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Abstract: Francisella tularensis is an intracellular Gram-negative bacterium that causes 

life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis 

remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. 

F. tularensis can infect a host through multiple routes, including the intradermal and respiratory 

routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and 

is the most lethal form of infection. Following infection, F. tularensis employs strategies for 

immune evasion that delay the immune response, permitting systemic distribution and induction 

of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunologi-

cal context, with emphasis on the host response and bacterial evasion of that response.
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Introduction
The bacterium Francisella tularensis is the causative agent of the disease tularemia. 

Originally discovered in ground squirrels in Tulare County, CA, USA, F. tularensis 

has previously been termed Bacterium tularense and Pasteurella tularensis.1–3 The first 

known infection of a human with F. tularensis was identified in 1913.2 The bacterium 

has a coccobacillus shape, stains Gram-negative, and is nonmotile.4,5

F. tularensis exists as multiple subspecies, including the “type A” subspecies 

F. tularensis tularensis and the “type B” subspecies F. tularensis holarctica and 

F. tularensis mediasiatica. Additionally, there exists a related species, Francisella 

novicida.6–8 Subspecies F. tularensis tularensis, holarctica, and mediasiatica can 

all cause infection in humans, although only subspecies F. tularensis tularensis is 

appreciably lethal. By contrast, F. novicida has been reported to cause infection only 

in immunocompromised individuals.7

Humans can contract infection with F. tularensis through several routes, includ-

ing arthropod bites, contact with infected animals or animal carcasses, ingestion of 

contaminated materials, or inhalation.6,9 Infection typically produces a febrile illness, 

although specific pathology and mortality rates are highly dependent upon the route 

of infection.1,2,6,10 The most common presentation is glandular or ulceroglandular tula-

remia, in which infection occurs through the skin and causes localized inflammation 

and infection of local lymph nodes.6 Ulcers produced by ulceroglandular tularemia are 

persistent, but the infection is rarely lethal and can often resolve without treatment.6 

F. tularensis can also cause typhoidal tularemia, which is characterized by systemic 

infection without lymphadenopathy or development of ulcers.6 Typhoidal tularemia 

is more serious, with a mortality rate potentially as high as 60%.6 Less commonly, 
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infection can present as oropharyngeal or gastrointestinal 

tularemia resulting from ingestion of contaminated materi-

als, or as oculoglandular tularemia as a result of infection 

of the conjunctiva of the eyes.6 The most serious form of 

Francisella infection, pneumonic tularemia, is typically 

caused by inhalation of bacterial aerosols or airborne sus-

pensions of infectious material. Type A F. tularensis is 

extraordinarily infectious and highly lethal when infection 

occurs through the respiratory route, with a case fatality rate 

in excess of 60% and a minimum infectious dose of fewer 

than 10 colony-forming units (CFU).10

The extreme respiratory infectivity of type A F. tularensis 

and its high survivability as an aerosol, combined with the 

high lethality of the pneumonic form of infection, have 

made the organism an attractive candidate for weaponiza-

tion, and several governments produced large quantities of 

F. tularensis for that purpose during the 20th century.8,11–14 

Today, F. tularensis remains a potential agent of biological 

terrorism.14 To date, there is no licensed vaccine against 

F. tularensis. An attenuated strain of type B F. tularensis, 

the live vaccine strain (LVS), was developed in the mid-20th 

century by serial passage of F. tularensis holarctica through 

mice.15,16 LVS is attenuated in humans but retains virulence 

in mice. Salomonsson et al17 found that complementation of 

LVS with the genes pilA and FTT0918 restored virulence to 

the level of virulent type B strains in subcutaneous infection. 

However, the mechanisms responsible for attenuation of 

LVS, particularly in models of respiratory infection, remain 

incompletely understood, leading to fears that LVS may revert 

to virulence or may cause disease in immunocompromised 

individuals.

Virulence determinants
Several virulence determinants have been proposed for 

F. tularensis, many of which are expressed as components 

of the Francisella pathogenicity island.18 These bacterial 

products, as well as others, augment virulence through 

several mechanisms, including suppression of the host 

immune response and facilitation of phagosomal escape and 

intracellular survival.

