase (SOD), fasting blood
insulin (FPI), body weight, IL-4, glutathione peroxidase (GSH-
Px), and nitric oxide (NO) were decreased in the untreated
diabetic group. Additionally, the untreated diabetic group
displayed increased glomerular extracellular matrix (relative
area), Scr, urine protein (UP), and BUN in comparison to the
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control group. Protein and mRNA expressions of SMAD2, TGF-
b1, connective tissue growth factor (CTGF), and fibronectin
(FN) were measured using western blot analysis and real-time
fluorescence quantitative polymerase chain reaction analysis
(RT-FQ-PCR). All these parameters were found to increase in
diabetic rats without any treatment as compared to the normal
control group. In the puerarin treated group, the elevated
parameters were decreased and the decreased parameters were
increased in comparison to the diabetes untreated group. Also,
there was an improvement in the renal functions in the puerarin
treated group as compared to the diabetic untreated group. There
was also the downregulation of CTGF, FN, SMAD2, and TGF-b1
mRNA and protein expressions. Thus puerarin exerted its
antidiabetic action through inhibitory effects on the TGF-b1/
SMAD2 pathway (She et al., 2014).

Propolis
Propolis is a natural mixture is found in plants and is produced
by bees through the mixing of salivary enzymes and wax with
plant material. Mounting evidence has been supported the anti-
cancer, anti-bacterial, anti-fungal, anti-viral, anti-inflammatory,
immunomodulatory and hepatoprotective properties of propolis
(Banskota et al., 2001; Gülçin et al., 2010; Sawicka et al., 2012;
Chan et al., 2013). A study was conducted by researchers on the
effect of propolis in enhancing the healing of cutaneous wounds
in STZ-induced diabetic mice. When untreated diabetic mice
were compared with non-diabetic mice, it was shown that a delay
in wound closure was found in diabetic mice in comparison to
the non-diabetic mice. Additionally, the levels of TGF-b1 were
found to be decreased in diabetic mice in comparison to
untreated mice. Moreover, the levels of inflammatory cytokines
and matrix metalloproteinase 9 (MMP9) were enhanced in the
wound tissues in diabetic mice in comparison to the untreated
mice. This corresponds with decreased production of collagen
and phosphorylation of SMAD2 and SMAD3 in wound tissues of
diabetic mice. However, when the propolis treated diabetic group
was compared to the untreated diabetic mice, it was found that
propolis treatment significantly increased closure of diabetic
wounds. Importantly, the levels of TNF-a, IL-6, IL-1b, and
MMP9 were found to be at normal levels in propolis treated
diabetic mice. The propolis treated group also showed an
enhanced formation of collagen by promoting TGF-b1/
SMAD2,3 signaling in comparison to the untreated diabetic
group (Hozzein et al., 2015).

Momordica charantia L.
Momordica charantia L. (MC) or bitter gourd ointment is a
traditional medicine with an ethnobotanical survey in India and
the Caribbean commonly used in the management of diabetes
(Semenya et al., 2012; Talukdar and Hossain, 2014). For instance,
MC was used in a study to evaluate its effect on enhancing the
healing of wounds in diabetic Sprague-Dawley rats.
Streptozotocin was used to induce diabetes, and the rats were
divided into normal control group (non-diabetic), diabetic rats
(untreated), diabetic rats treated with MC powder, diabetic rats
treated with an ointment containing MC, diabetic rats treated
with povidone ointment, and diabetic rats treated with ointment
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base. The excision wound model was used in the study. All the
treatments were given for 10 days. The healing of the wound was
determined by total protein content, TGF-b expression,
histological observations, and the rate of closure of the wound.
Results showed that the closure of the wound was delayed in the
diabetic groups as compared to the control group. In comparison
to the untreated diabetic group, MC ointment treated group
showed a significantly faster rate of closure of wound. Also on
day 10, MC ointment treated group showed the best wound
closure rate in comparison with other diabetic groups that were
given treatment. A high level of total protein content and intense
expression of TGF-b1 were shown by MC ointment treated
group. The diabetic wound healing potential of MC ointment
in the study was suggested to be due to its ability to enhance the
expression of TGF-b (Hussan et al., 2014).

