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Background. Asthma caused substantial economic and health care burden and is susceptible to air pollution. Particularly, when it
comes to elder asthma patient (older than 65), the phenomenon is more significant. The aim of this study is to investigate the
Markov-based acute effects of air pollution on elder asthma hospitalizations, in forms of transition probabilities. Methods. A
retrospective, population-based study design was used to assess temporal patterns in hospitalizations for asthma in a region of
Sichuan province, China. Approximately 12 million residents were covered during this period. Relative risk analysis and
Markov chain model were employed on daily hospitalization state estimation. Results. Among PM2.5, PM10, NO2, and SO2,
only SO2 was significant. When air pollution is severe, the transition probability from a low-admission state (previous day) to
high-admission state (next day) is 35.46%, while it is 20.08% when air pollution is mild. In particular, for female-cold
subgroup, the counterparts are 30.06% and 0.01%, respectively. Conclusions. SO2 was a significant risk factor for elder asthma
hospitalization. When air pollution worsened, the transition probabilities from each state to high admission states increase
dramatically. This phenomenon appeared more evidently, especially in female-cold subgroup (which is in cold season for
female admissions). Based on our work, admission amount forecast, asthma intervention, and corresponding healthcare
allocation can be done.

1. Background

Asthma is a major public health issue in the USA, affecting
over 23 million persons [1]. In China, the asthma population
has reached 30 million [2]. The prevalence of asthma tends to
be higher in urbanized and well-developed areas compared to
the developing areas ([3]; Weiland and Pearce, 2004). More-
over, while there has been an overall trend of a decline in
prevalence in developed countries (Moorman et al., 2012),
there is an increasing trend in developing countries [4]. The
prevalence and risk factors of asthma in several metropolitan
cities in China including Beijing, Chengdu, and Guangzhou

have become comparable to those in other developed coun-
tries ([5]; Zhao et al., 2010).

Ambient air pollution has been linked to the develop-
ment and exacerbation of asthma and its related diseases in
Europe, North America, Korea, Japan, and Taiwan ([6]; Jaffe
et al., 2003; [7]; Samet et al., 2000; Sunyer et al., 1997; [8];
Yang et al., 2007; [9–11]). Especially, elder asthma patients
(older than 65) are considered more fragile to air pollution
[7, 12, 13], when compared with other adults, which means
that they are associated with a higher probability to consume
healthcare resource, due to air pollution. Besides, fewer than
1% of the 500 largest cities in China meet the air quality
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standards recommended by the World Health Organization,
and 7 of these cities are ranked among the 10 most polluted
cities in the world [14]. Hence, investigating the association
between air pollution and elder admission and analyzing
the transition probability in China are of great meaning.

Many works have been done in this field and achieved
specific findings. Schouten et al. [8] applied GLM (general-
ized linear model) to assess the short-term relationship
between air pollution and the daily number of emergency
hospital admissions for respiratory disease. The results
showed that the relation between short-term air pollution
and emergency hospital admissions is not always consistent
at these rather low levels of daily hospital admissions and of
air pollution. Szyszkowicz [15] examined and assessed the
potential relations between ED (emergency department)
visits for asthma and the concentrations of ambient air pol-
lutants. A generalized linear mixed model was applied and
proved the hypothesis that ED visits for asthma are associated
with exposure to O3. Grineski et al. [16] explored the role of
race, ethnicity, and insurance status in modifying the effects
of air pollution on childrens’ asthma hospitalizations in
Phoenix, Arizona, by analyzing asthma hospitalization data
obtained from the Arizona Department of Health Services.
The research suggested that increasing insurance enrollment
for all children, specifically Hispanic children, may reduce
their disproportionate risk from exceedances of air pollution.
Li et al. [17] explored the threshold effects of air pollutants on
pediatric asthma, by analyzing Medicaid beneficiary and
claims data obtained from the Michigan Data Warehouse of
the Michigan Department of Community Health. The study
indicates that the associations of SO2 and PM2.5 concentra-
tions with asthma emergency department visits and hospital-
izations, as well as the estimated PM2.5 (particulate matter
not greater than 2.5mm in aerodynamic diameter) threshold,
were fairly consistent across time-series and case-crossover
analyses and suggest that effect estimates based on linear
models (without thresholds) may underestimate the true risk.
Cai et al. [12] applied an overdispersed generalized additive
model to investigate the acute effect of air pollution on
asthma hospitalization in Shanghai, China, and found that
the effects of SO2 and NO2 were robust after adjustment for
PM10. The associations appeared to be more evident in the
cold season than in the warm season. Cho et al. [9] applied
conditional logistic regression to investigate the short-term
effect of ambient air pollution on the risk of asthma. By ana-
lyzing the data from medical claims which were reported to
the Health Insurance Review and Assessment Service
(HIRA), it was indicated that SO2, PM10 (particulate matter
not greater than 10mm in aerodynamic diameter), NO2,
and CO were positively associated with ED visits for asthma.