The Francisella pathogenicity island was first described 

in 2004.19 It contains 17 open reading frames of varying 

size, several of which have been identified as essential for 

pathogenesis.19 Intriguingly, the Francisella pathogenicity 

island is characterized by a lower percentage of guanine and 

cytosine nucleotides compared with the rest of the Francisella 

genome, which itself has a fairly low guanine and cytosine 

content.18,19 In the study that identified the Francisella 

pathogenicity island, the pdpA gene was identified as being 

essential for virulence, but its function and the functions of 

the other pdp genes are not known.19,20 The pdpD gene was 

found to be present in F. novicida and in type A subspecies 

of F. tularensis but not in type B subspecies, and it has been 

implicated in intramacrophage survival.18,19 Several genes 

within the Francisella pathogenicity island, including vgrG, 

dotU, and many of the Igl genes, share sequence homology as 

well as biochemical and structural characteristics with type VI 

secretion genes of other bacteria.21,22 It is therefore not sur-

prising that the products of vgrG and IglI have been found to 

be secreted by the bacterium during intracellular infection.23 

Several Francisella pathogenicity island proteins, including 

the IglC protein, have been shown to inhibit phagosome 

maturation.24,25 These proteins also appear to be involved in 

escape from the phagosome and intracellular survival. IglC 

and clpB have also been implicated in evasion of immunity, as 

F. novicida mutants with defects in these genes fail to induce 

secretion of immunosuppressive prostaglandin E
2
 (PGE

2
).26 

It is worth noting that most of the proteins secreted by the 

Francisella type VI secretion system, with the exception of 

vgrG, are unique to the Francisella genus.27

Control of reactive oxygen species (ROS) and nitro-

gen species is also an essential component of Francisella 

virulence. The enzyme KatG possesses both catalase and 

peroxidase properties, allowing it to detoxify hydrogen 

peroxide as well as reactive nitrogen species.28,29 KatG plays 

a significant role in the virulence of F. tularensis LVS, as 

mutants lacking a functional katG gene failed to kill mice 

after intraperitoneal inoculation.29 In contrast, katG mutants 

of Schu S4 were sensitive to hydrogen peroxide and reactive 

nitrogen species in vitro but retained lethality in mice, indi-

cating that KatG is a sufficient but not necessary virulence 

factor.29 Similarly, the superoxide dismutases SodB and SodC 

are essential for bacterial resistance to superoxide radicals, 

as F. tularensis LVS mutants of either enzyme are highly 

attenuated in mice challenged intranasally.30,31

Host–pathogen interactions
Bacterial survival and replication
F. tularensis has long been considered to be an intracellular 

pathogen. The first evidence that F. tularensis could replicate 

intracellularly came from studies of infected chick embryos 

and, later, HeLa cells.32,33 Notably, these early investiga-

tions showed that bacteria were present in the cytoplasm of 

infected cells.

Later work demonstrated that F. tularensis is also capable 

of replicating within macrophages. In 1995, Fortier et al34 
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showed that F. tularensis LVS grew to high concentrations 

in the presence of peritoneal macrophages but not in the pres-

ence of lysed macrophages or in macrophage-conditioned 

media. F. tularensis is taken up by macrophages through a 

unique form of phagocytosis called “looping phagocytosis”, 

in which extensions of the cell membrane engulf a large 

volume of space surrounding the bacterium in an actin-

dependent manner.35,36 The large space within the loop does 

not result from the presence of a bacterial capsule, as the 

volume of the vacuole is reduced rapidly after phagocytosis.36 

Entry into the cell can involve a variety of surface receptors, 

including mannose receptors, Fc receptors, and comple-

ment receptors.35,37–40 Both virulent and attenuated strains of 

F. tularensis survive phagocytosis by preventing acidifica-

tion of the phagosome and arresting its maturation, and the 

organism ultimately escapes into the cytoplasm.41–43 This 

process is summarized in Figure 1. There is evidence that 

following escape of F. tularensis LVS into the cytoplasm, 

a proportion of cytoplasmic bacteria re-enters the endocytic 

pathway through autophagy.44 It is not certain whether this 

process is an adaptive strategy by the bacterium or a part of 

the cellular defense against infection; however, evidence 

suggests that autophagy provides intracellular bacteria with 

nutrients required for replication.45 The replication process 

ends in the destruction of the host cell. Lai et al46 have shown 

that infection of the macrophage-like J774 cell line with LVS 

results in apoptosis. This apoptosis is not a self-sacrificing 

defense mechanism on the part of the cell, as apoptosis was 

not observed to reduce bacterial numbers.