Curcumin
Curcumin is a polyphenol extracted from Curcuma longa L.
(Turmeric) as a yellow pigment component which used as a
hepatoprotective drug in traditional Chinese medicine (Kumar
and Sakhya, 2013). It is known to possess multiple therapeutic
actions and has the potential to become an important antidiabetic
agent. Protection against diabetic neuropathy through curcumin
induced by inhibiting collagen IV, fibronectin and TGF-b1.
Curcumin has also shown the potential to reduce diabetic
cardiomyopathy. Fibrosis in tissues of heart was found to be
decreased by administration of curcumin in a dose of 300 mg/kg/
day for 16 weeks in STZ-induced diabetic rats. Also in a clinical
study, diabetic patients received 66.3 mg of curcumin per day for 2
months. No changes were made in the medications that they were
taking. Results of the trials showed that curcumin did not produce
any changes in the lipid or glucose profile, but levels of urinary IL-8
and TGF-bwere found to be reduced. TGF-b and IL-8 are involved
in the formation of diabetic kidney disease. Thus, curcumin showed
potential in lowering complications associated with diabetes
(Rivera-Mancıá et al., 2018).

Hesperidin
Hesperidin (3,5,7-trihydroxy flavanone-7-rhamnoglucoside) is a
flavanone glycoside as an active ingredient of citrus fruits with
anti-oxidant, neuroprotective, and anti-inflammatory properties
(Parhiz et al., 2015) Hajialyani et al., 2019). In a study on the
wound healing potential of hesperidin, streptozotocin was used
to induce diabetes in Sprague Dawley rats in a dose of 55 mg/kg.
The wound was made in the hind paw of rats, and when this
wound was stabilized, hesperidin was administered in doses of
25, 50, and 100 mg/kg p.o. for the time duration of 21 days.
Several histopathological, molecular, and biochemical
parameters were evaluated in the wound tissues of rats. The
study showed that hesperidin treatment enhanced vasculogenesis
and angiogenesis through upregulation of the Ang1/Tie-2, TGF-
b1, SMAD-2/3, and VEGF-c mRNA expression to result in
acceleration of healing of the wound in rats (Li et al., 2018).

Silymarin
The flavonoid silymarin is a cocktail of flavonolignans obtained
from the plant Silybum marianum and is used to treat a wide
Frontiers in Pharmacology | www.frontiersin.org 13
variety of liver problems and diabetes (Rasool et al., 2014;
Ferenci, 2016; Belwal et al., 2020; Singh et al., 2020). A study
was conducted to study the potential of silymarin in improving
diabetic cardiomyopathy by inhibiting TGF-b1/SMAD signaling.
In one study, the treatment of diabetic rats with silymarin down-
regulated the levels of blood glucose and produced improvements
in collagen deposition and cardiac fibrosis in diabetic rats.
Cardiac dysfunction in diabetic rats was decreased by silymarin
as detected from the results of echocardiography. Silymarin
produced a decrease in the levels of TGF-b and p-SMAD2/3
and enhanced the levels of SMAD7 in comparison to the
untreated diabetic rats. Thus, this study points towards the
potential of silymarin in improving diabetic cardiomyopathy
by inhibiting TGF-b1/SMAD signaling. Silymarin can be a
potential new candidate for the treatment of diabetic
cardiomyopathy (Meng et al., 2019).
IS THERE ANY CROSS-TALK BETWEEN
TGF-b AND AUTOPHAGY SIGNALING
PATHWAYS IN DIABETES?

TGF-b by using several numbers of signaling pathways except to
SMADs can regulate a wide array of cellular processes. As yet, the
cross-talk between TGF-b and autophagy has not been studies in
diabetes. However, some studies conducted to unravel the
involvement of two signaling pathways in progression of
diabetic complications such as liver and kidney fibrosis.
Combinatory interactions of type I and type II TGF-b receptor
serine/threonine kinases induce receptor-activated SMADs and
its downstream signaling pathways (Derynck and Zhang, 2003)
or directly activate many receptor pathways in a SMAD-
independent manner. The PI3K-AKT-mTOR axis is activated
directly by TGF-b ligand in a SMAD-independent way, resulting
in the phosphorylation of numerous substrates, such as S6 kinase
by mTORC1 and AKT by mTORC2, which are important for
malignant progression (Ao et al., 2006; Lamouille and Derynck,
2007; Lamouille et al., 2012) and pathological bone metastases.
As mTOR activity is tightly associated with many aspects of
tumorigenesis, its regulation may be effective in the prevention of
tumorigenesis (Zoncu et al., 2011).