However, previous studies have serval limitations: (1)
Although elder asthma patients were found to be more
fragile to air pollution [12], sex and seasonality may be the
potential risk factors of elder asthma hospitalization. How-
ever, previous work did not take age, sex, and seasonality
into consideration simultaneously. (2)Previousworks focused
only on the overall ratio between the increment of air pol-
lutants and hospitalization, which limited contributions in
practice. However, to achieve the distribution of future

hospitalization considering air pollution is much more help-
ful. Powerful tools such as Markov chain should be
employed, due to their excellent performances in transition
probability estimation [18, 19].

This study aims to investigate the Markov-based acute
effects of air pollution on elder asthma hospitalization, which
is the key chain of forecasting admission amount, by
measuring the acute effects of air pollution on elder asthma
admission first. We take sex and seasonality factors into con-
sideration to achieve a systematic research. The Markov
model is particularly useful in analyzing risk factors in cohort
studies and has been applied successfully to the study of lung
cancer, HIV infection [19], and the cost of asthma [18]. The
results in terms of relative risk and transition probability
curves are practical and easy to understand. Moreover, the
Markov assumption is somewhat restrictive where it sup-
poses that the probability of a changing state depends only
on the current state and not on previous history of state tran-
sitions. We construct Markov chain, which is an effective way
to not only describe the association between air pollution and
asthma resource demand but also achieve a distribution of
demand. This study outputs Markov transition probabilities
between asthma admission amount states under different
air pollution situations. When combined with air pollution
forecast for a continuous period, the Markov chain can infer
future distribution of admission amount states for each day.
In fact, Deo et al. [20] developed an integrated Markov-
based capacity allocation model that incorporates clinical
(disease progression) and operational (capacity constraint)
aspects for chronic disease. However, their study focused
on improving the patients’ QALY (quality-adjusted life
years) by healthcare resource allocation, without considering
the demand varying with air pollution, not to mention mak-
ing corresponding intervention and then allocating matching
healthcare resource. In this study, we apply Markov chain to
describe the elder asthma admission evolution process con-
sidering air pollution. Based on our work, admission amount
forecast, asthma intervention, and corresponding healthcare
allocation can be done.

2. Method

2.1. Data. Our study area covers a region of Sichuan prov-
ince, China. We obtained inpatient records of asthma hospi-
talization for adult residents between January 1, 2014, and
December 31, 2014 (365 days). Approximately 12 million
residents were covered during this period. The main diagno-
ses of hospital admission were coded according to the Inter-
national Classification of Diseases, Revision 10 (ICD-10):
Asthma (J45.001, J45.005, J45.901, J45.902, and J45.903).
The data was also classified by season and sex. Warm season
is defined as a period from April to September, and cold sea-
son is defined as the rest of time period in a year. Elder person
is defined as person older than 65 years.

Daily (24 h) air pollution concentration data including
particulate matter less than 2.5mm in aerodynamic diameter
(PM2.5), particulate matter less than 10mm in aerodynamic
diameter (PM10), sulfur dioxide (SO2), and nitrogen dioxide
(NO2), from January 1, 2014, to December 31, 2014, were
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obtained from the website of the Environmental Monitoring
Center (EMC) database. To allow adjustment for the effect of
weather on hospital admission, meteorological data (daily
min temperature) were obtained from the website of Meteo-
rological Bureau.