F. tularensis may also be able to use nonmacrophage cells 

as hosts. LVS has been observed to replicate within alveolar 

type II (ATII) epithelial cells in vitro, and experiments using 

green fluorescent protein-expressing F. tularensis of both 

type A and type B strains have detected labeled bacteria 

within neutrophils after intranasal infection.47,48 Experiments 

employing LVS and Schu S4 ∆pyrF mutants, which fail to 

replicate within primary macrophages, showed that such 

mutants were fully virulent in mice infected intranasally, sug-

gesting that F. tularensis is not dependent upon replication 

within macrophages for survival and virulence.49 Despite the 

proclivity of F. tularensis for intracellular replication, the 

majority of bloodborne bacteria of both type A and type B 

strains are extracellular.50,51

Iron is a key requirement for intracellular growth of 

F. tularensis.34,52,53 Investigators have found that iron 

concentrations in growth media can affect expression of the 

Francisella pathogenicity island genes and can induce the 

organism to adopt a “host-adapted” phenotype.18,54 There is 

evidence that F. tularensis actively modulates expression 

of transferrin receptors in order to promote delivery of iron 

to the phagosome during the early stages of intracellular 

growth.55 However, iron uptake may paradoxically render 

bacteria more susceptible to intracellular killing by ROS.56 

The highly virulent type A strain Schu S4 has been shown 

to have a lower iron content than the attenuated type B 

strain LVS, which may be a factor in the latter’s reduced 

virulence.56

Pathogenesis
The earliest descriptions of tularemia included animals as 

varied as rodents, lagomorphs, and monkeys. These studies 

indicated that infection produced a febrile illness and gener-

ated foci of infection and necrotic inflammation in the lymph 

nodes as well as in dispersed organ sites.1,57 Morphological 

changes to the liver and spleen, particularly splenomegaly, 

have also been observed.57,58 Pneumonia is a frequent occur-

rence, even when the initial infection occurs through a route 

other than the respiratory route.10,59,60 Following intravenous 

infection with F. tularensis LVS, infectious foci were detected 

in liver tissue after 16 hours, accompanied by infiltration of 

both neutrophils and monocytes.61 Systemic dissemination 

also occurs following respiratory infection. Following aerosol 

infection with F. tularensis LVS, bacteria can be isolated 

from livers and spleens as early as 48 hours later.62 In humans, 
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Figure 1 Francisella tularensis (brown) binds to the cell surface using receptors such 
as the mannose receptor (1) or, in the case of opsonized bacteria, Fc receptors 
(2) or complement receptors. Bacteria enter the cell through looping phagocytosis 
(3) but survive by preventing maturation of the phagosome (4). F. tularensis escapes 
the phagosome to replicate in the cytoplasm (5), ultimately inducing apoptosis and 
escaping the cell (6). When macrophages are simulated by exposure to IFN-γ (7), 
they can restrict intracellular replication (8). Stimulation by IFN-γ and stimulation 
of Toll-like receptor 2 (9) can also lead to secretion of inflammatory cytokines and 
chemoattractants (10).
Abbreviations: IFN, interferon; TNF, tumor necrosis factor.
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infection is known to produce fever, persistent malaise, and 

ulcerous lesions or buboes.2,10,59,60

A major factor in F. tularensis pathogenicity is its capac-

ity for intracellular replication. It has long been recognized 

that F. tularensis can replicate within host cells,32,33 and 

particularly macrophages.46,63,64 This intracellular replication 

strategy contributes to pathogenesis as infected cells either 

apoptose or become lysed by uninfected immune cells.46,61 

Intracellular replication may also play a role in dissemination 

of the infection to distant sites. In 2008, Bar-Haim et al65 

showed that following intranasal F. tularensis LVS infection, 

dendritic cells trafficked to the mediastinal lymph nodes, 

which quickly became severely infected.

Death in F. tularensis infection appears to result from 

widespread sepsis and inflammation rather than bacte-

rial pneumonia, even when infection occurs through the 

respiratory route.66–69 In a study of pneumonic F. tularensis 

LVS infection, high levels of inflammatory cytokines and 

chemokines in the lungs and spleen, including interleukin 

(IL)-6, macrophage inflammatory protein 2, and chemokine 

ligand 2, were correlated with mortality.58 Investigations 

involving respiratory infection with F. tularensis Schu S4 and 

F. novicida showed that lethal infection was associated with 

hypercytokinemia and biochemical markers for sepsis.66,69 

This sepsis may result from the fact that in F. tularensis 

infection, upregulation of cytokine production and inflam-

matory cell recruitment is delayed,66 and the high degree of 

apoptotic cell debris associated with F. tularensis infection 

leads to alternative activation of macrophages, impeding 

bacterial clearance.70 In lung infection, excessive levels of 

neutrophil recruitment may also contribute to pathology. 

Although neutrophil recruitment is delayed in Francisella 

infection,66 high levels of neutrophil recruitment are asso-

ciated with increased lung histopathology and, somewhat 

paradoxically, high bacterial burden.71 These findings may 

be explained in part by observations that human neutrophils 

infected with F. tularensis LVS or Schu S4 exhibit a delay in 

time to apoptosis, preventing resolution of inflammation.72

Innate immunity
The type 1-associated immune pathway is known to be an 

important factor in protection from F. tularensis infection. 