TGF-b-miR-96 signaling pathway in an SMAD-dependent
manner regulates the activation of mTOR activity, which is
under the direct effect of the TGF-b pathway. Indeed, the AKT
substrate modulated by mTORC2, AKT1S1 (also known as
PRAS40) (Sancak et al., 2007; Vander Haar et al., 2007), is
targeted by microRNAs activated in response to TGF-b ligand.
Consequently, mTORC1 kinase will protect from the inhibitory
effect of AKT1S1 as phosphorylation levels of S6K increase. In
addition to AKT1S1, there are several tumor suppressors, such as
FOXO1 and FOXO3a (Lin et al., 2010), that are negatively
regulated by miR-96. In this line, miR-96 was considered as a
metastamir and/or oncomir in the progression of cancer.

Specifically, autophagy targeting of misfolded proteins or
damaged organelles improves cell survival (Massagué, 2000;
Gozuacik and Kimchi, 2004). However, excessive autophagic
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activity may lead to type II programmed cell death, which
completely differs from apoptosis or type I programmed cell
death (Ding et al., 2010). In mouse mesangial cells (MMC),
serum deprivation induces autophagy, which eventually results
in apoptosis. Yet, treatment with TGF-b results in the induction
of the autophagy pathway, suppressing apoptosis activation. In
primary MMCs cultured in serum deprivation circumstances,
TGF-b signals through the TGF-b-activated kinase 1 (TAK1)
and triggers the activation of several downstream cell signaling
cascade, including MKK3/6-p38 MAPK and the PI3K-Akt-
mTOR-S6K signaling axis (Ninomiya-Tsuji et al., 1999; Wang
et al., 2001). The recruitment of the PI3K-Akt pathway (Chen
et al., 2007; Gingery et al., 2008; Ding et al., 2010) leads to the
induction of autophagy, which inhibits caspase 3 activity.
Moreover, under the influence of the PI3K-Akt pathway, the
G1/S cell cycle progress through the upregulation of cyclin D1
(Diehl et al., 1998) and downregulation of p27KIP1 (p27) levels
through ubiquitination-dependent proteolysis (Murillo et al.,
2001). In addition, Blocking TGF-b by autophagy inhibitor in
MMC decreases the p27 protein level, suggesting that p27 levels
were regulated through autophagy.

Liver fibrosis is a chronic liver disease with augmentation of
ECM proteins, especially collagen, in liver tissues (Wu et al.,
2017). The process of liver fibrosis is initiated by the activation of
hepatic stellate cells (HSCs) (Li et al., 2016). When various
factors, such as mechanical stimulation and inflammatory
cytokines, especially TGF-b1, activate the quiescent HSCs,
HSCs could not preserve the balance between ECM production
and degradation (De Minicis et al., 2007). Indeed, TGF-b1 ligand
secreted by KCs and HSCs promotes continuous activation of
HSCs and interacts with TGF-b receptors (TbRs) of HSCs to
phosphorylate SMAD3 and promote the translocation of
phospho-SMAD3 (p-SMAD3) to the nucleus, leading to the
production of ECM components that facilitate fibrosis
pathogenesis (Shi and Massagué, 2003; Su et al., 2014).

The secretion of TGF-b1 could be regulated by the nuclear
factor-kappa B (NF-kB) signaling pathway (Hayden and Ghosh,
2008) and activation of NF-kB could be modulated by TGF-b
ligand. In other words, binding of IkBa to NF-kB subunits forms
the IkBa/p50/p65 complex, which blocks NF-kB translocation
into the nucleus (Luedde and Schwabe, 2011). TGF-b1 induced
the degradation of IkBa, resulting in the enhancement of NF-kB
(13) and also promoted the activation of NF-kB by TGF-b–
activated kinase TAK1 and the IkB kinase (Sakurai et al., 1999;
Attisano, 2001). In turn, NF-kB induces the transcription of
TGF-b1 to promote the activation of HSCs ECM for the
development of liver fibrosis (Feng et al., 2015). Furthermore,
TGF-b1/SMAD3 pathway can lead to the induction of Beclin-1,
which plays a critical role in the nucleation of the autophagy
process (Gordy and He, 2012; Li et al., 2016), contributing
indigestion of lipid droplets and supplies energy for the
promotion of HSCs, thereby developing liver fibrosis
(Hernández-Gea et al., 2012). Regarding the pivotal role of the
TGF-b1/SMAD3 signaling pathway in activated HSCs, it seems
that inhibition of this pathway could be beneficial in treatment of
liver fibrosis. In a recent study, salidroside in combination with
Frontiers in Pharmacology | www.frontiersin.org 14
rat mesenchymal stem cell transplantation showed an efficiency
in the treatment of liver fibrosis (Ouyang et al., 2010). In another
study, bleomycin-induced lung fibrosis was improved by the
administration of salidroside through modulation of the NF-kB
and TGF-b1/SMAD2/3 pathways (Tang et al., 2016). In addition,
utilizing salidroside was reported to be associated with reduced
levels of TGF-b1 in KCs and HSCs via suppression of the NF-kB
pathway, indicating that reduced autophagy in HSCs was
performed by downregulation of the TGF-b1/SMAD3 pathway
(Feng et al., 2018).