2.2. Statistical Analysis. Daily asthma hospitalization and air
pollution levels were linked by date and therefore could be
analyzed with a time-series design. Because daily hospital
admission for asthma approximately follows a Poisson distri-
bution [12], we utilized generalized linear Poisson models to
estimate the association of asthma hospital admission with
air pollution levels. We incorporated the ns functions of
min temperature (6 df for the period) to adjust for the poten-
tial nonlinear confounding effects of weather conditions [21].
After establishing the basic model, we introduced the air pol-
lutant concentrations into the single-pollutant model one at a
time to estimate their associations with asthma hospitaliza-
tion. We also included the day of the week as an indicator
variable in the basic models. We examined the effect of air
pollutants with different lag structures from lag0 (current
day) to lag0–5 (recent six days). Lag0–5 corresponds to 6-
day moving average of pollutant concentration of recent six
days in RR (relative risk) analysis. These period models were
used for our main analysis, given that single-day lag models
may underestimate the cumulative effect of pollutants on
hospital admissions [22]. We also conducted season- and
sex-specific analysis, and the air pollution effects on asthma
hospitalization between subgroups were compared. Unless
specified otherwise, the results are presented as the percent
change in daily hospital admission for a 10 μg/m3 increase
in the pollutant concentration and 95% confidence intervals
(CIs). In this way, the pollutants which acutely effect elder
asthma admission can be confirmed.

For the purpose of healthcare resource allocation and
schedule, it is important to measure the association between
air pollution and elder asthma admission amounts and make
corresponding forecast. Markov chain is a useful way to
describe the asthma admission amount evolution process; it
can not only reliably reflect the transition situation but also
build a bridge between healthcare management and
healthcare resource scheduling optimization. For instance,
assuming that Markov transition probability between each
admission amount state and future distributions of air pollu-
tion condition is given, then, future distributions of the
admission amount state are also known. Hence, healthcare
resource scheduling according to future distributions of the
admission amount state will achieve a better performance.
Markov models allow the modelling of patient follow-up as
a succession of transitions between states over time. They
are quantified as the rate of transition and expressed in num-
ber of transitions. The model was considered to be homoge-
neous; that is, the transition forces are independent of time.
To construct the elder asthma admission Markov chain, we
use the Lorenz curve and OR analysis to determine admis-
sion amount states and severity of air pollution. In econom-
ics, the Lorenz curve is a graphical representation of the

Table 1: Summary statistics of daily asthma hospital admission, air pollutant concentrations, and weather conditions from January 1, 2014, to
December 31, 2014.

N Mean SD Mina Q1a Q2a Q3a Maxa IQRa

All elder 1567 4.29 2.30 0 4 3 6 13 3

Sex

Male 605 1.66 1.33 0 1 1 2 7 1

Female 962 2.64 1.76 0 2 13 10 2

Seasonb

Warm 725 3.96 1.97 0 4 3 5 11 2

Cold 842 4.63 2.55 0 4 36 13 3

Air pollution concentrations (24 h average)

PM2.5 (μg/m3) — 72 52 10 38 55 88 396 50

PM10 (μg/m3) — 116 72 20 68 96 147 562 79

SO2 (μg/m
3) — 17 10 3 11 15 21 61 10

NO2 (μg/m
3) — 52 16 20 41 50 60 109 19

Meteorological measures

Min temperature — 13 7 −2 7 15 20 24 13

PM2.5: particulate matter not greater than 2.5 mm in aerodynamic diameter; PM10: particulate matter not greater than 10mm in aerodynamic diameter;
SO2: sulfur dioxide; NO2: nitrogen dioxide; amin: minimum; Q1: 25th percentile; Q2: 50th percentile; Q3: 75th percentile; max: maximum; IQR: interquartile
range (Q3–Q1). bCold season: from October to March; warm season: from April to September.

Table 2: Pearson correlation coefficients between daily air pollutant
concentrations from January 1, 2014, to December 31, 2014.

PM2.5 PM10 SO2 NO2

PM2.5 1

PM10 0.86 1

SO2 0.51 0.53 1

NO2 0.55 0.56 0.47 1

Abbreviations are the same as in Table 1.
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distribution of income or of wealth, while in this situation,
the Lorenz curve is a graphical representation of the distribu-
tion of daily admission amount. In statistics, the odds ratio
(OR) is one of three main ways to quantify how strongly
the presence or absence of property A is associated with the
presence or absence of property B in a given population;
while in our research, OR is employed to quantify the associ-
ation between environmental properties and admission
amount states. Then, a multistate model (MSM) was used
to calculate the Markov transition probabilities. All models
were fitted using R software (version 3.3.2, R Foundation
for Statistical Computing, http://cran.r-project.org/) with
the mgcv and msm package.