After cutaneous infection with F. tularensis LVS, immunized 

mice produced large quantities of IL-12 within 24 hours of 

infection.73 Another study found that IL-12 p40-knockout 

mice failed to clear LVS administered intraperitoneally, even 

after immunization by sublethal intradermal infection.74 These 

mice also had significantly lower levels of serum interferon 

(IFN)-γ, suggesting a connection between secretion of IL-12 

and the IFN-γ response. The p40 subunit of IL-12 was also 

shown to induce migration of dendritic cells from the lungs 

to the draining lymph nodes after LVS infection.75

After intradermal infection with LVS, IFN-γ messenger 

ribonucleic acid expression can be detected within 48 hours 

in naïve mice and within 24 hours in immunized mice.73 In 

F. tularensis infection, both natural killer (NK) cells and 

T-cells are important producers of IFN-γ, although NK cells 

are the dominant source at early time points.76,77 Following 

intranasal F. tularensis LVS infection, NK cells are among 

the first cells recruited to the lungs, and can be observed 

to secrete IFN-γ within 72 hours of infection.76,78 NK cells 

primed with bacterial deoxyribonucleic acid can reduce 

replication of F. tularensis LVS in macrophages, even in 

the absence of T- or B-cells, and this effect is dependent 

upon IFN-γ and TNF-α.79 IFN-γ is essential to host survival 

following pneumonic infection, as IFN-γ knockout mice 

challenged by the respiratory route exhibited greater rates 

of mortality and higher lung bacterial burden than wild-type 

(WT) mice.80,81 Although exogenous treatment with IL-12 

was shown to be protective against intranasal infection, this 

protection was not evident in IFN-γ knockout mice, indicat-

ing that the protective effect of IL-12 is dependent upon 

IFN-γ expression.81

Despite the capacity of F. tularensis to replicate intra-

cellularly in vitro, it has been known for some time that 

IFN-γ-stimulated macrophages play an important role in 

defense against this infection. In 1992, Fortier et al64 showed 

that exposure of macrophages to IFN-γ caused activation of 

these cells and allowed controlled replication of F. tularensis 

LVS in vitro. The authors attributed this to production of 

nitric oxide. A later paper by the same laboratory, however, 

showed that although IFN-γ-stimulated alveolar macrophages 

produced nitric oxide, their antimicrobial activity against 

F. tularensis was independent of nitric oxide production.82 

In other macrophage populations, reactive nitrogen species 

appear to take on greater importance. A 2005 study indicated 

that IFN-γ-stimulated peritoneal exudate cells secrete nitric 

oxide and control bacterial replication, but inducible nitric 

oxide synthase (iNOS) knockout mice or pharmacological 

inhibition of iNOS abrogated this bactericidal effect.83 In 

contrast, knockout of p47, a component of the nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase complex, 

which induces the respiratory burst, reduced but did not 

eliminate bactericidal activity.83 IFN-γ-treated alveolar 

macrophages produced large quantities of tumor necrosis 

factor (TNF)-α, but TNF-α is not essential for protection 
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in vitro when IFN-γ is present. Alveolar macrophages treated 

with recombinant IFN-γ produced reactive nitrogen species 

and controlled LVS burden equally well in the presence 

or absence of neutralizing monoclonal antibodies against 

TNF-α.82 In vivo, both IFN-γ and TNF-α were found to 

be essential for survival of primary intravenous infection 

in mice infected with F. tularensis LVS.84 Neutralization 

of TNF-α or IFN-γ in vivo rendered naïve mice unable to 

control bacterial replication after F. tularensis LVS infection. 

Immunized mice fared better at low infectious doses but 

proved unable to control infection against an intravenous 

dose exceeding 106 CFU.84

Macrophages can also respond to infection through 

means other than the production of nitric oxide or the 

respiratory burst. In 2007, it was found that infection of 

murine macrophages with F. novicida resulted in activation 

of the inflammasome in a manner dependent upon type I 

interferons.85 Cole et  al86 found that macrophages detect 

F. tularensis LVS through both Toll-like receptor 2 (TLR2) 

and cytosolic signaling, resulting in secretion of IFN-β. TLR2 

knockout mice were found to be impaired in their ability to 

facilitate TNF secretion from macrophages, although this 

effect did not specifically require a complex of TLR2 with 

either TLR1 or TLR6.87 Although IFN-γ was found to restrict 

replication of the virulent type A strain Schu S4 within both 

murine bone marrow-derived macrophages and human blood 

monocyte-derived macrophages, this effect was found to be 

independent of either NADPH oxidase or iNOS.88 The roles 

of IFN-γ and TLR2 are summarized in Figure 1.

The role of neutrophils in F. tularensis infection is 

somewhat controversial and may be dependent upon the site 

of infection. Early research using the neutrophil-depleting 

monoclonal antibody RB6-8C5 indicated that neutrophils 

were essential for survival and control of bacterial replica-

tion when mice were infected intradermally or intravenously 

with F. tularensis LVS.89 Intranasal infection resulted in 

recruitment of neutrophils to the lungs within 72 hours of 

infection.90 However, the authors observed that cell depletion  

or increased recruitment of neutrophils to the lungs failed to 

affect either bacterial burden or time to death. Mice deficient 

in gp91phox were slightly more susceptible to low infectious 

doses, indicating a role for NADPH oxidase.90 Some inves-

tigators have suggested that neutrophil recruitment results in 

harmful levels of inflammation after respiratory infection. 

Expression of matrix metalloprotease 9 was associated with 

production of the neutrophil chemoattractant tripeptide pro-

line–glycine–proline and with increased neutrophil recruit-

ment and severe histopathology after F. tularensis infection.71 

Knockout of IL-10 resulted in increased expression of 

IL-17, which led to increased neutrophil recruitment into the 

lungs after intranasal infection.91 However, although IL-10 

knockout mice were protected against cutaneous infection, 

they were more susceptible than WT mice to pneumonic 

infection.