Fucoidan is another drug which functions similar to
salidroside so that by inhibition of TGF-B -b1, reduces
phosphorylation of SMAD2/3 and impedes the transferring of
SMAD2/3 from the pulp to the nucleus to combine with specific
DNA sequences of Beclin-1 gene which is a component of the
class III phosphatidylinositol 3-kinase (PtdIns 3-kinase) complex.
Therefore, Beclin-1 could not promote the autophagosome
biogenesis through interaction with PI3K, which induces the
conversion of LC3-I to LC3-II (Gordy and He, 2012;
Nikoletopoulou et al., 2013) and consequently hinders the
formation of autophagosomes.

In kidney injury and fibrosis induced by a unilateral ureteral
obstruction (UUO), deficiency of autophagic protein LC3 and
Beclin 1 leads to increased mature TGF-b levels and collagen
deposition. In contrast, through autophagic degradation, the
mature TGF-b1 protein levels are regulated, and kidney
fibrosis induced by UUO will be suppressed (Pang et al., 2016).

Another key mechanism involved in the pathogenesis and
progression of kidney fibrosis is the deregulation of epithelial-
mesenchymal transition (EMT) (Koesters et al., 2010;
Hernández-Gea et al., 2012). It has been shown that autophagy
mediates the effect of TGF-b on the induction of EMT (Böttinger
and Bitzer, 2002; Masszi et al., 2004; Zheng et al., 2009; Pang
et al., 2016). Indeed, TGF-b induces autophagy degrading E-
cadherin, resulting in b-catenin release. Following the b-cathenin
release, autophagy activates Src in order to phosphorylate b-
catenin, which by translocation to nucleus and binding to
SMAD2 or SMAD3 as a co-activator increases the gene
expression of ILK signaling factor which contributes in EMT.
However, it has been demonstrated that both ILK and p-B-
catenin/pSMAD2 are able to induce EMT and fibrosis,
individually (Kim et al., 2009; Ulsamer et al., 2012; Tian
et al., 2013).

It is conceivable that the regulation of autophagy by TGF-b
signaling was done in a context-specific manner. Namely,
autophagy may be possessed angiogenic or anti-angiogenic
effects under various conditions. TGF-b has been connected to
autophagy induction through TAK1 and JNK in epithelial and
tumor cells, whereas activation of AKT and mTOR mediated by
TGF-b has been shown to strongly inhibit autophagy in
fibroblasts. In the endothelial cells, TGF-b suppresses
transcription of beclin1 mediating PIP3-dependent recruitment
of additional ATG proteins through the recruitment
of SMAD2. Indeed, SMAD2 functions as an inhibiting factor
of Beclin 1 in the autophagy process. In addition, it has been
shown that beclin1 gene expression is controlled by several
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transcription factors such as FoxO3, NFkB, HIF1a, c-Jun, and
E2F1 signaling factors.