3. Results

Table 1 summarizes the basic statistics for our study. From
January 1, 2014, to December 31, 2014, a total of 7503 hospi-
tal admissions for asthma were recorded. Among them, elder
admissions take 1567 admissions. On average, there were
approximately 4 admission counts per day in our study area,
females accounting for 61%. Hospital admission for asthma
was higher in cold season (842 in total, i.e., 2.3 people per
day), compared to warm season (725 in total, i.e., 2 people
per day). During the study period, the average of daily con-
centrations was 72 μg/m3 for PM2.5, 116 μg/m3 for PM10,
17 μg/m3 for SO2, and 52 μg/m3 for NO2.

Generally, PM2.5, PM10, SO2, and NO2 had moderately
high correlation coefficients with each other (Table 2).
Table 3 shows the results from the period lag (lag0 to lag0–5)
for the percent increase in hospital admission per 10 μg/m3

increase in pollution. Among the above four air pollutants,
only SO2 was significant when it comes to lag0, lag0-1, and
lag0–2. The strongest effects were observed at lag0–2 for
PM2.5, PM10, and NO2 and lag0-1 for SO2. A 10 μg/m3

increase in concentration of each air pollutant corresponds
to a 0.82 (PM2.5, 95% CI: −0.24, 1.89), 0.5 (PM10, 95% CI:
−0.29, 1.3), 7.27 (SO2, 95% CI: 1.1, 13.82), and 3.26 (NO2,
95%CI:−0.66, 7.33) increase in risk of asthma hospitalization.
The presented values are in percentages. For all lags, the effects
of PM2.5 were always bigger than those of PM10, which indi-
cates that PM2.5 has a stronger associationwith asthmahospi-
talization.All fourpollutants showed thepattern that the effect
increases with lag firstly and then peaks at a certain lag.

To define different admission amount states, we used the
Lorenz curve to analyze the total admission amount. Figure 1
is the Lorenz curve of elder asthma patient admission, pre-
senting the homogeneous degree of asthma admission for
every admission day. The x-axis denotes the cumulative
proportion of admission days, and the y-axis denotes the
cumulative proportion of admission counts. The curve
shows that the 70% admission days with the lowest admis-
sion amount takes 50% admission amount of total admis-
sion amount; therefore, the top 30% admission days (the
days of which admission amount is not less than 5) are
labelled as “high day.”

In the framework of Markov chain, the transition proba-
bilities between different states vary, when decision or situa-
tion changes. For instance, when air pollution converts from
mild to severe, the transition probability from low-admission

Table 3: Percent increase (mean and 95% confidence interval) in daily asthma hospital admission associated with a 10 μg/m3 increase in air
pollutants from January 1, 2014, to December 31, 2014.

PM2.5 PM10 SO2 NO2

Lag0 0.54 (−0.44, 1.52) 0.24 (−0.47, 0.95) 6.59 (1.11, 12.36)∗ 2.4 (−0.87, 5.77)
Lag0-1 0.79 (−0.23, 1.82) 0.49 (−0.27, 1.25) 7.27 (1.1, 13.82)∗§ 3.2 (−0.45, 6.98)
Lag0–2 0.82 (−0.24, 1.89)§ 0.5 (−0.29, 1.3)§ 6.94 (0.4, 13.91)∗ 3.26 (−0.66, 7.33)§

Lag0–3 0.74 (−0.35, 1.84) 0.42 (−0.4, 1.24) 5.83 (−0.95, 13.09) 2.69 (−1.44, 6.99)
Lag0–4 0.65 (−0.47, 1.78) 0.34 (−0.5, 1.19) 4.41 (−2.55, 11.87) 2.01 (−2.28, 6.49)
Lag0–5 0.54 (−0.61, 1.7) 0.23 (−0.63, 1.1) 3.12 (−3.97, 10.74) 1.76 (−2.69, 6.41)
Abbreviations are the same as in Table 1. ∗p < 0 05. §Strongest effect (best lag).
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Figure 1: The Lorenz curve of elder asthma admission.