Other cells present in the lung are also involved in 

F. tularensis infection. Following infection of mice with 

green fluorescent protein-expressing F. tularensis LVS and 

Schu S4, bacteria were detected by flow cytometry within 

ATII epithelial cells.47,48 However, Gentry et al92 showed that 

human ATII cells in an in vitro transwell system responded to 

both LVS and Schu S4 with NF-κB-dependent upregulation 

of IL-8. Mast cells have been found to inhibit replication of 

F. tularensis LVS within mouse macrophages through direct 

contact and via secretion of IL-4.93,94

Cell-mediated immunity
As F. tularensis spends much of its existence within host cells, 

cell-mediated immunity likely plays a major role in control of 

tularemia. Early work indicated that splenocytes adoptively 

transferred from mice immunized with F. tularensis LVS 

could protect naïve mice from the virulent strain Schu S4.95 

However, this work failed to make a distinction between the 

potential roles of T-cells and B-cells. It was not until 1991 

that experiments were conducted to determine the relative 

contributions of different splenocyte populations to adaptive 

immunity.96 In those experiments, Fortier et al96 inoculated 

splenocytes from LVS-immunized mice into naïve mice. 

Although immune splenocytes protected mice from an 

otherwise lethal intradermal LVS infection, depletion of 

T-cells removed the protective effect, implicating T-cells as a 

major component of the adaptive response to F. tularensis. In 

agreement with these results, vaccines designed to promote 

a cell-mediated adaptive immune response have had promis-

ing results. Mice vaccinated with Salmonella typhimurium, 

which was engineered to express the lipoprotein TUL4, had 

lower bacterial burdens after LVS challenge than mice vac-

cinated with WT S. typhimurium, even though the modified 

S. typhimurium produced a weaker adaptive response than LVS 

itself.97 Although these mice generated antibody responses 

against TUL4, protection was abolished after cyclosporin A 

treatment to inhibit T-cell activation, suggesting that protec-

tion was predominantly cell mediated rather than humoral. 

Similarly, vaccination with immunostimulating complexes 

that were composed of micelles impregnated with TUL4 and 

the adjuvant Quil A, designed to promote T-cell responses, 

resulted in reduced bacterial burdens after LVS challenge.98 
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Another study found that in mice vaccinated with F. tularensis 

LVS and rechallenged 90 days later with Schu S4, survival 

was correlated with activation of T-cells in the spleen.99 As 

bacterial burden up to day 4 of Schu S4 infection was found 

to be significantly different between LVS-immunized and 

nonimmunized mice in the spleen, but not in the lungs, the 

authors concluded that cell-mediated immunity conferred 

protection against systemic dissemination of F. tularensis 

rather than against replication in the lungs. However, another 

study found that airway administration of IL-17A, but not 

intraperitoneal administration, delayed time to death follow-

ing respiratory F. tularensis LVS infection.100 The T helper 1 

(Th1)-associated transcription factor T-bet has been reported 

to play an important role in control of F. tularensis LVS infec-

tion. However, although T-bet knockout T-cells from lungs 

were unable to control intracellular bacterial replication in 

macrophages, T-bet knockout splenocytes were not deficient 

in this capacity, suggesting different roles for these two T-cell 

populations.101

Our understanding of the relative importance of different 

T-cell populations is still evolving. Cowley et al102 showed 

that membrane-bound TNF-α expressed by CD8+ and CD4+ 

T-cells contributed to control of intracellular replication in 

macrophages but was essential only for protection mediated 

by CD8+ T-cells. It was further found that IL-23-mediated 

stimulation of Th17 cells promoted secretion of IL-17A, 

which contributed to the Th1 and IL-12 responses against 

F. tularensis LVS.103 This pathway was essential in controlling 

lung bacterial burden after intratracheal infection. Other 

investigators have found that airway administration of IL-23 

and IL-17A delayed time to death (although these treat-

ments did not increase survival), and neutralization of these 

cytokines by monoclonal antibody increased mortality.100 

Cowley et  al104–106 identified another population of T-cells 

that controls intracellular replication of F. tularensis LVS 

through IFN-γ-dependent and -independent mechanisms, 

including production of IL-17A. These T-cells express CD3 

and αβ T-cell receptors but do not express CD4, CD8, or 

NK cell markers.

Cell-mediated immunity can operate in synergy with 

humoral immunity to protect against F. tularensis infection. 

Although immune serum has been shown to protect against 

F. tularensis LVS infection, the protective effect of serum 

transfer is dependent upon both T-cells and IFN-γ.96,107 Mice 

vaccinated with F. tularensis lipopolysaccharide (LPS) can 

survive infection even in the absence of CD4+ or CD8+ 

T-cells, although depletion of CD8+ T-cells results in delayed 

clearance.108 However, serum transfer from mice immunized 

with LPS and boosted with F. tularensis LVS failed to protect 

naïve mice depleted of either CD4+ or CD8+ T-cells.108  

A combination vaccine containing tetanus-toxin-conjugated 

O-polysaccharide (to generate an antibody response) and an 

LVS mutant lacking the O-polysaccharide (to generate a T-cell 

response) protected mice against intranasal and intradermal 

infection with the type A strain Schu S4 and the type B strain 

FSC 108 better than either vaccine component alone.109 

Humoral immunity may also enhance the T-cell response. 