Extensive studies over the past several years have revealed
that autophagy acts as a cytoprotective effector in a response to
increased stress so dysregulation of autophagy is found in the
development of human disorders (Mizushima et al., 2008; Choi
et al., 2013). The culmination of these observations shed light on
the importance the interplay of two pathways’ cross-talk and
development of several diseases, while further studies is required
to uncover the involvement of TGF-b and autophagy cross-talk
in pathogenesis of diabetes and rising complication so that paved
the way to discover novel therapeutic strategies.
CONCLUDING REMARKS AND
PERSPECTIVE

Current strategies for the management of diabetes include the
prevention of glucose absorption as well as the inhibition of
related metabolic pathways and factors such as gluconeogenesis
and a-glucosidase. Moreover, various signaling pathways are
involved in the regulation of metabolic disorders, leading to more
recent studies to investigate the role of signaling pathways in the
Frontiers in Pharmacology | www.frontiersin.org 15
normal function of b cells and insulin-responsive cells. Specifically,
themain effective signalingpathways, namely, autophagy andTGF-
b1/SMAD signaling cascades have been considered as the useful
therapeutic strategies in the overcome DM.

Thus, the prominent roles of both autophagy and TGF-b1/
SMAD signaling pathways in diabetes and its complications were
further supported by altered expression and activity of signals.
Furthermore, therapeutic strategies aiming to regulate TGF-b1/
SMAD signaling and autophagy present promising remedies in
the treatment of diabetes.
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TSC2 N-terminal lysine acetylation status affects to its stability modulating
mTORC1 signaling and autophagy. Biochim. Biophys. Acta Mol. Cell Res. 1863,
2658–2667. doi: 10.1016/j.bbamcr.2016.08.006

Garcia-Calvo, M., Lisnock, J., Bull, H. G., Hawes, B. E., Burnett, D. A., Braun, M.
P., et al. (2005). The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1).
Proc. Natl. Acad. Sci. U.S.A. 102, 8132–8137. doi: 10.1073/pnas.0500269102

Gingery, A., Bradley, E. W., Pederson, L., Ruan, M., Horwood, N. J., and Oursler,
M. J. (2008). TGF-b coordinately activates TAK1/MEK/AKT/NFkB and
SMAD pathways to promote osteoclast survival. Exp. Cell Res. 314, 2725–
2738. doi: 10.1016/j.yexcr.2008.06.006

Gonzalez, C. D., Lee, M.-S., Marchetti, P., Pietropaolo, M., Towns, R., Vaccaro, M. I.,
et al. (2011). The emerging role of autophagy in the pathophysiology of diabetes
mellitus. Autophagy 7, 2–11. doi: 10.4161/auto.7.1.13044

Gordy, C., and He, Y.-W. (2012). The crosstalk between autophagy and apoptosis:
where does this lead? Protein Cell 3, 17–27. doi: 10.1007/s13238-011-1127-x

Gozuacik, D., and Kimchi, A. (2004). Autophagy as a cell death and tumor
suppressor mechanism. Oncogene 23, 2891–2906. doi: 10.1038/sj.onc.1207521

Grant, W. B. (2015). Low vitamin D concentrations may contribute to the
increased risk of diabetes mellitus related to shift work. Occup. Environ.
Med. 72, 161–161. doi: 10.1136/oemed-2014-102578

Grasso, D., Sacchetti, M. L., Bruno, L., Ré, A. L., Iovanna, J. L., Gonzalez, C. D.,
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Domenech, S., et al. (2015). “Is autophagy altered in the leukocytes of type 2
diabetic patients?”. Antioxid. Redox Signal. 23, 1050–1056. doi: 10.1089/
ars.2015.6447

Sakurai, H., Miyoshi, H., Toriumi, W., and Sugita, T. (1999). Functional
interactions of transforming growth factor b-activated kinase 1 with IkB
kinases to stimulate NF-kB activation. J. Biol. Chem. 274, 10641–10648.
doi: 10.1074/jbc.274.15.10641

Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner,
E., et al. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1
protein kinase. Mol. Cell. 25, 903–915. doi: 10.1016/j.molcel.2007.03.003

Sato, K., Kameda, M., Yasuhara, T., Agari, T., Baba, T., Wang, F., et al. (2013).
Neuroprotective effects of liraglutide for stroke model of rats. Int. J. Mol. Sci.
14, 21513–21524. doi: 10.3390/ijms141121513

Sawicka, D., Car, H., Borawska, M. H., and Nikliński, J. (2012). The anticancer
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GLOSSARY