Table 4: Concentration threshold of Chinese Ministry of
Environmental Protection for each pollutant.

Pollutant
Concentration threshold

Primary standard Second standard

PM2.5 35 μg/m3 75 μg/m3

PM10 50 μg/m3 150 μg/m3

SO2 50 μg/m3 150 μg/m3

NO2 80 μg/m3 —

Abbreviations are the same as in Table 1. — indicates no existence.
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amount to high-admission amount increases evidently. In
our research, we constructed two transition probability
matrices between different states, for mild air pollution and
severe air pollution, respectively. Results from Table 3 indi-
cates that air pollution is a risk factor for elder asthma
admission; however, which air pollution index is proper to
associate with elder asthma admission is still unknown.
Therefore, we should construct a meaningful and easy-to-
understand index to reflect the Markov transition process.
A feasible way is to measure whether within a recent period,
air pollution exceeded the concentration threshold not less
than certain times. If it is true, the air pollution is severe;
otherwise, mild. Table 4 presents the concentration thresh-
old of the Chinese Ministry of Environmental Protection
for each pollutant.

Odds ratio analysis is a vastly used method to select a
related index. Table 5 shows odds ratio between the air pollu-
tion index and high elder asthma admission. If the odds ratio
is bigger than 1, the independent variable is more likely to be
the risk factor; otherwise, it becomes the protective factor.
Hence, the index with the biggest odds ratio is considered to
be the most appropriate air pollution index. For PM2.5, the
appropriate index measures whether within recent 6 days,
PM2.5 daily average concentration exceeded the primary
standard not less than 6 times. For PM10, the appropriate
index measures whether within recent 3 days, PM10 daily
average concentration exceeded the primary standard not less
than 2 times. For SO2, the appropriate index measures
whether within recent 2 days, SO2 daily average concentration
exceeded the primary standard not less than 1 time. For NO2,
the appropriate index measures whether within recent 6 days,
NO2 daily average concentration exceeded the primary stan-
dard not less than 1 time. Considering that SO2 has the biggest
odds ratio (4.02, 95% CI: (2.26, 7.18)), severe air pollution is
defined as whether within recent 2 days, SO2 daily average
concentration exceeding 35 μg/m3 not less than 1 time.

Figure 2 shows the transition probability between high-
admission states and low-admission states under different
air pollution situations. When air pollution is severe, the
transition probability from a low-admission state (last day)
to a high-admission state (next day) is 35.46%, and for the
low-admission state (next day), it is 64.54%; the transition
probability from a high-admission state (last day) to a low-
admission state (next day) is 33.66%, and for the high-
admission state (next day), it is 66.34%. While air pollution
is mild, the transition probability from a low-admission
state (last day) to a high-admission state (next day) is
20.08%, and for the low-admission state (next day), it is
79.92%; the transition probability from a high-admission
state (last day) to a low-admission state (next day) is
35.57%, and for the high-admission state (next day), it is
64.43%. These results can be used to construct an asthma
resource optimization framework considering air pollution.
These transition probabilities also show that, when air
pollution gets worse, the transition probability from a low-
admission state (last day) to a high-admission state (next
day) increases 15.26%, and the transition probability from
a high-admission state (last day) to a high-admission state
(next day) increases 1.91%.

Table 6 compares the RR among Shanghai, Milan, and
this study. For Milan, Santus et al. [23] measured the acute
effects between air pollution and elder emergent visit. While
admission can be viewed as the aggravation of emergent visit,
and admission amount has a tight relation with emergent
visit amount. For all four pollutants, the RRs of the above
air pollutants in Milan are 3.30 (95% CI: −0.44, 11.70), 3.00
(95% CI: −3.60, 10.10), 9.90 (95% CI: −15.40, 42.80), and
0.80 (95% CI: −4.30, 6.30), respectively, whereas the counter-
parts in this study are 0.79 (95% CI: −0.23, 1.82), 0.49 (95%
CI: −0.27, 1.25), 3.57 (95% CI: 0.55, 6.68), and 3.2 (95% CI:
−0.45, 6.98), respectively. The effects of PM2.5, PM10, and
SO2 in Milan are stronger than those in this study, which
may lie in the fact that emergent visits are more sensitive to
air pollution. However, the effect of NO2 in Milan is much
weaker than that in this study; this gap needs further study.