It has been reported that immunoglobulin (Ig) A knockout 

mice recruited fewer IFN-γ+ T-cells to the lungs than WT mice 

9 days after respiratory F. tularensis LVS infection.77

Humoral immunity
The mouse antibody response to F. tularensis has been fairly 

well characterized. Mice infected with a sublethal infectious 

dose generate a robust antibody response characterized by 

specific IgG2 and IgM.107 Rats generate a similar antibody 

profile against F. tularensis LVS.110 Although antibodies 

are induced against a variety of bacterial antigens, a large 

proportion of the humoral response is directed against LPS 

in both mice and humans.111–113

Much of the early information pertaining to F. tularensis 

immunity was obtained from studies of the antibody response 

and from treatment of infected individuals with immune 

animal serum. Due perhaps to the variable virulence of dif-

ferent strains of F. tularensis, much of these early data were 

contradictory. In one of the earliest studies, Foshay60 compared 

recovery times of tularemia patients who received only symp-

tomatic treatment or streptomycin with those of patients who 

received immune serum or hyperimmune serum generated by 

inoculation of ungulates with formalin-fixed F. tularensis or 

highly virulent live cultures, respectively. It was found that 

serum treatment, especially hyperimmune serum, reduced the 

time necessary for recovery. Although use of animal serum in 

humans often led to “serum sickness”, this study was one of 

the first to indicate that humoral immunity could confer at least 

limited benefit against F. tularensis. Thorpe and Marcus,114 on 

the other hand, found that passive serum transfer conferred 

only minor protection against virulent strains.

Other investigators have obtained evidence that antibod-

ies contribute to survival of F. tularensis infection, especially 

against challenge with F. tularensis LVS, although they are 

not necessarily sufficient to ensure survival. Fortier et  al96 

made the intriguing observation that, while transfer of 

immune serum to naïve animals could protect against an 

otherwise lethal challenge with F. tularensis LVS, transfer 

of T-cell-depleted splenocytes failed to confer protection, 
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suggesting a diminished role for B-cells. This work is partially 

contradicted by a report that showed higher bacterial burdens 

in the lungs, livers, and spleens of B-cell-knockout mice 

compared with WT mice after aerosol infection with F. tula-

rensis LVS.80 However, the authors also found no difference 

in mean time to death or liver pathology in B-cell-knockout 

mice versus WT mice after aerosol or intradermal infection.80 

Elkins et  al115 found that athymic nude mice challenged 

intradermally with a sublethal dose of F. tularensis LVS were 

able to survive subsequent intraperitoneal or intravenous 

infection with an inoculum of approximately 5,000 times the 

median lethal dose for nude mice. Priming with LVS did not 

protect against S. typhimurium, indicating that the protection 

was specific. As these mice were athymic, this protection 

was likely to be humoral in nature. Rhinehart-Jones et al107 

observed protection against F. tularensis LVS when serum 

from mice that had been infected intradermally with LVS was 

administered to naïve mice. These mice were also protected 

by transfer of LVS-specific IgG (but not IgM). Protection was 

found to be dependent upon host IFN-γ, and nude mice were 

not protected by serum transfer, implicating a role for IFN-

γ-secreting T-cells in antibody-mediated clearance.107 These 

results were corroborated by Sjöstedt et al,84 who found that 

IFN-γ and TNF-α were required for protection against second-

ary intravenous infection with F. tularensis LVS, although the 

requirement for these cytokines was reduced in immunized 

mice. When naïve and immunized mice were treated with 

neutralizing monoclonal antibodies against these cytokines, 

immunized mice were able to tolerate a 50-fold larger infec-

tious dose than naïve mice. Kirimanjeswara et al116 confirmed 

that immune serum could protect against F. tularensis LVS 

in an IFN-γ-dependent manner, and further demonstrated 

that this protection was dependent upon FcγR expression on 

phagocytes. Interestingly, Kirimanjeswara et al116 were able 

to show protection even when serum was administered up 

to 48 hours after intranasal infection, validating early 20th 

century attempts to use immune sera therapeutically.60,116 

Transfer of immune serum or purified specific IgG has also 

been shown to protect rats against both F. tularensis LVS 

and Schu S4,110 although rats have been reported to be more 

resistant to F. tularensis infection than mice.113 Intriguingly, 

although targeting of F. tularensis Schu S4 to phagocyte 

Fc receptors by antibody opsonization enhanced phagocy-

tosis, cellular entry using these receptors delayed bacterial 

replication and phagosomal escape and enhanced produc-

tion of ROS.40

Several candidate antigens have been investigated as pos-

sible targets for protective humoral immunity. F. tularensis 

LPS is poorly immunostimulatory in comparison with LPS 

from other Gram-negative bacteria;117 however, much of 

the antibody response to F. tularensis is directed against 

LPS.112,113 Fulop et al108 have reported that mice immunized 

with LPS were protected against intraperitoneal F. tularensis 

LVS infection, and that serum from LPS-immunized mice 

was sufficient to protect naïve mice against LVS challenge. 