3-MA 3-methyladenine
AD Alzheimer disease
adFNDI autosomal-dominant familial neurohypophyseal diabetes

insipidus
ADSCs Adipose tissue-derived stem cells
ADT2DM advanced duration of type 2 diabetes mellitus
ALK activin receptor-like kinase
AMPK 5′ adenosine monophosphate activated protein kinase
ATF6 activating transcription factor-6
ATG AuTophaGy related proteins
Atg7 autophagy-related gene 7
Bcl2 B-cell lymphoma 2
BUN blood urea nitrogen
CAT catalase
CNS central nervous system
CTGF connective tissue growth factor
DDIT3 DNA-damage inducible transcript 3
DM Diabetes mellitus
DN diabetic neuropathy
DRP1 Dynamin‐related protein 1
ECM extracellular matrix
EGFR/MAPK epidermal growth factor receptor/mitogen activated protein

kinase
EIF2AK3 eukaryotic translation initiation factor 2 a kinase 3
EMT epithelial mesenchymal transition
ER endoplasmic reticulum
ERN1/Ire1a endoplasmic reticulum to nucleus signaling 1/inositol

requiring enzyme-1a
Ex-4 exendin-4
FADD Fas-associated death domain protein
FGF21 fibroblast growth factor 21
FPI fasting blood insulin
FIP200 family interacting protein of 200 Kd
FN fibronectin
GABA g-aminobutyric acid
GABARAPL1 GABA A receptor-associated protein like 1
GLP-1 glucagon-like peptide-1
GLP-1R glucagon-like peptide-1 receptor
GLUT 4 glucose transporter 4
GS glycine-serine-rich
GSH-Px glutathione peroxidase
GSK3 Glycogen synthase kinase 3
GTP guanosine triphosphatases
hIAPP human islet amyloid polypeptide
HIF1a hypoxia inducible factor 1-a
HIHG high insulin/glucose
HSC hepatic stellate cell
GDM gestational diabetes mellitus
iAs Inorganic arsenic
IR insulin receptor
pIRE1 IRE1 phosphorylation
JNK c-Jun N-terminal kinase
LC3 light chain 3
LTBP-1 latent transforming growth factor beta binding protein -1
LAMP-2 lysosome associated membrane protein2

(Continued)
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LC3 1A/1B-light chain 3
LCIIIB light chain IIIB
MHC major histocompatibility complex
MAPK mitogen-activated protein kinase
MC Momordica charantia, MDA, malondialdehyde
MFN2 Mitofusin-2
MIN6 mouse INsulinoma 6
MMC mouse mesangial cells
MMP9 matrix metalloproteinase 9
mRNA messenger ribonucleic acid
mTOR mTORC2, rapamycin complex 2
mammalian target
of rapamycin
NAC N‐acetylcysteine
NAFLD nonalcoholic fatty liver disease
ND non-diabetic
NF-kB nuclear factor kappa-B light-chain-enhancer of activated B

cells
NDT2DM newly diagnosed type 2 diabetes mellitus
NO nitric oxide
NOD nonobese diabetic
NPC1L1 Niemann-Pick C1-like
OLETF Otsuka Long-Evans Tokushima Fatty
PEG-sTNF-RI pegylated soluble tumor necrosis factor receptor type 1
PPARg peroxisome proliferator‐activated receptor g
PBMCs peripheral blood mononuclear cells
PKA protein kinase A
pGDM prior history of gestational diabetes mellitus
PERK endoplasmic reticulum kinase
PI3P phosphatidyl inositol-3 phosphate, Rab, Ras-associated

binding
RT-FQ-PCR real time fluorescence quantitative polymerase chain

reaction analysis ROS, reactive oxygen species
rpWAT retroperitoneal white adipose tissues
scWAT subcutaneous white adipose tissues
SCr serum creatinine
SNARE SolubleN-ethylmaleimide-sensitive factor-attachment protein

receptor; reactive oxygen species
SOD superoxide dismutase
STZ Streptozotocin
SRX sulfiredoxin
T2DM type 2 diabetes mellitus
TAK1 beta-activated kinase 1
TEM transmission electron microscopy
TGF-b transforming growth factor b
TNF-a tumor necrosis factor-a
TGN trans-Golgi network
TRAF6 Tumor necrosis factor receptor-associated factor 6
TUDCA tauroursodeoxycholic acid
ULK1 Unc-51-like kinase 1
UP urine protein
UPR unfolded protein response
UUO unilateral ureteral obstruction
VEGF vascular endothelial growth factor
Vps34 Vacuolar Protein Sorting Protein 34. WIPI, WD-repeat

protein interacting with phosphoinositides.
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