The acute effects of PM10, SO2, and NO2 are all signifi-
cant in Shanghai [12]; however, only SO2 of those is signifi-
cant. Besides, the RRs of Shanghai for the three pollutants
mentioned above are 1.88 (95% CI: 3.58, 7.35), 4.79 (95%
CI: 1.69, 11.27), and 9.38 (95% CI: 3.24, 15.51), respectively,
whereas those of this study are 1.44 (95% CI: −2.8, 5.86),
25.81 (95% CI: 4.05, 52.12), and 7.11 (95% CI: −2.5, 17.67),
respectively. The results indicate that (1) for PM10 and
NO2, the effects are slightly weaker than those in Shanghai
and (2) for SO2, the effects are dramatically stronger than
those in Shanghai. These differences may lie when sexual
and season factors were not considered.

Table 7 summarizes the estimates of season- and sex-
specific effects for each pollutant, with the lags involved in
this part being the best lags in Table 3. For PM2.5, the
acute effects were not significant when season was not
considered. In the male-warm subgroup, the effects were
significant and achieved the strongest (10.09), which
indicates that PM2.5 matters for male in warm season.
PM10 followed the same pattern, and the significant and
largest RR is 4.84, which is also smaller than that of
PM2.5. However, for SO2, all the male subgroups show to
be insignificant, whereas the significant effects appeared in
cold season or the whole for female subgroups. The largest
and significant RR was 13.71 in the female-cold subgroup.
NO2 also showed no significance in the male subgroup;
however, the significance appeared in both cold and warm
subgroups. We can find an interesting phenomenon that
the male subgroup was only sensitive in warm season,

1 264.65%
35.34%

33.66%
66.34%

Air pollution: severe

1 279.92%
20.08%

35.57%
64.43%

Air pollution: mild

Figure 2: Markov transition probabilities between the high-
admission state (state 2) and the low-admission state (state 1).

7Journal of Healthcare Engineering



especially for PM2.5 and PM10. For male, the effect was
significant only during warm season with PM2.5 and
PM10. However, for the female, every effect is significant
during cold season. Due to the fact that the strongest effect
for each pollutant was in the female-cold subgroup, which
indicates that the female-cold subgroup is more fragile to
air pollution, we decided to construct the Markov transition
probability matrix only for the female-cold subgroup.

Figure 3 shows the Markov transition probability matrix
for the female-cold subgroup, and its corresponding param-
eters were given in Table 8. When air pollution is severe,
the transition probability from a low-admission state (last
day) to a high-admission state (next day) is 30.06%, and for
the low-admission state (next day), it is 69.94%; the transi-
tion probability from a high-admission state (last day) to a
low-admission state (next day) is 31.14%, and for the high-
admission state (next day), it is 68.86%. However, when air
pollution is mild, the transition probability from a low-
admission state (last day) to a high-admission state (next
day) is 0.01%, and for the low-admission state (next day), it
is 99.99%; the transition probability from a high-admission
state (last day) to a low-admission state (next day) is
39.38%, and for the high-admission state (next day), it is
60.62%. These results can be used to construct an asthma
resource optimization framework considering air pollution.
These transition probabilities also show that, when air

pollution gets worse, the transition probability from a low-
admission state (last day) to a high-admission state (next
day) increases 29.07%, and the transition probability from a
high-admission state (last day) to a high-admission state
(next day) increases 8.24%.

4. Discussion

This study certified that air pollutants have adverse short
effects on elder hospital admissions for asthma. Such effects
were observed for both the gaseous (SO2 and NO2) and

Table 6: Comparison of RR among Shanghai, Milan, and this study.