However, LPS immunization was insufficient to protect 

against challenge with the virulent strain Schu S4.108 Twine 

et al118 investigated the humoral response of BALB/c and 

CH3/HeN mice to F. tularensis LVS. Both mouse strains were 

protected against Schu S4 challenge by immunization with 

LVS, but C57BL/6 and DBA/2 mice were not protected. The 

authors found that the former strains of mice generated anti-

bodies against numerous bacterial antigens, such as protein 

chain elongation factor thermo stable and peroxidase, which 

did not elicit antibody responses from unprotected strains.

Although IgG and IgM are highly upregulated following 

F. tularensis infection,107 there is evidence to suggest that 

IgA is also a critical component of host defense. Baron et al78 

showed that WT C57BL/6 mice could be protected against 

lethal F. tularensis LVS infection by intranasal vaccination 

with inactivated F. tularensis and IL-12 as an adjuvant. 

However, IgA knockout mice could not be protected in this 

fashion. IgA knockout mice generate IgG and IgM responses 

to F. tularensis LVS that are comparable with responses 

of WT mice but exhibit reduced IFN-γ responses, higher 

bacterial burden, and reduced survival following intranasal 

LVS infection.77 The precise mechanisms responsible for 

IgA-mediated protection remain to be determined.

Evasion of innate and adaptive  
immunity
F. tularensis is highly adept at evading recognition and 

destruction by the host immune system, as evidenced by the 

considerable delay between infection and the onset of the 

inflammatory response.66,119 The pathogen employs multiple 

survival strategies, including intracellular replication, expres-

sion of an atypical LPS, and induction of alternative and 

aberrant activation of the immune response.

As has been described, F. tularensis is capable of 

replicating within host cells, including macrophages.32,33,64 

In the absence of opsonizing conditions (eg, when 

F. tularensis uses the mannose receptor to facilitate cell 

entry), F. tularensis rapidly leaves the phagosome and 

enters the cytoplasm, where replication occurs.40,41 Although 

some bacteria remain extracellular throughout infection,50,51 

cytosolic replication may provide some protection against 
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detection by TLRs and other surface receptors, and from 

clearance by stimulated phagocytes. However, entry into 

the cytosol allows activation of other cellular defenses such 

as the inflammasome.85

Although the F. tularensis LPS has been used success-

fully to vaccinate mice against intraperitoneal infection 

with F. tularensis LVS,120,121 it is well known that the LPS 

of F. tularensis is poorly immunogenic and, in particular, 

is a poor stimulator of TLR4.117,122 This low level of TLR4 

recognition has been ascribed to the unusual structure of 

the lipid A component.123 Whereas the highly immunogenic 

lipid A of many Gram-negative species is hexa-acylated with 

short acyl chains, the lipid A of F. tularensis is tetra-acylated 

with long acyl chains.117,123,124 F. tularensis LVS has also 

been reported to alter expression of its carbohydrate capsule, 

which incorporates polymers of LPS O-antigen, in order to 

evade recognition by host immunity.125

F. tularensis also employs several active measures to 

inhibit or redirect the host immune response. In 2003, 

Telepnev et  al126 found that infection of the mouse mac-

rophage J774A.1 cell line with F. tularensis LVS resulted in 

the cells becoming unresponsive to Escherichia coli LPS. 

Infected cells failed to degrade the NF-κB inhibitor IκB 

and secreted less TNF-α and IL-1β. These findings were 

corroborated in 2005 when Bosio and Dow127 reported that 

LVS-infected bone marrow-derived macrophages and den-

dritic cells, and dendritic cells isolated from the airways of 

F. tularensis LVS-infected mice, failed to secrete increased 

quantities of TNF-α and IL-6 but instead secreted increased 

quantities of the immunosuppressive cytokine TGF-β. Simi-

lar observations were reported in mice infected via aerosol 

with type A strain Schu S4.128 These immunosuppressive 

effects have been observed in human cells. Telepnev et al129 

have reported that the THP-1 human macrophage cell 

line and human peripheral blood monocytes infected with  

F. tularensis LVS displayed a brief period of stimulation, 

including NF-κB activation and TNF-α secretion, followed 

by inactivation of the NF-κB response and suppression of 

cytokine secretion within 5 hours. Interestingly, F. tularensis 

LVS mutated in the gene iglC, a Francisella pathogenicity 

island gene that encodes a 23 kDa protein produced during 

infection of macrophages, was unable to suppress immune 

activation.19,24,126,129,130

In addition to downregulating inflammatory cytokine 

secretion, F. tularensis also upregulates anti-inflammatory 

cytokines and promotes alternative activation of immune 

cells. Murine macrophages and dendritic cells infected 

with F. tularensis LVS exhibit alternative activation, 

characterized by increased expression of arginase-1, IL-4, 

IL-13, and TGF-β.127,131 F. tularensis LVS also induces 

secretion of anti-inflammatory PGE
2
 from bone marrow-

derived mouse macrophages, although F. novicida mutants 

that do not induce PGE
2
 secretion do not exhibit a defect in 

intracellular replication.26,132,133 PGE
2
 elicited by Francisella 

infection was found to downregulate major histocompat-

ibility complex class II through an intermediary host factor 

dubbed FTMΦSN (F. tularensis macrophage supernatant), 

which drives production of IL-10.134,135 Predictably, Schu S4 

has also been found to suppress secretion of inflammatory 

cytokines by infected dendritic cells; moreover, Schu S4 

infection of dendritic cells also blunted the inflammatory 

capacity of nearby uninfected cells.136 Interestingly, human 

dendritic cells infected with Schu S4 were found not to 

secrete TGF-β, which was reported to be upregulated in 

murine cells infected with LVS.136 It has been suggested that 

alternative activation of macrophages results in part from the 

abundance of cell debris found in Francisella-infected lungs. 

F. novicida-infected J774 cells exposed to large quantities of 

necrotic cell debris produced high levels of arginase-1 and 

showed reduced capacity for efferocytosis, which would lead 

to further accumulation of cell debris in vivo.70 The reduced 

secretion of inflammatory cytokines and increased secretion 

of anti-inflammatory cytokines ultimately result in a delay in 

the recruitment of inflammatory cells to the lungs following 

pulmonary infection.48,66

F. tularensis is able to suppress the immune response in 

granulocytes as well as macrophages and dendritic cells. 

A 2006 report indicated that F. tularensis LVS phagocytized 

by neutrophils inhibits assembly of the NADPH oxidase 

complex and therefore the respiratory burst, even when the 

neutrophils receive additional stimulation in the form of 

phorbol 12-myristate 13-acetate.137 Later studies showed 

that F. tularensis LVS, as well as virulent type A and type B 

strains, can inhibit NADPH oxidase function postassembly, 

and that inhibition is dependent upon fevR, a regulator of the 

Francisella pathogenicity island.138,139

The signaling mechanisms by which F. tularensis modu-

lates the immune response remain poorly understood. It has 

been reported that F. novicida inhibits cellular responses to 

IFN-γ by interfering with STAT-1 signaling.140 Nallaparaju 

et  al141 have found that the Francisella outer membrane 

protein C reduces IFN-γ signaling in infected macrophages, 

preventing production of nitric oxide. It has also been shown 

that lipid products of F. tularensis Schu S4 but not LVS can 
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inhibit IL-12 p40 secretion by inhibiting translocation of 

NF-κB, IRF1, and IRF8.142

Various factors involved in immunosuppression by, and 

virulence of, F. tularensis appear to be upregulated as a 

specific response to the host environment. The Francisella 

pathogenicity island gene iglC, which is necessary for 

immunosuppression, is upregulated during replication in 

macrophages but not during replication in Chamberlain 

medium.126,130 Similarly, it has been observed that bacteria 

grown in Mueller–Hinton medium, which contains con-

centrations of amino acids that exceed those available to 

F. tularensis during infection, expressed increased levels of 

SodB and MglB and reduced levels of IglB, IglC, and KatG 

and longer, more capsule-like O-antigen than bacteria grown 

in macrophages or in the more physiologically similar Brain 

Heart Infusion medium.54,125 These differences may explain 

why F. tularensis LVS grown on Thayer–Martin agar or 

in Mueller–Hinton medium is initially immunostimulatory 

before adopting an immunosuppressive phenotype, as the 

bacteria acclimate to the cellular environment.129,143

Conclusion
F. tularensis has been known to science for over a century 

and has been the subject of an impressive body of research 

over that time – research that has intensified and accelerated 

as a result of recently increased interest in biodefense.1,14 

A considerable breadth of information is available on the 

interaction of this pathogen with mammalian hosts. In par-

ticular, it is well established that F. tularensis maintains a 

low immunological profile during early infection, evading 

surveillance and replicating within the relatively protective 

environment of the host–cell cytoplasm before accumulated 

cell debris and sheer bacterial load make an intense immune 

response unavoidable. However, despite decades of work, we 

have yet to develop a safe, effective, and well-characterized 

vaccine that protects against respiratory infection involv-

ing highly virulent type A strains. Key to the development 

of such a vaccine will be research on the host response to 

F. tularensis type A strains at mucosal surfaces – a field that 

is gaining momentum. Ultimately, defining the differences 

between host responses to virulent and attenuated strains of 

F. tularensis may shed important new insights into develop-

ment of effective prophylactic and therapeutic treatments.
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