PM2.5 PM10 SO2 NO2

Shanghai (admission) [12]
Lag (increment) — Lag0-1 (60 μg/m3) Lag0-1 (36 μg/m3) Lag0-1 (29 μg/m3)

RR (95% CI) — 1.88 (3.58, 7.35)∗ 4.79 (1.69, 11.27)∗ 9.38 (3.24, 15.51)∗

This study (admission)
Lag (increment) — Lag0-1 (60 μg/m3) Lag0-1 (36 μg/m3) Lag0-1 (29 μg/m3)

RR (95% CI) — 1.44 (−2.8, 5.86) 25.81 (4.05, 52.12)∗ 7.11 (−2.5, 17.67)

Milan (emergent visit) [23]
Lag (increment) Lag0–2 (10 μg/m3) Lag0–2 (10 μg/m3) Lag0–2 (5 μg/m3) Lag0–2 (10 μg/m3)

RR (95% CI) 3.30 (−4.40, 11.70) 3.00(−3.60, 10.10) 9.90(−15.40, 42.80) 0.80(−4.30, 6.30)

This study (admission)
Lag (increment) Lag0-1 (10 μg/m3) Lag0-1 (5 μg/m3) Lag0-1 (10 μg/m3) Lag0-1 (10 μg/m3)

RR (95% CI) 0.79 (−0.23, 1.82) 0.49 (−0.27, 1.25) 3.57 (0.55, 6.68)∗ 3.2 (−0.45, 6.98)

Abbreviations are the same as in Table 1. — indicates not mentioned. ∗p < 0 05.

Table 7: Percent increase (mean and 95% confidence interval) in asthma hospital admission associated with a 10 μg/m3 increase in air
pollutant concentrations by season and sex.

Sex Season PM2.5 (lag0–2) PM10 (lag0–2) SO2 (lag0-1) NO2 (lag0–2)

Both

Both 0.82 (−0.24, 1.89) 0.5 (−0.29, 1.3) 7.27 (1.1, 13.82)∗ 3.2 (−0.45, 6.98)

Warm 4.72 (2.26, 7.23)∗ 2.48 (0.98, 4.01)∗ 3.53 (−8.6, 17.26) −7.73 (−12.98, −2.16)∗

Cold 0.94 (0.15, 1.74)∗ 0.93 (0.31, 1.55)∗ 9.18 (4.27, 14.32)∗ 7.39 (4.26, 10.62)∗∗

Male

Both −0.13 (−1.83, 1.59) −0.12 (−1.39, 1.16) 2.95 (−6.47, 13.31) 0.77 (−5.34, 7.28)
Warm 10.09 (6, 14.33)∗∗ 4.84 (2.41, 7.33)∗ 12.31 (−7.64, 36.56) −1.06 (−9.79, 8.51)
Cold −0.02 (−1.26, 1.24) 0.28 (−0.7, 1.26) 1.95 (−5.07, 9.5) 3.28 (−1.4, 8.18)

Female

Both 1.38 (0.03, 2.75) 0.88 (−0.12, 1.89) 9.93 (1.95, 18.54)∗ 4.71 (−0.31, 9.99)

Warm 0.92 (−2.3, 4.25) 0.74 (−1.26, 2.78) 2.36 (−13.31, 20.85) −11.39 (−18.04, −4.19)∗

Cold 1.5 (0.44, 2.57)∗ 1.32 (0.49, 2.16)∗ 13.71 (6.87, 20.99)∗ 9.31 (5.04, 13.76)∗∗

Abbreviations are the same as in Table 1. Cold season: from October to March; warm season: from April to September. ∗p < 0 05; ∗∗p < 0 01.

69.94%

99.99%

30.06%

31.14%

0.01%

39.38%

68.86%

60.62%

Air pollution: severe

Air pollution: mild

1

1

2

2

Figure 3: Markov transition probabilities between the high-
admission state (state 2) and the low-admission state (state 1) for
the female-cold subgroup.
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particulate (PM10 and PM2.5) pollutants across all the differ-
ent sex groups and season groups. PM2.5, PM10, and NO2
showed no significant effects on elders, whereas SO2 was evi-
dently significant from lag0 to lag0–2.

We also made a comparison with the effects in other
studies: (1) When compared with Milan (emergent visit),
the effects of PM2.5, PM10, and SO2 are stronger than
those in this study, which may lie in the fact that emergent
visits are more sensitive to air pollution. However, the effect
of NO2 in Milan is much weaker than that in this study;
this gap needs further study. (2) When compared with
Shanghai (admission), for PM10 and NO2, the effects are
slightly weaker than those in Shanghai, whereas for SO2,
the effects are dramatically stronger than those in Shanghai.
These differences may lie when sexual and season factors
were not considered.

Sex- and season-specific analysis indicates that for male,
the effect was significant only during warm season with
PM2.5 and PM10; however, for the female, every effect is sig-
nificant during cold season.

Precise Markov transition probabilities between high-
admission states and low-admission states are obtained by a
multistate model. It was also shown that when air pollution
gets worse, the transition probabilities from low-admission
states and high-admission states to high-admission states
increase dramatically. When we focused on the female-cold
subgroup, this phenomenon appeared more evidently: the
probability increasing due to air pollution worsening of
the female-cold subgroup was much dramatic than that
of full samples.

When these transition probabilities were combined with
the forecast of air pollution, we can obtain the distributions
of asthma admission, with reference to asthma healthcare
resource demand (such as professional Medicare staff, wards)
for a long period. Further, based on these distributions,
asthma healthcare resource allocation can be done by the
operation research method.

There are three points that should be focused:

(1) Among PM2.5, PM10, SO2, and NO2, only the incre-
ment of SO2 was significant with that of elder asthma
hospitalization. The effects of PM2.5, PM10, and
SO2 in Milan are stronger than those in this study,
which may lie in the fact that emergent visits are
more sensitive to air pollution. However, the effect
of NO2 in Milan is much weaker than that in this
study; this gap needs further study.

(2) For male, the effect was significant only during
warm season with PM2.5 and PM10. However,
for the female, every effect is significant during
cold season. The strongest effect for each pollutant
was in the female-cold subgroup, which indicates

that the female-cold subgroup is more fragile to
air pollution and that is why we constructed
Markov transition probability matrix only for the
female-cold subgroup.

(3) The difference between full samples and the female-
cold subgroup was quite evident: the probability
increasing due to air pollution worsening of the
female-cold subgroup was much dramatic than that
of full samples. That is to say, air pollution matters
for the female-cold subgroup more than full samples.
This gap may lie when the acute effects between each
air pollutant and elder asthma admission vary on
sexual and season factors.

5. Conclusion

In summary, this study mainly achieved three goals: (1)
validating air pollution (PM2.5, PM10, NO2, and SO2)
has a great impact on elder asthma admission. For differ-
ent air pollution conditions, the index to forecast high
admission differs. (2) Outputting an effective air pollution
index was performed to associate it with elder asthma
admission. (3) Outputting Markov transition probabilities
between high-admission states and low-admission states
was performed, which could be used to forecast asthma
healthcare resource demand when combined with air pol-
lution forecast and then lead to healthcare resource alloca-
tion optimization.

Our study has limitations. First, the study design is eco-
logical in nature, which may limit its ability for causal infer-
ence. Second, we simply averaged the monitoring results
across various stations as the proxy for population exposure
level to air pollution, which may raise a number of issues
given that pollutant measurements can differ between moni-
toring locations and that ambient monitoring results differ
from personal exposure level to air pollutants. The resulting
measurement error may have substantial implication for
interpreting time-series air pollution studies. Finally, this
research only focuses on elder asthma admission. In fact,
asthma outpatient and emergent patient take a large part of
asthma healthcare resource. However, we do not have
asthma outpatient and emergent patient.

Our work is a novel and fundamental study in asthma
resource management. It not only provides a new prospect
in the association between air pollution and asthma
admission but also leads to a practical framework to imple-
ment asthma intervention and to allocate corresponding
resource (such as professional Medicare staff, wards).
Future work will be done in the aspect of forecasting
admission amount, asthma intervention, and corresponding
resource allocation.

Table 8: Corresponding parameters of the female-cold subgroup.

Subgroup A1 A2 A3 A4 A5 A6

Female-cold PM2.5 Lag0–4 35 μg/m3 4 days 2 persons per day 15.11 (2.72, 83.78)

A1: pollutant; A2: lag; A3: concentration threshold; A4: counts exceeding the concentration threshold; A5: admission amount threshold; A6: OR.
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Abbreviations

PM2.5: Particulate matter not greater than 2.5mm in
aerodynamic diameter

PM10: Particulate matter not greater than 10mm in
aerodynamic diameter

SO2: Sulfur dioxide
NO2: Nitrogen dioxide
QALY: Quality-adjusted life years.
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